請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62236
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 田維誠 | |
dc.contributor.author | Cheng-Yi Chang | en |
dc.contributor.author | 張正義 | zh_TW |
dc.date.accessioned | 2021-06-16T13:35:37Z | - |
dc.date.available | 2014-07-26 | |
dc.date.copyright | 2013-07-26 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-07-17 | |
dc.identifier.citation | [1] A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, M.J. Thun, “Cancer Statistics, 2009”, CA Cancer J. Clin., vol. 59, pp. 225-249, 2009.
[2] H.P. Chan, C. Lewis, P.S. Thomas, “Exhaled breath analysis: novel approach for early detection of lung cancer”, Lung Cancer, vol. 63, pp. 164-168, 2009. [3] 行政院衛生署,“中華民國100年死因統計”,2012. [4] A. Amann, M. Corradi, P. Mazzone, A. Mutti, “Lung cancer biomarkers in exhaled breath”, Expert Rev. Mol. Diagn., vol. 11, pp. 207-217, 2011. [5] P.J. Mazzone, “Exhaled breath volatile organic compound biomarkers in lung cancer”, J. Breath Res., vol. 6, 027106, 2012. [6] J.K. Schubert, W. Miekisch, K. Geiger, G.F.E. Noldge-Schomburg, “Breath analysis in critically ill patients: potential and limitations”, Expert Rev. Mol. Diag., vol. 4, pp. 619-629, 2004. [7] C.S.J. Probert, I. Ahmed, T. Khalid, E. Johnson, S. Smith, N. Ratcliffe, “Volatile Organic Compounds as Diagnostic Biomarkers in Gastrointestinal and Liver Diseases”, J. Gastrointest. Liver Dis., vol. 18, pp. 337-343, 2009. [8] M. Phillips, J. Herrera, S. Krishnan, M. Zain, J. Greenberg, R.N. Cataneo, “Variation in volatile organic compounds in the breath of normal humans”, J. Chromatography B, vol. 729, pp. 75-88, 1999. [9] K.-H. Kim, S.A. Jahan, E. Kabir, “A review of breath analysis for diagnosis of human health”, TrAC Trends in Analytical Chemistry, vol. 33, pp. 1-8, 2012. [10] K. Arshak, E. Moore, G.M. Lyons, J. Harris, S. Clifford, “A review of gas sensors employed in electronic nose applications”, Sensor Review, vol. 24, pp. 181-198, 2004. [11] F.J. Ibanez, F.P. Zamborini, “Chemiresistive Sensing with Chemically Modified Metal and Alloy Nanoparticles”, Small, vol. 8, pp.174-202, 2012. [12] H. Wohltjen, A.W. Snow, “Colloidal Metal-Insulator-Metal Ensemble Chemiresistor Sensor”, Anal. Chem., vol. 70, pp. 2856-2859, 1998. [13] S.D. Evans, S.R. Johnson, Y.L. Cheng, T. Shen, “Vapour sensing using hybrid organic−inorganic nanostructured materials”, J. Mater. Chem., vol. 10, pp. 183-188, 2000. [14] E.E. Foos, A.W. Snow, M.E. Twigg, M.G. Ancona, “Thiol-Terminated Di-, Tri-, and Tetraethylene Oxide Functionalized Gold Nanoparticles: A Water-Soluble, Charge-Neutral Cluster”, Chem. Mater., vol. 14, pp. 2401-2408, 2002. [15] N. Garg, A. Mohanty, N. Lazarus, L. Schultz, T.R. Rozzi, S. Santhanam, L. Weiss, J.L. Snyder, G.K. Fedder, R. Jin, “Robust gold nanoparticles stabilized by trithiol for application in chemiresistive sensors”, Nanotechnology, vol. 21, 405501, 2010. [16] W.H. Steinecker, M.P. Rowe, E.T. Zellers, “Model of Vapor-Induced Resistivity Changes in Gold−Thiolate Monolayer-Protected Nanoparticle Sensor Films”, Anal. Chem., vol. 79, pp. 4977-4986, 2009. [17] O. Harnack, I. Raible, A. Yasuda, T. Vossmeyer, “Lithographic patterning of nanoparticle films self-assembled from organic solutions by using a water-soluble mask”, Appl. Phys. Lett., vol. 86, 034108, 2005. [18] F.J. Ibanez, U. Growrishetty, M.M. Crain, K.M. Walsh, F.P. Zamborini, “Chemiresistive Vapor Sensing with Microscale Films of Gold Monolayer Protected Clusters”, Anal. Chem., vol. 78, pp. 753-761, 2006. [19] E. Covington, F.I. Bohrer, C. Xu, E.T. Zellers, C. Kurdak, “Densely integrated array of chemiresistor vapor sensors with electron-beam patterned monolayer-protected gold nanoparticle interface films”, Lab on a Chip, vol. 10, pp. 3058-3060, 2010. [20] Q.-Y. Cai, E.T. Zellers, “Dual-Chemiresistor GC Detector Employing Monolayer-Protected Metal Nanocluster Interfaces”, Anal. Chem., vol. 74, pp. 3533-3539, 2002. [21] R.-S. Jian, R.-X. Huang, C.-J. Lu, “A micro GC detector array based on chemiresistors employing various surface functionalized monolayer-protected gold nanoparticles”, Talanta, vol. 88, pp. 160-167, 2012. [22] G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y.Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, H. Haick, “Diagnosing lung cancer in exhaled breath using gold nanoparticles”, Nature Nanotechnology, vol.4, pp. 669-673, 2009. [23] G. Peng, M. Hakim, Y.Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, U. Tisch, H. Haick, “Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors”, Brit. J. Cancer, vol. 103, pp. 542-551, 2010. [24] J.-F. Shih, S.-H. Tseng, “CIC 0.35 μm CMOS MEMS Process User Handbook”, 2008. [25] C.A. Neugebauer, M.B. Webb, “Electrical Conduction Mechanism in Ultrathin, Evaporated Metal Films”, J. App. Phys., vol. 33, pp. 74-82, 1962. [26] W.P. Wuelfing, S.J. Green, J.J. Pietron, D.E. Cliffel, R.W. Murray, “Electronic Conductivity of Solid-State, Mixed-Valent, Monolayer-Protected Au Clusters”, J. Am. Chem. Soc., vol. 122, pp. 11465-11472, 2000. [27] W.P. Wuelfing, R.W. Murray, “Electron Hopping through Films of Arenthiolate Monolayer-Protected Gold Clusters”, J. Phys. Chem. B, vol. 106, pp. 3139-3145, 2002. [28] R.H. Terrill, T.A. Postlethwaite, C.-H. Chen, C.-D. Poon, A. Terzis, A. Chen, J.E. Hutchison, M.R. Clark, G. Wignall, “Monolayers in Three Dimensions: NMR, SAXS, Thermal, and Electron Hopping Studies of Alkanethiol Stabilized Gold Clusters”, J. Am. Chem. Soc., vol. 117, pp. 12537-12548, 1995. [29] H.-L. Zhang, S.D. Evans, J.R. Henderson, R.E. Miles, T.-H. Shen, “Vapor sensing using surface functionalized gold nanoparticles”, Nanotechnology, vol. 13, pp. 439-444, 2002. [30] 陳彥呈,奈米金塗佈於立體指叉狀電極之CMOS MEMS氣體感測器,國立臺灣大學生醫電子與資訊學研究所碩士論文,2012 [31] M. Brust, M. Walker, D. Bethell, D. Schiffrin, R. Whyman, “Synthesis of Thiol-derivatised Gold Nanoparticles in a Two-phase Liquid-Liquid System”, J. Chem. Soc. Chem. Commun., vol. 7, pp. 801-802, 1994. [32] M. Brust, J. Fink, D. Bethell, D. Schiffrin, C. Kiely, “Synthesis and Reactions of Functionalised Gold Nanoparticles”, J. Chem. Soc. Chem. Commun., vol. 16, pp. 1655-1656, 1995. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62236 | - |
dc.description.abstract | 本研究開發了新穎的揮發性有機化合物氣體微感測器,其特徵在於堆疊式電極結構,並以奈米金單層膜保護團簇(Monolayer-protected gold nanoclusters, MPNs)作為有機氣體感測材料。堆疊式電極結構之製作是以晶片中心0.35 μm CMOS MEMS製程為基礎,設計了堆疊式指叉狀電極與堆疊式格狀電極兩種結構。使用的奈米金單層膜保護團簇為辛硫醇官能化奈米金粒子(Octanethiol-functionalized gold nanoparticles, Au-C8),並以噴灑Au-C8二氯甲烷溶液的方式塗佈於堆疊式電極上。
此感測器具有良好的感測效能,於氣體生成系統檢測中,感測器的偵測濃度範圍廣(50-5000 ppm)、反應迅速、再現性佳,且感測器反應與氣體濃度成線性關係。堆疊式指叉狀電極感測器對甲苯、正辛烷和正丁醇的靈敏度為27.4 ppm/ppm、33.5 ppm/ppm和21.7 ppm/ppm,而偵測極限分別為15 ppm、14 ppm和20 ppm;堆疊式格狀電極感測器對甲苯、正辛烷和正丁醇的靈敏度為133.5 ppm/ppm、211.4 ppm/ppm和92.3 ppm/ppm,偵測極限分別為13 ppm、8 ppm和21 ppm。 本研究亦示範將堆疊式格狀電極感測器應用於氣相層析系統,可成功辨識八種待測有機氣體,且感測器反應程度亦與有機氣體質量成線性關係。感測器對甲苯、正辛烷和乙酸正丁酯的靈敏度為為5.97 ppm/ng、6.17 ppm/ng和3.08 ppm/ng,而偵測極限分別為1.91 μg、1.85 μg和3.71 μg。本研究開發的揮發性有機化合物氣體微感測器具有反應迅速、靈敏度高、再現性佳等優點,且可作為氣相層析系統偵測器,故具有整合於微型化氣相層析系統的潛力。 | zh_TW |
dc.description.abstract | In this research, a novel volatile organic compound (VOC) sensor featured with stacked electrodes coated with monolayer-protected gold nanoclusters (MPNs) was demonstrated. Two patterns of electrodes, stacked interdigitated electrodes and stacked grid electrodes, were proposed and fabricated by CIC 0.35 μm CMOS MEMS process. The employed MPNs were octanethiol-functionalized gold nanoparticles (Au-C8) and were coated on the stacked electrodes by airbrushing Au-C8 dichloromethane solution.
When tested using a gas generation system, the sensor had a wide dynamic range from 50 to 5000 ppm, and the response was fast, repeatable, and linearly dependent of the gas concentration. The sensitivities of the sensor with stacked interdigitated electrodes for toluene, octane and butanol were 27.4, 33.5 and 21.7 ppm/ppm, respectively, and the corresponding detection limits were 15, 14 and 20 ppm. The sensitivities of the sensor with stacked grid electrodes for toluene, octane and butanol were 133.5, 211.4 and 92.3 ppm/ppm, respectively, and the corresponding detection limits were 15, 14 and 20 ppm. The sensor with stacked grid electrodes was also employed as a gas chromatograph (GC) detector. The sensor could identify eight selected VOCs, and the response was linearly dependent of the mass of analyte. The sensitivities for toluene, octane and butyl acetate were 5.97, 6.17 and 3.08 ppm/ng, respectively, and the corresponding detection limits were 1.91, 1.85 and 3.71 μg. With the features of fast response, high sensitivity and good repeatability, the sensor showed its potential for integration in a micro GC. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T13:35:37Z (GMT). No. of bitstreams: 1 ntu-102-R00943060-1.pdf: 9532878 bytes, checksum: 5a058da90a2c1c1fa18fb07a50c61bb7 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 中文摘要 III ABSTRACT IV 目錄 V 圖目錄 VIII 表目錄 XI 第1章 緒論 1 1.1 研究動機 1 1.2 揮發性有機化合物氣體感測器研究回顧 4 1.2.1 氣體感測器介紹 4 1.2.2 奈米金單層膜保護團簇應用於氣體感測之文獻回顧 7 1.3 互補式金氧半微機電製程介紹 17 1.4 論文架構 19 第2章 氣體感測器之感測原理與設計 20 2.1 奈米金單層膜保護團簇之氣體感測原理介紹 20 2.2 氣體感測平台設計 22 2.2.1 堆疊式電極設計理念與背景 22 2.2.2 第一代設計:堆疊式指叉狀電極結構 24 2.2.3 第二代設計:堆疊式格狀電極結構 27 第3章 氣體感測器之製作與量測 30 3.1 實驗設備及流程 30 3.1.1 實驗設備 30 3.1.2 實驗流程 31 3.2 晶片後製程步驟與結果 32 3.2.1 去除保護光阻 32 3.2.2 去除反應式離子蝕刻之副產物 33 3.3 晶片封裝 37 3.4 奈米金單層膜保護團簇之塗佈 38 3.5 氣體感測器檢測方式 42 3.5.1 揮發性有機化合物氣體生成系統量測 42 3.5.2 氣相層析系統量測 44 第4章 感測器特性量測結果與討論 46 4.1 氣體生成系統量測 46 4.1.1 數據處理與相關參數定義 46 4.1.2 測試腔體容積對感測器反應之影響 47 4.1.3 氣體種類對感測器反應之影響 49 4.1.4 偵測極限估算 55 4.1.5 感測器反應再現性測試 57 4.1.6 感測器效能比較 58 4.2 氣相層析系統量測 60 4.2.1 數據處理與相關參數定義 60 4.2.2 感測器應用於氣相層析偵測示範 61 4.2.3 偵測極限估算 65 第5章 結論與未來展望 67 5.1 結論 67 5.2 未來展望 68 參考資料 69 | |
dc.language.iso | zh-TW | |
dc.title | 以奈米金單層膜保護團簇塗佈於堆疊式電極結構之揮發性有機化合物氣體感測器 | zh_TW |
dc.title | A Volatile Organic Compound Sensor Employing Monolayer-Protected Gold Nanoclusters Coated on Stacked Electrodes | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 沈弘俊,魏培坤,呂家榮,劉舜維 | |
dc.subject.keyword | 氣體感測器,揮發性有機化合物,奈米金單層膜保護團簇,堆疊式電極,互補式金氧半微機電製程, | zh_TW |
dc.subject.keyword | gas sensor,volatile organic compounds (VOCs),monolayer-protected gold nanoclusters (MPNs),stacked electrodes,CMOS MEMS process, | en |
dc.relation.page | 72 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-07-17 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 9.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。