Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62235
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor冀宏源(Hung-Yuan Chi)
dc.contributor.authorChia-Yu Liaoen
dc.contributor.author廖嘉妤zh_TW
dc.date.accessioned2021-06-16T13:35:33Z-
dc.date.available2023-12-31
dc.date.copyright2013-07-26
dc.date.issued2013
dc.date.submitted2013-07-17
dc.identifier.citationREFERENCES
1. Akamatsu, Y., Dziadkowiec, D., Ikeguchi, M., Shinagawa, H., and Iwasaki, H. (2003). Two different Swi5-containing protein complexes are involved in mating-type switching and recombination repair in fission yeast. Proceedings of the National Academy of Sciences of the United States of America 100, 15770-15775.
2. Akamatsu, Y., and Jasin, M. (2010). Role for the mammalian Swi5-Sfr1 complex in DNA strand break repair through homologous recombination. PLoS genetics 6, e1001160.
3. Akamatsu, Y., Tsutsui, Y., Morishita, T., Siddique, M.S., Kurokawa, Y., Ikeguchi, M., Yamao, F., Arcangioli, B., and Iwasaki, H. (2007). Fission yeast Swi5/Sfr1 and Rhp55/Rhp57 differentially regulate Rhp51-dependent recombination outcomes. The EMBO journal 26, 1352-1362.
4. Bishop, D.K., Park, D., Xu, L., and Kleckner, N. (1992). DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69, 439-456.
5. Dray, E., Dunlop, M.H., Kauppi, L., San Filippo, J., Wiese, C., Tsai, M.S., Begovic, S., Schild, D., Jasin, M., Keeney, S., et al. (2011). Molecular basis for enhancement of the meiotic DMC1 recombinase by RAD51 associated protein 1 (RAD51AP1). Proceedings of the National Academy of Sciences of the United States of America 108, 3560-3565.
6. Dunlop, M.H., Dray, E., Zhao, W., San Filippo, J., Tsai, M.S., Leung, S.G., Schild, D., Wiese, C., and Sung, P. (2012). Mechanistic insights into RAD51-associated protein 1 (RAD51AP1) action in homologous DNA repair. The Journal of biological chemistry 287, 12343-12347.
7. Dunlop, M.H., Dray, E., Zhao, W., Tsai, M.S., Wiese, C., Schild, D., and Sung, P. (2011). RAD51-associated protein 1 (RAD51AP1) interacts with the meiotic recombinase DMC1 through a conserved motif. The Journal of biological chemistry 286, 37328-37334.
8. Egel, R. (1984). The pedigree pattern of mating-type switching in Schizosaccharomyces pombe. Curr Genet 8, 205-210.
9. Egel, R., Beach, D.H., and Klar, A.J. (1984). Genes required for initiation and resolution steps of mating-type switching in fission yeast. Proceedings of the National Academy of Sciences of the United States of America 81, 3481-3485.
10. Flores-Rozas, H., and Kolodner, R.D. (2000). Links between replication, recombination and genome instability in eukaryotes. Trends in Biochemical Sciences 25, 196-200.
11. Gutz, H., and Schmidt, H. (1985). Switching genes in Schizosaccharomyces pombe. Curr Genet 9, 325-331.
12. Haber, J.E. (1999). DNA recombination: the replication connection. Trends in Biochemical Sciences 24, 271-275.
13. Hartlerode, A.J., and Scully, R. (2009). Mechanisms of double-strand break repair in somatic mammalian cells. The Biochemical journal 423, 157.
14. Haruta, N., Akamatsu, Y., Tsutsui, Y., Kurokawa, Y., Murayama, Y., Arcangioli, B., and Iwasaki, H. (2008). Fission yeast Swi5 protein, a novel DNA recombination mediator. DNA repair 7, 1-9.
15. Haruta, N., Kurokawa, Y., Murayama, Y., Akamatsu, Y., Unzai, S., Tsutsui, Y., and Iwasaki, H. (2006). The Swi5-Sfr1 complex stimulates Rhp51/Rad51- and Dmc1-mediated DNA strand exchange in vitro. Nature structural & molecular biology 13, 823-830.
16. Hayase, A., Takagi, M., Miyazaki, T., Oshiumi, H., Shinohara, M., and Shinohara, A. (2004). A protein complex containing Mei5 and Sae3 promotes the assembly of the meiosis-specific RecA homolog Dmc1. Cell 119, 927-940.
17. Henson, S.E., Tsai, S.C., Malone, C.S., Soghomonian, S.V., Ouyang, Y., Wall, R., Marahrens, Y., and Teitell, M.A. (2006). Pir51, a Rad51-interacting protein with high expression in aggressive lymphoma, controls mitomycin C sensitivity and prevents chromosomal breaks. Mutation research 601, 113-124.
18. Heyer, W.-D., Ehmsen, K.T., and Liu, J. (2010). Regulation of homologous recombination in eukaryotes. Annual review of genetics 44, 113-139.
19. Holthausen, J.T., Wyman, C., and Kanaar, R. (2010). Regulation of DNA strand exchange in homologous recombination. DNA repair 9, 1264-1272.
20. Kennedy, R.D., and D'Andrea, A.D. (2006). DNA repair pathways in clinical practice: lessons from pediatric cancer susceptibility syndromes. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 24, 3799-3808.
21. Klein, H.L. (2008). The consequences of Rad51 overexpression for normal and tumor cells. DNA repair 7, 686.
22. Klein, H.L., and Kreuzer, K.N. (2002). Replication, recombination, and repair: going for the gold. Molecular cell 9, 471-480.
23. Kovalenko, O.V., Golub, E.I., Bray-Ward, P., Ward, D.C., and Radding, C.M. (1997). A novel nucleic acid-binding protein that interacts with human rad51 recombinase. Nucleic acids research 25, 4946-4953.
24. Kovalenko, O.V., Wiese, C., and Schild, D. (2006). RAD51AP2, a novel vertebrate- and meiotic-specific protein, shares a conserved RAD51-interacting C-terminal domain with RAD51AP1/PIR51. Nucleic acids research 34, 5081-5092.
25. Krogh, B.O., and Symington, L.S. (2004). Recombination proteins in yeast. Annu Rev Genet 38, 233-271.
26. Lisby, M., and Rothstein, R. (2009). Choreography of recombination proteins during the DNA damage response. DNA repair 8, 1068-1076.
27. Mizuta, R., LaSalle, J.M., Cheng, H.L., Shinohara, A., Ogawa, H., Copeland, N., Jenkins, N.A., Lalande, M., and Alt, F.W. (1997). RAB22 and RAB163/mouse BRCA2: proteins that specifically interact with the RAD51 protein. Proceedings of the National Academy of Sciences of the United States of America 94, 6927-6932.
28. Modesti, M., Budzowska, M., Baldeyron, C., Demmers, J.A., Ghirlando, R., and Kanaar, R. (2007). RAD51AP1 is a structure-specific DNA binding protein that stimulates joint molecule formation during RAD51-mediated homologous recombination. Molecular cell 28, 468-481.
29. Moynahan, M.E., and Jasin, M. (2010). Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nature Reviews Molecular Cell Biology 11, 196-207.
30. Ogawa, T., Yu, X., Shinohara, A., and Egelman, E.H. (1993). Similarity of the yeast RAD51 filament to the bacterial RecA filament. Science (New York, NY) 259, 1896-1899.
31. Passy, S.I., Yu, X., Li, Z., Radding, C.M., Masson, J.Y., West, S.C., and Egelman, E.H. (1999). Human Dmc1 protein binds DNA as an octameric ring. Proceedings of the National Academy of Sciences of the United States of America 96, 10684-10688.
32. Petermann, E., and Helleday, T. (2010). Pathways of mammalian replication fork restart. Nature Reviews Molecular Cell Biology 11, 683-687.
33. San Filippo, J., Sung, P., and Klein, H. (2008). Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77, 229-257.
34. Sauvageau, S., Stasiak, A.Z., Banville, I., Ploquin, M., Stasiak, A., and Masson, J.Y. (2005). Fission yeast rad51 and dmc1, two efficient DNA recombinases forming helical nucleoprotein filaments. Mol Cell Biol 25, 4377-4387.
35. Schmidt, H., Kapitza-Fecke, P., Stephen, E., and Gutz, H. (1989). Some of the swi genes of Schizosaccharomyces pombe also have a function in the repair of radiation damage. Curr Genet 16, 89-94.
36. Sehorn, M.G., Sigurdsson, S., Bussen, W., Unger, V.M., and Sung, P. (2004). Human meiotic recombinase Dmc1 promotes ATP-dependent homologous DNA strand exchange. Nature 429, 433-437.
37. Shin, D.S., Pellegrini, L., Daniels, D.S., Yelent, B., Craig, L., Bates, D., Yu, D.S., Shivji, M.K., Hitomi, C., Arvai, A.S., et al. (2003). Full-length archaeal Rad51 structure and mutants: mechanisms for RAD51 assembly and control by BRCA2. The EMBO journal 22, 4566-4576.
38. Sonoda, E., Sasaki, M.S., Buerstedde, J.M., Bezzubova, O., Shinohara, A., Ogawa, H., Takata, M., Yamaguchi-Iwai, Y., and Takeda, S. (1998). Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. The EMBO journal 17, 598-608.
39. Story, R.M., Bishop, D.K., Kleckner, N., and Steitz, T.A. (1993). Structural relationship of bacterial RecA proteins to recombination proteins from bacteriophage T4 and yeast. Science (New York, NY) 259, 1892-1896.
40. Sung, P., and Klein, H. (2006). Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nature Reviews Molecular Cell Biology 7, 739-750.
41. Sung, P., and Robberson, D.L. (1995). DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell 82, 453-461.
42. Tsai, S.P., Su, G.C., Lin, S.W., Chung, C.I., Xue, X., Dunlop, M.H., Akamatsu, Y., Jasin, M., Sung, P., and Chi, P. (2012). Rad51 presynaptic filament stabilization function of the mouse Swi5-Sfr1 heterodimeric complex. Nucleic acids research 40, 6558-6569.
43. Tsubouchi, H., and Roeder, G.S. (2004). The budding yeast mei5 and sae3 proteins act together with dmc1 during meiotic recombination. Genetics 168, 1219-1230.
44. Tsuzuki, T., Fujii, Y., Sakumi, K., Tominaga, Y., Nakao, K., Sekiguchi, M., Matsushiro, A., Yoshimura, Y., and MoritaT (1996). Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proceedings of the National Academy of Sciences of the United States of America 93, 6236-6240.
45. Wiese, C., Dray, E., Groesser, T., San Filippo, J., Shi, I., Collins, D.W., Tsai, M.-S., Williams, G.J., Rydberg, B., and Sung, P. (2007). Promotion of homologous recombination and genomic stability by RAD51AP1 via RAD51 recombinase enhancement. Molecular cell 28, 482-490.
46. Yuan, J., and Chen, J. (2011). The role of the human SWI5-MEI5 complex in homologous recombination repair. The Journal of biological chemistry 286, 9888-9893.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62235-
dc.description.abstract同源重組(homologous recombination)是修復雙股螺旋去氧核醣核酸斷裂 (DNA double strand breaks)的主要機制。同源重組的功能缺失會引起基因體的不穩定性,甚至造成癌症。當發生雙股去氧核醣核酸斷裂時,雙股去氧核醣核酸會被酵素截切成單股的去氧核醣核酸,接著RAD51重組酵素(recombinase)會以螺旋的方式結合在此單股去氧核醣核酸上,形成一條核蛋白聚合物(nucleoprotein filament)。此核蛋白聚合物會跟同源的雙股去氧核醣核酸配對,接著兩股之間進行交換,完成同源重組反應。在同源重組反應中,RAD51重組酵素會受到一些輔助蛋白的調控,例如:SWI5-SFR1 和 RAD51AP1。抑制哺乳類動物細胞中SWI5-SFR1 或 RAD51AP1 的表現,會提高細胞對去氧核醣核酸損傷藥劑(DNA damaging agents)的敏感度。但目前並不清楚SWI5-SFR1和RAD51AP1如何共同調控同源重組的修復機制。而我們的研究結果發現:SWI5-SFR1與RAD51AP1對於RAD51重組酵素調控的雙股互換,有相乘(synergistic effect)的刺激效果。但過去的研究顯示並非所有的輔助蛋白都可以刺激相乘作用,因此我們想更深入了解SWI5-SFR1與RAD51AP1刺激相乘作用的機制。結果我們發現:此相乘作用需要SWI5-SFR1形成複合體,且此複合體要跟RAD51重組酵素有交互作用;也需要RAD51AP1具有跟去氧核醣核酸以及RAD51重組酵素的交互作用。我們更進一步發現,SWI5-SFR1與RAD51AP1兩者之間並不會有蛋白和蛋白的交互作用,但兩者卻可以跟RAD51重組酵素形成三聚體。代表此相乘作用是SWI5-SFR1與RAD51AP1分別對RAD51重組酵素刺激的結果。我們的研究讓我們更暸解輔助蛋白對於RAD51重組酵素調控的機制。zh_TW
dc.description.abstractHomologous recombination (HR) is the major pathway to repair DNA double-strand breaks (DSBs). Dysfunction of HR leads to genome instability and even cancer formation. When a double-stranded DNA (dsDNA) breaks, the break ends undergo a resection process to generate a single-stranded DNA (ssDNA), and then RAD51 recombinase assembles on ssDNA to form a nucleoprotein filament, which is called presynaptic filament. The presynaptic filament captures and invades in dsDNA to search the homologous DNA. Finally, the ssDNA exchanges with their homologous DNA within dsDNA. During this HR reaction, the activity of RAD51 is regulated by accessory factors, including SWI5-SFR1 and RAD51AP1. Previous cell-based studies showed that knockdown SWI5-SFR1 or RAD51AP1 in mammalian cells results in increased sensitivity to DNA damaging agents. It raises an intriguing question how SWI5-SFR1 and RAD51AP1 mechanistically co-regulate Rad51 recombinase activity during HR. To address this question, we use purified proteins and in vitro reconstitution system to study their mechanistic actions in recombination reaction. Our results indicate that mouse SWI5-SFR1 and RAD51AP1 exhibit a synergistic effect on RAD51-mediated strand exchange. Moreover, the synergistic effect not only requires SWI5-SFR1 forming complex interacting with RAD51, but also requires RAD51AP1 binding DNA and RAD51. Furthermore, we found that SWI5-SFR1 can’t associate with RAD51AP1 directly, but SWI5-SFR1, RAD51AP1 and RAD51 form a ternary complex. Taken together, our findings suggest that the synergistic effect stems from the stimulation of SWI5-SFR1 and RAD51AP1 individually, and provide a mechanical insight of accessory factors in homologous recombination.en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:35:33Z (GMT). No. of bitstreams: 1
ntu-102-R00B46003-1.pdf: 1385768 bytes, checksum: c0552667ff602fce5e225ff6611ad2d5 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents誌謝 I
中文摘要 II
ABSTRACT III
CHAPTER 1 : INTRODUCTION
1-1 Homologues recombination 1
1-2 Accessory protein: Swi5-Sfr1 4
1-3 Accessory protein: Rad51AP1 7
1-4 Motivation of my thesis study 11

CHAPTER 2 : MATERIALS AND METHODS
2-1 DNA substrates 13
2-2 Plasmids construction 14
2-3 Protein expression and purification 16
2-4 Strand exchange assay to monitor Rad51 activity 19
2-5 D-loop assay to measure Rad51 activity 23
2-6 Exonuclease-I protection assay to measure the Rad51 filament stability 24
2-7 DNA mobility shift assay 24
2-8 Affinity pull down to examine protein-protein interaction 25

CHAPTER 3 : RESULTS
3-1 Functional interaction of mouse Rad51AP1 and Rad51 27
3-2 Swi5-Sfr1 and Rad51AP1 exhibit a synergistic effect on Rad51 activity 30
3-3 Synergistic effects stem from the complex form of Swi5-Sfr1 and it’s 31
interaction with Rad51
3-4 Biochemical characterization of mouse Rad51AP1 mutant variants: 33
protein-protein interaction and DNA binding
3-5 Synergistic effects stem from Rad51AP1 protein-protein interaction and 36
DNA binding
3-6 Protein-protein interactions of Swi5-Sfr1, Rad51AP1, and Rad51 37

CHAPTER 4 : CONCLUSION AND DISCUSSION
4-1 Summary of key findings 38
4-2 Discussion 39
4-3 Future directions 42

FIGURES 43
REFERENCES 52
APPENDIX 56
dc.language.isoen
dc.titleSWI5-SFR1與RAD51AP1對RAD51重組酵素的作用機轉zh_TW
dc.titleThe mechanism of SWI5-SFR1 and RAD51AP1 stimulating RAD51-mediated recombinationen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李弘文,董桂書,鄧述諄
dc.subject.keyword同源重組,相乘作用,Rad51重組酵素,Swi5-Sfr1,Rad51AP1,zh_TW
dc.subject.keywordHomologous recombination,Synergistic effect,Rad51 recombinase,Rad51AP1,Swi5-Sfr1,en
dc.relation.page58
dc.rights.note有償授權
dc.date.accepted2013-07-17
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
dc.date.embargo-terms2300-01-01
dc.date.embargo-lift2300-01-01-
Appears in Collections:生化科學研究所

Files in This Item:
File SizeFormat 
ntu-102-1.pdf
  Restricted Access
1.35 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved