Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62232
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾孝文
dc.contributor.authorPei-Hsin Wuen
dc.contributor.author吳珮歆zh_TW
dc.date.accessioned2021-06-16T13:35:22Z-
dc.date.available2013-07-26
dc.date.copyright2013-07-26
dc.date.issued2013
dc.date.submitted2013-07-17
dc.identifier.citationBagher-Ebadian, H., Q. Jiang & J. R. Ewing (2008) A modified Fourier-based phase unwrapping algorithm with an application to MRI venography. J Magn Reson Imaging, 27, 649-52.
Bandettini, P. A., E. C. Wong, R. S. Hinks, R. S. Tikofsky & J. S. Hyde (1992) Time course EPI of human brain function during task activation. Magn Reson Med, 25, 390-7.
Bernstein, M. A., K. F. King & X. J. Zhou. 2004. Handbook of MRI pulse sequences. Academic Press.
Bonny, J. M., W. Laurent & J. P. Renou (2000) Detection of susceptibility effects using simultaneous T(2)* and magnetic field mapping. Magn Reson Imaging, 18, 1125-8.
Chen, N. K., K. Oshio & L. P. Panych (2006) Application of k-space energy spectrum analysis to susceptibility field mapping and distortion correction in gradient-echo EPI. Neuroimage, 31, 609-22.
Chen, N. K., K. Oshio & L. P. Panych (2008) Improved image reconstruction for partial Fourier gradient-echo echo-planar imaging (EPI). Magn Reson Med, 59, 916-24.
Cuppen, J. J., J. P. Groen & J. Konijn (1986) Magnetic resonance fast Fourier imaging. Med Phys, 13, 248-53.
Cusack, R. & N. Papadakis (2002) New robust 3-D phase unwrapping algorithms: application to magnetic field mapping and undistorting echoplanar images. Neuroimage, 16, 754-764.
de Zwart, J. A., P. van Gelderen, D. J. Kelly & C. T. Moonen (1996) Fast magnetic-resonance temperature imaging. J Magn Reson B, 112, 86-90.
Deichmann, R., O. Josephs, C. Hutton, D. R. Corfield & R. Turner (2002) Compensation of susceptibility-induced BOLD sensitivity losses in echo-planar fMRI imaging. Neuroimage, 15, 120-35.
Devlin, J. T., R. P. Russell, M. H. Davis, C. J. Price, J. Wilson, H. E. Moss, P. M. Matthews & L. K. Tyler (2000) Susceptibility-induced loss of signal: comparing PET and fMRI on a semantic task. Neuroimage, 11, 589-600.
Glover, G. H. & E. Schneider (1991) Three-point Dixon technique for true water/fat decomposition with B0 inhomogeneity correction. Magn Reson Med, 18, 371-83.
Gudbjartsson, H. & S. Patz (1995) The Rician distribution of noisy MRI data. Magn Reson Med, 34, 910-4.
Haacke, E. M., Y. Xu, Y. C. N. Cheng & J. R. Reichenbach (2004) Susceptibility weighted imaging (SWI). Magnetic Resonance in Medicine, 52, 612-618.
Irarrazabal, P., C. H. Meyer, D. G. Nishimura & A. Macovski (1996) Inhomogeneity correction using an estimated linear field map. Magn Reson Med, 35, 278-82.
Ishihara, Y., A. Calderon, H. Watanabe, K. Okamoto, Y. Suzuki, K. Kuroda & Y. Suzuki (1995) A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med, 34, 814-23.
Itoh, K. (1982) Analysis of the phase unwrapping algorithm. Appl Opt, 21, 2470.
Jenkinson, M. (2003) Fast, automated, N-dimensional phase-unwrapping algorithm. Magn Reson Med, 49, 193-7.
Jenkinson, M., C. F. Beckmann, T. E. Behrens, M. W. Woolrich & S. M. Smith (2012) Fsl. Neuroimage, 62, 782-90.
Jezzard, P. & R. S. Balaban (1995) Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med, 34, 65-73.
Langley, J. & Q. Zhao (2009a) Unwrapping magnetic resonance phase maps with Chebyshev polynomials. Magn Reson Imaging, 27, 1293-301.
Langley, J. & Q. Zhao (2009b) Unwrapping magnetic resonance phase maps with Chebyshev polynomials. Magnetic resonance imaging, 27, 1293-1301.
Liang, Z. P. (1996) A model-based method for phase unwrapping. IEEE Trans Med Imaging, 15, 893-7.
Lu, K., T. T. Liu & M. Bydder (2008) Optimal phase difference reconstruction: comparison of two methods. Magn Reson Imaging, 26, 142-5.
McGibney, G., M. R. Smith, S. T. Nichols & A. Crawley (1993) Quantitative evaluation of several partial Fourier reconstruction algorithms used in MRI. Magn Reson Med, 30, 51-9.
Moran, P. R., R. A. Moran & N. Karstaedt (1985) Verification and evaluation of internal flow and motion. True magnetic resonance imaging by the phase gradient modulation method. Radiology, 154, 433-41.
Naidich, T. P., N. R. Altman & S. M. Gonzalez-Arias (1993) Phase contrast cine magnetic resonance imaging: normal cerebrospinal fluid oscillation and applications to hydrocephalus. Neurosurg Clin N Am, 4, 677-705.
Nayler, G. L., D. N. Firmin & D. B. Longmore (1986) Blood flow imaging by cine magnetic resonance. J Comput Assist Tomogr, 10, 715-22.
Ojemann, J. G., E. Akbudak, A. Z. Snyder, R. C. McKinstry, M. E. Raichle & T. E. Conturo (1997) Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. Neuroimage, 6, 156-67.
Ongori, J. N., E. M. Meintjes & B. S. Spottiswoode 3D Phase Unwrapping of DENSE MRI Images Using Region Merging.
Posse, S. (1992) Direct imaging of magnetic field gradients by group spin-echo selection. Magn Reson Med, 25, 12-29.
Reber, P. J., E. C. Wong, R. B. Buxton & L. R. Frank (1998) Correction of off resonance-related distortion in echo-planar imaging using EPI-based field maps. Magn Reson Med, 39, 328-30.
Reese, T. G., T. L. Davis & R. M. Weisskoff (1995) Automated shimming at 1.5 t using echo‐planar image frequency maps. Journal of Magnetic Resonance Imaging, 5, 739-745.
Reichenbach, J. R., R. Venkatesan, D. J. Schillinger, D. K. Kido & E. M. Haacke (1997a) Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology, 204, 272-7.
Reichenbach, J. R., R. Venkatesan, D. A. Yablonskiy, M. R. Thompson, S. Lai & E. M. Haacke (1997b) Theory and application of static field inhomogeneity effects in gradient-echo imaging. J Magn Reson Imaging, 7, 266-79.
Rieke, V. & K. Butts Pauly (2008) MR thermometry. J Magn Reson Imaging, 27, 376-90.
Rieke, V., A. B. Ross, W. H. Nau, C. J. Diederich, G. Sommer & K. Butts (2004) MRI-temperature mapping during ultrasound prostate ablation using fat for phase estimation. Conf Proc IEEE Eng Med Biol Soc, 4, 2500-2.
Roopchansingh, V., R. W. Cox, A. Jesmanowicz, B. D. Ward & J. S. Hyde (2003) Single-shot magnetic field mapping embedded in echo-planar time-course imaging. Magn Reson Med, 50, 839-43.
Schmitt, F., M. K. Stehling, R. Turner & P. A. Bandettini. 1998. Echo-planar imaging: theory, technique and application. Springer Berlin Heidelberg New York.
Schneider, E. & G. Glover (1991) Rapid in vivo proton shimming. Magn Reson Med, 18, 335-47.
Schofield, M. A. & Y. Zhu (2003) Fast phase unwrapping algorithm for interferometric applications. Opt Lett, 28, 1194-6.
Stafford, R. J., R. E. Price, C. J. Diederich, M. Kangasniemi, L. E. Olsson & J. D. Hazle (2004) Interleaved echo-planar imaging for fast multiplanar magnetic resonance temperature imaging of ultrasound thermal ablation therapy. J Magn Reson Imaging, 20, 706-14.
Szumowski, J., W. R. Coshow, F. Li & S. F. Quinn (1994) Phase unwrapping in the three-point Dixon method for fat suppression MR imaging. Radiology, 192, 555-61.
Tribolet, J. (1977) A new phase unwrapping algorithm. Acoustics, Speech and Signal Processing, IEEE Transactions on, 25, 170-177.
Volkov, V. V. & Y. Zhu (2003) Deterministic phase unwrapping in the presence of noise. Opt Lett, 28, 2156-8.
Weisskoff, R. & T. Davis (1992) Correcting gross distortion on echo planar images. 11th Ann. Sci. Mtg. Soc. of Magn. Reson. in Med, 4515.
Xiang, Q. S. (1995) Temporal phase unwrapping for CINE velocity imaging. J Magn Reson Imaging, 5, 529-34.
Zeng, H. & R. T. Constable (2002) Image distortion correction in EPI: comparison of field mapping with point spread function mapping. Magnetic Resonance in Medicine, 48, 137-146.
Zhou, X., Q. He, A. Zhang, M. Beckmann & C. Ni (2010) Temperature measurement error reduction for MRI-guided HIFU treatment. Int J Hyperthermia, 26, 347-58.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62232-
dc.description.abstract磁共振造影中,磁場梯度會改變影像上不同空間位置的共振頻率進而累積出相位角。藉由不同時間得到的相位影像得知其累積的相位角,便可計算得到磁場分佈圖,此即為磁場分佈擷取技術的概念。而其中,相位累積時間的長短會影響相位重建技術的結果,同時也就決定了磁場分佈擷取技術成功與否。當採用小的時間差,所累積出來的相位值易受到雜訊的影響而造成磁場分佈估算錯誤;然而,當利用長時間去累積相位時,磁場所造成的訊號衰減和相位折疊效應都會降低磁場分佈圖的準確度。另一方面,空間頻率能量能譜演算法是另一種可以用來擷取磁場分佈圖的技術,然而其所採用的積分技巧會是此技術的誤差來源。本篇論文將空間頻率能量能譜演算法所得到的磁場分佈圖視作一個估算值,進一步套用至時間域上和空間域上的相位重建技術,來取得更準確的磁場分佈圖。zh_TW
dc.description.abstractB0 inhomogeneity mapping, recording spatially-dependent frequency offset, provides off-resonance information for MR imaging applications that need high accuracy. Mapping of B0 is often achieved through an extraction of phase variation versus time interval. Since phase values are restricted in the interval of , the accuracy of B0 mapping shows dependence on the success of phase unwrapping, which is in turn dominated by the decision of the phase accumulation time (ΔTE). Smaller accumulation time generates results that are prone to noise influences; while the wrap-around effects and the susceptibility-induced signal loss lead to degradation of B0 map with large ΔTE. On the other hand, KESA measuring the susceptibility field gradients has been shown as an effective alternative for EPI-based B0 mapping studies. However, the integration nature limits the accuracy of B0 mapping. In this thesis, two improved phase unwrapping procedures for mapping B0 field inhomogeneity are proposed with prior knowledge obtained from KESA processing. For temporal dimension phase unwrapping, the KESA method is used for an initial estimation of the phase evolution as a function of TE. The accurate phase values are then derived on a pixel-by-pixel basis from the multi-TE data, using sparse TE spacing for scan efficiency and large TE coverage. For dual-TE data, the spatial domain phase unwrapping for phase accumulation map is accomplished by exploiting field gradients information from KESA, accompanying with the appropriate use of the mask in the initial KESA estimation to further address the signal dropout effect.en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:35:22Z (GMT). No. of bitstreams: 1
ntu-102-F93921060-1.pdf: 1421829 bytes, checksum: e351aeeb84bfa9732802946c74d3e706 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsTable of Contents
口試委員審定書
論文誌謝
中文摘要 i
Abstract ii
Table of contents iii
Table of figures v
Chapter 1 Introduction 1-1
Chapter 2 Field mapping and k-space spectrum analysis algorithm 2-1
2-1 B0 field mapping approach and the requirements 2-2
2-2 Review of phase unwrapping theory 2-7
2-3 Principle of KESA algorithm and the implementation for B0 mapping 2-17
Chapter 3 Accurate B0 mapping with sparse TE stepping and k-space energy spectrum analysis 3-1
3-1 The theory of sparsely-sampled data with integration of KESA 3-2
3-2 Phantom study of multi-TE imaging data 3-9
3-3 In vivo implementation 3-12
3-4 Discussions 3-17
Chapter 4 Accurate B0 mapping with an adaptive algorithm integrating KESA and PRELUDE 4-1
4-1 The theory of the adaptive algorithm 4-2
4-2 In vivo experiments 4-9
4-3 Discussions 4-18
Chapter 5 Conclusions 5-1
References 5-4
dc.language.isoen
dc.subject迴訊偏移效應zh_TW
dc.subject面迴訊影像zh_TW
dc.subject空間頻率能量能譜演算法zh_TW
dc.subject相位重建技術zh_TW
dc.subject磁場分佈圖擷取技術zh_TW
dc.subjectphase unwrappingen
dc.subjectecho-shift effecten
dc.subjectEPIen
dc.subjectKESAen
dc.subjectB0 mappingen
dc.title利用相位重建改良技術擷取磁場分佈圖: 空間頻率能量能譜的進階應用zh_TW
dc.titleImproved phase unwrapping procedure for mapping B0 field inhomogeneity: Advanced application of k-space energy spectrum analysisen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.oralexamcommittee吳文超,郭萬祐,吳育德,高怡宣,廖俊睿
dc.subject.keyword磁場分佈圖擷取技術,相位重建技術,空間頻率能量能譜演算法,迴訊偏移效應,面迴訊影像,zh_TW
dc.subject.keywordB0 mapping,,phase unwrapping,KESA,echo-shift effect,EPI,en
dc.relation.page79
dc.rights.note有償授權
dc.date.accepted2013-07-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
1.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved