請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62173完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顏溪成(Shi-Chern Yen) | |
| dc.contributor.author | Yi-Sin Chou | en |
| dc.contributor.author | 周宜欣 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:31:50Z | - |
| dc.date.available | 2023-07-19 | |
| dc.date.copyright | 2013-07-26 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-19 | |
| dc.identifier.citation | [1]陳怡秀,“化學機械研磨阻障層鉭與其電化學特性的研究”,台大化工所博士學位論文 (2010)。
[2]F. B. Kaufman, D. B. Thompson, R. E. Broadie, M. A. Jaso, W. L. Guthrie, D. J. Pearson, and M. B. Small, “Chemical-Mechanical Polishing for Fabricating Patterned W Metal Features as Chip Interconnects,” J. Electrochem. Soc., 138, 3460 (1991). [3]O. Chyan, T. N. Arunagiri, and T. Ponnuswamy, “Electrodeposition of Copper Thin Film on Ruthenium.” J. Electrochem. Soc., 150, C347 (2003). [4]F. A. Cotton, Advanced inorganic chemistry, Wiley, New York (1999) [5]Trevor L. Knutson and William H. Smyrl, “Coulombic Efficiency of lectrodeposited Microspheres of Pt and Pt/Ru Via In Situ Electrochemical Quartz Crystal Microbalance.” J. Electrochem. Soc., 154, B1095 (2007). [6]E. A. Seddon and K. R. Seddon, “The Chemistry of Ruthenium.” Elsevier Science Publishing, New York (1984). [7]C. C. Hu, H. R. Chiang, and C. C. Wang, “Electrochemical and Structural Investigations of Oxide Films Anodically Formed on Ruthenium-plated Titanium Electrodes in Sulfuric Acid.” J. Solid State Electrochem., 7, 477 (2003). [8]J. Y. Chen, Y. C. Hsieh, L. Y. Wang, and P. W. Wu, “Electroless Deposition of Ru Films Via an Oxidative-Reductive Mechanism.” J. Electrochem. Soc., 158, D463 (2011). [9]H. Li, D. B. Farmer, R. G. Gordon, Y. Lin, and J. Vlassak, “Vapor Deposition of Ruthenium from an Amidinate Precursor.” J. Electrochem. Soc., 154, D642 (2007). [10]D. Pletcher and F. C. Walsh, “Industrial Electrochemistry.” 2nd Ed., Blackie A& P, London (1990). [11]F. H. Reid and J. C. Blake, “Electrodeposition of ruthenium. ” Trans. Inst. Met. Finish., 38, 45 (1961). [12]G. S. Reddy and P. Taimsalu, “Electrodeposition of ruthenium. ” Trans. Inst. Met. Finish., 47, 187 (1969). [13]Y. S. Kim, H. I. Kim, J. H. Cho, H. K. Seo, G. S. Kim, S.G. Ansari, G. Khang, J. J. Senkevich, and H. S. Shin, “Electrochemical deposition of copper and ruthenium on titanium.” Electrochimi. Acta., 51, 5445 (2006). [14]Y. S. Kim, H. I. Kim, M. A. Dar, H. K. Seo, G. S. Kim, S. G. Ansari, J. J. Senkevich and H. S. Shin, “Electrochemically Deposited Ruthenium Seed Layer Followed by Copper Electrochemical Plating.” Electrochem. Solid-State Lett., 9, C19 (2006). [15]J. J. Jow, H. J. Lee, H. R. Chen, M. S. Wu, and T. Y. Wei, “Anodic, cathodic and cyclic voltammetric deposition of ruthenium oxides from aqueous RuCl3 solutions.” Electrochimi. Acta., 52, 2625 (2007). [16]O. Mann, W. Freyland, O. Raz, and Y. Ein-Eli, “Electrochemical deposition of ultrathin ruthenium films on Au(111) from an ionic liquid.” Chem. Phys. Lett., 460, 178 (2008) [17]O. Raz, G. Cohn, W. Freyland, O. Mann, and Y. Ein-Eli, “Ruthenium electrodeposition on silicon from a room-temperature ionic liquid.” Electrochimi. Acta., 54, 6042 (2009). [18]M. Jayakumar, K. A. Venkatesan, R. Sudha, T. G. Srinivasan , and P. R. Vasudeva Rao, “Electrodeposition of ruthenium, rhodium and palladium from nitric acid and ionic liquid media: Recovery and surface morphology of the deposits.” Mater. Chem. Phys., 128, 141 (2011). [19]S. Mendez, G. Andreasen, P. Schilardi, M. Figueroa, L. Vazquez, R. C. Salvarezza, and A. J. Arvia, “Dynamic Scaling Exponents of Copper Electrodeposits from Scanning Force Microscopy Imaging. Influence of a Thiourea Additive on the Kinetics of Roughening and Brightening.” Langmuir, 14, 2515 (1998). [20]B. H. Wu, C. C. Wan and Y. Y. Wang, “Void-free Anisotropic deposition for IC Interconnect with Polyethylene Glycol as the Single Additive Based on Uneven Adsorption Distribution.” J. Appl. Electrochem., 33, 823 (2003). [21]W. J. Lee, H. S. Park, S. I. Lee, and H. C. Sohn, “Effects of ceric ammonium nitrate (CAN) additive in HNO3 solution on the electrochemical behaviour of ruthenium for CMP processes.” J. Appl. Electrochem., 34, 119 (2004). [22]I. K. Kim, Y. J. Kang, T.Y. Kwon, B. G. Cho, J. G. Park, J. Y. Park, and H. S. Park, “Effect of Sodium Periodate in Alumina-Based Slurry on Ru CMP for Metal–Insulator–Metal Capacitor.” Electrochem. Solid-State Lett., 11, H150 (2008). [23]I. K. Kim, B. G. Cho, J. G. Park, J. Y. Park, and H. S. Park, “Effect of pH in Ru Slurry with Sodium Periodate on Ru CMP.” J. Electrochem. Soc., 156, H188 (2009). [24]H. Cui, J. H. Park, and J. G. Park, “Study of Ruthenium Oxides Species on Ruthenium Chemical Mechanical Planarization Using Periodate-Based Slurry.” J. Electrochem. Soc., 159, H335 (2012). [25]B. C. Peethala and S. V. Babu, “Ruthenium Polishing Using Potassium Periodate as the Oxidizer and Silica Abrasives.” J. Electrochem. Soc., 158, H271 (2011). [26]S. N. Victoria, P. P. Sharma, I. I. Suni and S. Ramanathan, “Potassium Bromate as an Oxidizing Agent in a Titania-Based Ru CMP Slurry.” Electrochem. Solid-State Lett., 13, H385 (2010). [27]S. N. Victoria, J. Jebaraj, I. I. Suni, and S. Ramanathan, “Chemical Mechanical Planarization of Ruthenium with Oxone as Oxidizer.” Electrochem. Solid-State Lett., 15, H55 (2012). [28]H. Cui, J. H. Park and J. G. Park, “Effect of Oxidizers on Chemical Mechanical Planarization of Ruthenium with Colloidal Silica Based Slurry.” ECS J. Solid-State Sci.Technol., 2, P26 (2013). [29]J. M. West, Basic Corrosion and Oxidation, John Wiley& Son, New York (1983). [30]E. Gileadi, E. Kirowa-Eisner and J. Penciner, Interfacial Electrochemistry, Addison-Wesley Pub. Co. (1975). [31]M. Pourbaix, Atlas of Electochemical Equilibria in Aqueous Solutions, National Association of Corrosion Engineers, Houston, TX (1974). [32]C. C. Hu and Y. H. Huang, “Cyclic Voltammetric Deposition of Hydrous Ruthenium Oxide for Electrochemical Capacitors,” J. Electrochem. Soc., 146, 2465 (1999). [33]F. Vigier, F. Gloaguen, J. M. Le’ger, and C. Lamy, “Electrochemical and spontaneous deposition of ruthenium at platinum electrodes for methanol oxidation: an electrochemical quartz crystal microbalance study.” Electrochimi. Acta., 46, 4331 (2001). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62173 | - |
| dc.description.abstract | 近年來化學機械研磨銅的研究與應用已漸趨成熟,然而銅導線製程常藉由使用阻障層來防止銅擴散入介電層中,目前釕被視為最具潛力的良好阻障層材料,在本研究中,將電鍍於鈦基材上的釕層視為銅導線的阻障層,進而進行Ru化學機械研磨(CMP)之研究。執行釕金屬電鍍的鍍液組成為氯化釕(RuCl3)、鹽酸(HCl)、磺胺酸(NH2SO3H)及聚乙二醇(PEG),使用厚度0.2 mm、直徑12 mm的鈦箔覆蓋於旋轉盤電極之白金,製成鈦基材旋轉盤電極作為工作電極,討論不同的施加電流密度,以及添加及不添加PEG之鍍液進行電鍍,發現添加PEG使表面粗糙度顯著地下降,除此之外,針對電流效率較好之施加電流密度-3.0 mA/cm2與-5.0 mA/cm2下探討轉速效應,以期求出鍍層表面最佳平坦條件,並且比較轉速對電位的變化,發現於-3.0 mA/cm2操作釕電沉積可達最高之電流效率為18.3 %,於最佳之施加電流密度-3.0 mA/cm2配合RDE轉速為900 rpm時,電沉積1191秒,可使鍍層表面達到最佳的平坦度,釕鍍層厚度約200 nm,平均粗糙度僅為11.8 nm。接著使用二氧化矽及過硫酸銨((NH4)2S2O8)組成研磨液,進行在不同pH值下化學機械研磨釕金屬之研究,利用電沉積製備完成之釕薄膜,使用2 wt% (NH4)2S2O8及2 wt% SiO2作為Ru CMP之研磨液主要成份,於不同酸鹼值下執行CMP的結果,綜合比較未施加壓力研磨及施加壓力研磨時,pH值對極化曲線之影響,可看出隨pH值上升,NH3螯合作用漸強,使鈍化轉折現象漸緩,鈍化層的緻密度受螯合作用的效應而漸趨脆弱,施加壓力研磨時,腐蝕電位隨pH值明顯下降,磨後電位降隨pH值上升而上升,尤其於pH 8時,磨後電位降大幅顯著提升,因於鹼性溶液中較易使釕金屬氧化形成不可溶之RuO2•2H2O或Ru(OH)3,未研磨時表面鈍化保護效果較好,因此將鈍化層移除後便使表面狀態大為改變,進而造成磨後電位降提升,而於其他酸性研磨液條件,因釕金屬氧化形成的物質多為可溶性化合物,表面鈍化的效果較不顯著,進而研磨前後腐蝕電位降甚小。此外,可以發現研磨時之腐蝕電流較未研磨時下降,由於RuO4及RuO4-本身具有氧化力,因此在研磨過程可加速使RuO4及RuO4-離開釕金屬表面,另外NH3對於釕氧化物應有螯合的能力,可藉由NH3與機械磨除的釕氧化物錯合,避免其利用本身的氧化力生成鈍化層於釕金屬表面,導致降低釕的化學溶除速率,而且加壓研磨時因受上下板的遮蔽效應影響,使此情況的腐蝕電流量測受到干擾。然而Ru之腐蝕速率及移除速率亦深受化學氧化反應及螯合反應的影響,於pH 6時可達最佳的磨後表面平坦度,表面粗糙度從11.8 nm降為4.7 nm。 | zh_TW |
| dc.description.abstract | The applications of Cu chemical mechanical polishing (CMP) are extensively employed in semiconductor processes. In the Cu CMP process a layer of barrier between Cu and the dielectric layer is necessary, which is for preventing Cu diffusion into dielectrics. Ruthenium (Ru) is considered a good barrier material. In this study Ru CMP has been investigated. First Ru electrodeposition on titanium has been employed as a layer for our CMP study. The solution for the acid-bath ruthenium electrochemical deposition was ruthenium(III) chloride (RuCl3), hydrochloric acid (HCl), sulfamic acid (NH2SO3H), and polyethylene glycol (PEG). The titanium RDE was prepared by replacing the Pt substrate on a RDE by a Ti foil, 0.2mm in thickness and 12mm in diameter. The maximum cathodic current efficiency is 18.3% at -3.0 mA/cm2. At an optimal applied current density of -3.0 mA/cm2 with the RDE speed at 900 rpm, the sample is homogeneous and smooth with a root mean square roughness of 11.8 nm by AFM analysis. The metallic nature of ruthenium thin film is proven by X-ray diffraction. For Ru CMP the slurries containing silica and ammonium persulfate ((NH4)2S2O8) at various pH values have been adopted. Potentiondynamic polarization studies indicate that the corrosion current is enhanced in the presence of ammonia, while the static etch rate remains low. The highest removal rate of Ru is 63.9 nm/min at pH 6. After Ru CMP in (NH4)2S2O8-based slurries at pH 6 the surface roughness could be decreased from 11.8 nm to 4.7 nm. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:31:50Z (GMT). No. of bitstreams: 1 ntu-102-R00524048-1.pdf: 6950970 bytes, checksum: c03e93618ffdd8f7064072e614a01092 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii 目錄 iv 圖表目錄 vi 第一章 緒論 1 1-1化學機械研磨介紹 1 1-2 釕於銅導線阻障層之發展潛力 2 1-3簡介釕及其化合物 3 1-4 釕薄膜製備簡介 4 1-5 電沉積添加劑之分類 5 1-6 研究動機 6 第二章 文獻回顧 12 2-1 釕電沉積之文獻回顧 12 2-2 沉積層粗糙度與添加劑之作用 14 2-3 釕化學機械研磨之文獻回顧 15 第三章 電化學基本原理 24 3-1三電極電化學測試系統 24 3-2極化曲線理論 25 3-3 電位-pH關係圖(Pourbaix diagram) 26 第四章 實驗設備與方法 33 4-1 鈦箔的前處理方法 33 4-2 鈦基材旋轉盤電極之製備 33 4-3 釕電沉積之實驗裝置與方法 33 4-4 Ru CMP之實驗裝置與方法 34 4-5 掃描式電子顯微鏡(SEM)觀察試片實驗前後表面型態 35 4-6 原子力顯微鏡(AFM)表面粗糙度分析 35 4-7設備、儀器與耗材 37 第五章 實驗結果與討論 44 5-1 釕電沉積之實驗結果與討論 44 5-1-1不同電流密度之效應 44 5-1-2 PEG添加劑之效應 45 5-1-3旋轉盤轉速之效應 46 5-2 釕化學機械研磨之實驗結果與討論 47 5-2-1 pH值對極化曲線之影響 47 5-2-2 pH值對Ru的腐蝕速率、移除速率與磨後表面形態之影響 50 第六章 結論 76 參考文獻 77 | |
| dc.language.iso | zh-TW | |
| dc.subject | 釕電沉積 | zh_TW |
| dc.subject | 釕化學機械研磨 | zh_TW |
| dc.subject | 化學機械研磨之研磨液 | zh_TW |
| dc.subject | CMP Slurries | en |
| dc.subject | Ruthenium Electrodeposition | en |
| dc.subject | Ru CMP | en |
| dc.title | 釕的電沉積研究及過硫酸銨組成的研磨液對釕化學機械研磨之效應 | zh_TW |
| dc.title | The Electrodeposition of Ruthenium and Effect of Ammonium Persulfate-Based Slurry on Ruthenium Chemical Mechanical Polishing | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 何國川,吳永富 | |
| dc.subject.keyword | 釕電沉積,釕化學機械研磨,化學機械研磨之研磨液, | zh_TW |
| dc.subject.keyword | Ruthenium Electrodeposition,Ru CMP,CMP Slurries, | en |
| dc.relation.page | 79 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-22 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 6.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
