請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62153
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭鴻基 | |
dc.contributor.author | Yu-Han Chen | en |
dc.contributor.author | 陳郁涵 | zh_TW |
dc.date.accessioned | 2021-06-16T13:30:42Z | - |
dc.date.available | 2013-07-26 | |
dc.date.copyright | 2013-07-26 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-07-22 | |
dc.identifier.citation | Akter, N., and K. Tsuboki, 2012: Numerical simulation of Cyclone Sidr using a Cloud-Resolving model: Characteristics and formation process of an outer rainband. Mon. Wea. Rev., 140, 789-810.
Chan, J.C.-L., K.-S. Liu, E. Ching, and E.S.-T. Lai, 2004: Asymmetric distribution of convection associated with tropical cyclones making landfall along the South China coast. Mon. Wea. Rev., 132, 2410-2420. Chang, C.-P., Y.-T. Yang, and H.-C. Kuo, 2013: Large increasing trend of tropical cyclone rainfall in Taiwan and the roles of terrain. J. Clim., 26, 4138-4147. Chanson, H., 2010: The impact of Typhoon Morakot on the southern Taiwan coast. Shore Beach, 78 (2), 33-37. Chen, T.-C., and Coauthors, 2010: The characteristics of radarobserved mesoscale rainbands of Typhoon Morakot (in Chinese). Scientific report on Typhoon Morakot (2009), H.-H. Hsu et al., Eds., National Science Council, 53-81. Chien, F.-C., and H.-C. Kuo, 2011: On the extreme rainfall of Typhoon Morakot (2009). J. Geophys. Res., 116, D05104. Fang, X., Y.-H. Kuo, and A. Wang, 2011: The impact of Taiwan topography on the predictability of Typhoon Morakot’s recordbreaking rainfall: A high-resolution ensemble simulation. Wea. Forecasting, 26, 613-633. Ge, X., T. Li, S. Zhang, and M. S. Peng, 2010: What causes the extremely heavy rainfall in Taiwan during Typhoon Morakot (2009)? Atmos. Sci. Lett., 11, 46-50. Hendricks, E. A., J. R. Moskaitis, Y. Jin, R. M. Hodur, J. D. Doyle, and M. S. Peng, 2011: Prediction and diagnosis of Typhoon Morakot (2009) using the Naval Research Laboratory’s mesoscale tropical cyclone model. Terr. Atmos. Oceanic Sci., 22, 579-594. Hong, C.-C., M.-Y. Lee, H.-H. Hsu, and J.-L. Kuo, 2010: Role of submonthly disturbance and 40-50 day ISO on the extreme rainfall event associated with Typhoon Morakot (2009) in southern Taiwan. Geophys. Res. Lett., 37, L08805. Hsu, H.-H., and Coauthors, Eds., 2010: Scientific report on Typhoon Morakot (2009) (in Chinese). National Science Council, 192 pp. Hsu, L.-H., H.-C. Kuo, and R. G. Fovell, 2013: On the geographic asymmetry of typhoon translation speed across the mountainous island of Taiwan. J. Atmos. Sci., 70, 1006-1022. Huang, C.-Y., C.-S. Wong, and T.-C. Yeh, 2011: Extreme rainfall mechanisms exhibited by Typhoon Morakot (2009). Terr. Atmos. Oceanic Sci., 22, 613-632. Jian, G.-J., and Wu C.-C., 2008: A numerical study of the track deflection of Supertyphoon Haitang (2005) prior to its landfall in Taiwan. Mon. Wea. Rev., 136, 598-615. Jiang, H., J. B. Halverson, and E. J. Zipser, 2008: Influence of environmental moisture on TRMM derived tropical cyclone precipitation over land and ocean, Geophys. Res. Lett., 35, L17806. Jou, B. J.-D., C.-S. Lee, M.-D. Cheng, L. Feng, and Y.-C. Yu, 2010: Analysis on the synoptic environment and rainfall characteristics of Typhoon Morakot (in Chinese). Scientific report on Typhoon Morakot (2009), H.-H. Hsu et al., Eds., National Science Council, 1-26. Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics, J. Atmos. Sci., 35, 1070-1096. Kuo, H.-C., Y.-T. Yang, and C.-P. Chang, 2010: Typhoon Morakot (2009): Interplay of southwest monsoon, terrain, and mesoscale convection. Int. Workshop on Typhoon Morakot (2009), Taipei, Taiwan, National Science Council and National Applied Research Laboratories, 55-73. ——-, J.-H. Chen, R. T. Williams, and C.-P. Chang, 2001: Rossby waves in zonally opposing mean flow: Behavior in Northwest Pacific summer monsoon. J. Atmos. Sci., 58, 1035-1050. Lau, K.-H., and N.-C. Lau, 1990: Observed structure and propagation characteristics of tropical summertime synoptic scale disturbances. Mon. Wea. Rev., 118, 1888-1913. Lee, C.-S., B.-F. Chen, and R. L. Elsberry, 2012: Long-lasting convective systems in the outer region of tropical cyclones in the western North Pacific, Geophys. Res. Lett., 39, L21812. Liang, J., L. Wu, X. Ge, and C.-C. Wu, 2011: Monsoonal influence on Typhoon Morakot (2009). Part II: Numerical study. J. Atmos. Sci., 68, 2222-2235. Nguyen, H. V., and Y.-L. Chen, 2011: High-resolution initialization and simulations of Typhoon Morakot (2009). Mon. Wea. Rev., 139, 1463-1491. Shimizu, S., H. Uyeda, Q. Moteki, T. Maesaka, Y. Takaya, K. Akaeda, T. Kato, and M. Yoshizaki, 2008: Structure and formation mechanism on the 24 May 2000 supercell-like storm developing in a moist environment over the Kanto Plain, Japan. Mon. Wea. Rev., 136, 2389-2407. Su., S.-H., H.-C. Kuo, L.-H. Hsu, and Y.-T. Yang, 2012: Temporal and Spatial Characteristics of Typhoon Extreme Rainfall in Taiwan. J. Meteor. Soc. Japan., 90, No. 5, 721-736. Wang, C.-C., H.-C. Kuo, T.-C. Yeh, C.-H. Chung, Y.-H. Chen, S.-Y. Huang, Y.-W. Wang, and C.-H. Liu, 2013: High-resolution quantitative precipitation forecasts and simulations by the Cloud-Resolving Storm Simulator (CReSS) for Typhoon Morakot (2009). J. Hydrol., DOI: 10.1016/j.jhydrol.2013.02.018. ——-, H.-C. Kuo, Y.-H. Chen, H.-L. Huang, C.-H. Chung, and K. Tsuboki, 2012: Effects of asymmetric latent heating on typhoon movement crossing Taiwan: The case of Morakot (2009) with extreme rainfall, J. Atmos. Sci., 69, 3172-3196. ——-, Y.-H. Chen, H.-C. Kuo, and S.-Y. Huang, 2013: Sensitivity of typhoon track to asymmetric latent heating/rainfall induced by Taiwan topography: A numerical study of Typhoon Fanapi (2010). J. Geophys. Res., 118, 3292-3308. Wu, L., J. Liang, and C.-C. Wu, 2011: Monsoonal influence on Typhoon Morakot (2009). Part I: Observational analysis. J. Atmos. Sci., 68, 2208-2221. ——-, and B. Wang, 2000: A potential vorticity tendency diagnostic approach for tropical cyclone motion. Mon. Wea. Rev., 129, 1533-1549. Yeh, T.-C., L.-F. Hsiao, D.-S. Chen, and K.-N. Huang, 2012: A study on terrain-induced tropical cyclone looping in East Taiwan: Case study of Typhoon Haitang in 2005. Nat. Hazards, 63, 1497-1514. Yen, T.-H., C.-C. Wu, and G.-Y. Lien, 2011: Rainfall simulations of Typhoon Morakot with controlled translation speed based on EnKF data assimilation. Terr. Atmos. Oceanic Sci., 22, 647-660. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62153 | - |
dc.description.abstract | 本論文以離台時期速度減慢的莫拉克(2009)、凡那比(2010)與海棠(2005)颱風個案進行研究,探討颱風不對稱降雨結構如何影響並減慢颱風移速。此三個被探討的颱風皆屬於中央氣象局分類中的西行颱風第2、3類(穿越台灣中北部地形),衛星與雷達資料顯示,此三個颱風皆有明顯的不對稱降雨結構。以莫拉克颱風來說,離台期間觀測到的颱風移速(5 km h-1)比綜觀尺度資料推估的駛流速度(10 km h-1)慢了許多,顯示除了弱駛流因素外,亦存在其它使颱風減速的機制。由於離陸期間的颱風移速相較先前時段來得緩慢,我們提出研究假說:受西南季風氣流與台灣地形影響而於東南側產生的颱風不對稱對流結構,可以產生波數1的位渦傾向,進而減慢颱風向西北方運動之速度。
我們利用雲解析風暴模式(CReSS),並搭配歐洲中長期天氣預報中心熱帶對流年計畫(ECMWF-YOTC)或美國國家環境預報中心(NCEP)提供的分析資料,針對此三個颱風進行模擬。首先,三個颱風都有不錯的雨量與路徑模擬結果,模式能掌握颱風離台時的減速情形及不對稱降雨結構,與觀測資料相符。接著,利用位渦傾向診斷分析,確認不對稱降雨結構是影響颱風運動的因素之一;控制實驗的非絕熱項向量指向颱風中心東南側(運動方向後側),這個因波數1位渦傾向所產生之與颱風運動反向的作用力,會抵銷部分環境駛流的牽引,導致離台期間向西北方運動的颱風移速減慢。此外,透過水氣含量的敏感度測試,亦證實不對稱對流中潛熱效應的強弱對颱風移速之影響性;將颱風減速期間控制實驗與水氣含量減少實驗的平均運動向量相減,所得向量差指向颱風運動方向後側,顯示離台期間的水氣含量越少,潛熱效應越不顯著,以致颱風移速越快,減速現象越不易發生。以上結果在三個颱風個案中皆得到相同結論。 本研究顯示,因西南季風氣流或台灣地形所導致的颱風不對稱降雨結構,尤其是位於颱風中心東南側、因台灣地形而產生的強降雨區,由於強潛熱效應所產生的正位渦傾向,使整體具有明顯的波數1位渦傾向,颱風受此波數1位渦傾向的影響後,將產生一指向東南方的運動分量,進而減慢颱風離台期間往西北方向的移行速度,從而產生更多降雨。由此可知,颱風的運動與潛熱釋放之間存在非線性與複雜的交互作用。 | zh_TW |
dc.description.abstract | This thesis studies the slowdown of typhoon motion by the asymmetric typhoon (TY) structure for typhoons classified as the tracks 2 and 3 by Central Weather Bureau (CWB). Specifically, we study the post-landfall TY motion slowdown of Morakot (2009), Fanapi (2010), and Haitang (2005). Satellite and radar data indicate that these TYs are with significant asymmetric convection structure in the post-landfall period. In particular, the post-landfall speed of TY Morakot is 5 km h-1, which is much slower than the environmental deep-level mean flow speed of 10 km h-1. Since the post-landfall speed of these TYs are slower than that before, our hypothesis is that the asymmetric convection structure to the southeast of the TY, induced by the interaction of TC circulation with topography of Taiwan or southwesterly monsoon flow, may generate wavenumber 1 (WN1) potential vorticity (PV) tendency to slowdown the northwestward moving storm.
We use Cloud-Resolving Storm Simulator (CReSS) with analysis data for the Year of Tropical Convection from European Centre for Medium-Range Weather Forecasts (ECMWF-YOTC) or from National Center for Environmental Prediction (NCEP) to simulate the three TYs. The CReSS model produces rainfall and track simulations that are in general agreement with observations. With PV tendency diagnosis, we investigate the impact of convection and latent heating effect on the storm motion slowdown for the three TY cases. The diagnosis suggests that the asymmetric convection indeed contributes to the WN1 PV tendency and leads to the slowdown of TY motion. In addition, we perform the water vapor sensitivity experiments to substantiate the importance of the water vapor supply in the asymmetric convection and latent heating. By reducing water vapor content in the period immediately after TY’s departure from Taiwan, the model experiments with less water vapor are with faster TY motion. The PV diagnosis of the water vapor reduction experiments indicates the decrease of the latent heating effect and the WN1 PV tendency leads to the increase of TY motion. Our research highlights the importance of the asymmetric convection structure on the TY motion in the post-landfall period. The asymmetric convection in general may be caused by the interaction of TY circulation with Taiwan topography or southwesterly monsoon flow. The PV diagnosis is effective in identifying the contributing factors for the TY motion. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T13:30:42Z (GMT). No. of bitstreams: 1 ntu-102-R00229001-1.pdf: 10355809 bytes, checksum: f5ddba24ba16af2b2d94c23e49428e70 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 第一章 前言 1
1.1 文獻回顧 1 1.2 研究動機 4 1.3 論文架構 6 第二章 資料處理與研究方法 7 2.1 颱風個案選擇與介紹 7 2.2 資料來源 10 2.3 模式簡介 12 2.4 模式設定與實驗設計 14 2.5 位渦傾向診斷方法 17 第三章 模擬結果 19 3.1 莫拉克颱風(Morakot) 19 3.1.1 控制實驗與觀測資料比較 19 3.1.2 敏感度測試 ─ 水氣含量 21 3.1.3 敏感度測試 ─ 地形高度 23 3.2 凡那比颱風(Fanapi) 24 3.2.1 控制實驗與觀測資料比較 24 3.2.2 敏感度測試 ─ 水氣含量 25 3.3 海棠颱風(Haitang) 26 3.3.1 控制實驗與觀測資料比較 26 3.3.2 敏感度測試 ─ 水氣含量 28 第四章 位渦傾向診斷分析 30 4.1 莫拉克颱風(Morakot)非絕熱項診斷分析 ─ M01 vs. M03 30 4.2 凡那比颱風(Fanapi) 31 4.2.1 非絕熱項診斷分析 ─ F01 vs. F03 31 4.2.2 各項診斷分析 ─ F01登陸前 vs. 離台減速期 32 4.3 海棠颱風(Haitang) 34 4.3.1 非絕熱項診斷分析 ─ H01 vs. H03 34 4.3.2 各項診斷分析 ─ H01登陸前 vs. 離台減速期 35 第五章 總結 37 參考文獻 41 附錄 位渦傾向診斷操作步驟 45 | |
dc.language.iso | zh-TW | |
dc.title | 非對稱潛熱效應對離台期間颱風運動之影響 | zh_TW |
dc.title | Effects of Asymmetric Latent Heating on Taiwan Typhoon Post-landfall Motion | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 王重傑 | |
dc.contributor.oralexamcommittee | 李清勝,楊明仁,陳台琦 | |
dc.subject.keyword | 非對稱對流結構,颱風移速,潛熱效應,位渦傾向診斷, | zh_TW |
dc.subject.keyword | asymmetric convection structure,typhoon speed,latent heating effect,PV tendency diagnosis, | en |
dc.relation.page | 117 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-07-22 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
顯示於系所單位: | 大氣科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 10.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。