Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62133
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張茂山(Mau-Sun Chang)
dc.contributor.authorChi-Fang Changen
dc.contributor.author張綺芳zh_TW
dc.date.accessioned2021-06-16T13:29:33Z-
dc.date.available2014-08-09
dc.date.copyright2013-08-09
dc.date.issued2013
dc.date.submitted2013-07-22
dc.identifier.citationAasland, R., T. J. Gibson and A. F. Stewart (1995). 'The PHD finger: implications for chromatin-mediated transcriptional regulation.' Trends Biochem Sci 20(2): 56-59.
Bakkenist, C. J. and M. B. Kastan (2003). 'DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation.' Nature 421(6922): 499-506.
Bannister, A. J., R. Schneider, F. A. Myers, A. W. Thorne, C. Crane-Robinson and T. Kouzarides (2005). 'Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes.' J Biol Chem 280(18): 17732-17736.
Botuyan, M. V., J. Lee, I. M. Ward, J. E. Kim, J. R. Thompson, J. Chen and G. Mer (2006). 'Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair.' Cell 127(7): 1361-1373.
Bugreev, D. V., O. M. Mazina and A. V. Mazin (2006). 'Rad54 protein promotes branch migration of Holliday junctions.' Nature 442(7102): 590-593.
Bunting, S. F., E. Callen, N. Wong, H. T. Chen, F. Polato, A. Gunn, A. Bothmer, N. Feldhahn, O. Fernandez-Capetillo, L. Cao, X. Xu, C. X. Deng, T. Finkel, M. Nussenzweig, J. M. Stark and A. Nussenzweig (2010). '53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks.' Cell 141(2): 243-254.
Butler, J. S. and S. Y. Dent (2012). 'Chromatin 'resetting' during transcription elongation: a central role for methylated H3K36.' Nat Struct Mol Biol 19(9): 863-864.
Byun, T. S., M. Pacek, M. C. Yee, J. C. Walter and K. A. Cimprich (2005). 'Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint.' Genes Dev 19(9): 1040-1052.
Byvoet, P., G. R. Shepherd, J. M. Hardin and B. J. Noland (1972). 'The distribution and turnover of labeled methyl groups in histone fractions of cultured mammalian cells.' Arch Biochem Biophys 148(2): 558-567.
Carrozza, M. J., B. Li, L. Florens, T. Suganuma, S. K. Swanson, K. K. Lee, W. J. Shia, S. Anderson, J. Yates, M. P. Washburn and J. L. Workman (2005). 'Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription.' Cell 123(4): 581-592.
Ciccia, A. and S. J. Elledge (2010). 'The DNA damage response: making it safe to play with knives.' Mol Cell 40(2): 179-204.
Cimprich, K. A. and D. Cortez (2008). 'ATR: an essential regulator of genome integrity.' Nat Rev Mol Cell Biol 9(8): 616-627.
Courilleau, C., C. Chailleux, A. Jauneau, F. Grimal, S. Briois, E. Boutet-Robinet, F. Boudsocq, D. Trouche and Y. Canitrot (2012). 'The chromatin remodeler p400 ATPase facilitates Rad51-mediated repair of DNA double-strand breaks.' J Cell Biol 199(7): 1067-1081.
Creagh, E. M., H. Conroy and S. J. Martin (2003). 'Caspase-activation pathways in apoptosis and immunity.' Immunol Rev 193: 10-21.
Deshaies, R. J. and C. A. Joazeiro (2009). 'RING domain E3 ubiquitin ligases.' Annu Rev Biochem 78: 399-434.
Di Virgilio, M., E. Callen, A. Yamane, W. Zhang, M. Jankovic, A. D. Gitlin, N. Feldhahn, W. Resch, T. Y. Oliveira, B. T. Chait, A. Nussenzweig, R. Casellas, D. F. Robbiani and M. C. Nussenzweig (2013). 'Rif1 prevents resection of DNA breaks and promotes immunoglobulin class switching.' Science 339(6120): 711-715.
Difilippantonio, S., E. Gapud, N. Wong, C. Y. Huang, G. Mahowald, H. T. Chen, M. J. Kruhlak, E. Callen, F. Livak, M. C. Nussenzweig, B. P. Sleckman and A. Nussenzweig (2008). '53BP1 facilitates long-range DNA end-joining during V(D)J recombination.' Nature 456(7221): 529-533.
Dimitrova, N., Y. C. Chen, D. L. Spector and T. de Lange (2008). '53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility.' Nature 456(7221): 524-528.
Doil, C., N. Mailand, S. Bekker-Jensen, P. Menard, D. H. Larsen, R. Pepperkok, J. Ellenberg, S. Panier, D. Durocher, J. Bartek, J. Lukas and C. Lukas (2009). 'RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins.' Cell 136(3): 435-446.
Fnu, S., E. A. Williamson, L. P. De Haro, M. Brenneman, J. Wray, M. Shaheen, K. Radhakrishnan, S. H. Lee, J. A. Nickoloff and R. Hromas (2011). 'Methylation of histone H3 lysine 36 enhances DNA repair by nonhomologous end-joining.' Proc Natl Acad Sci U S A 108(2): 540-545.
Greer, E. L. and Y. Shi (2012). 'Histone methylation: a dynamic mark in health, disease and inheritance.' Nat Rev Genet 13(5): 343-357.
Huen, M. S., R. Grant, I. Manke, K. Minn, X. Yu, M. B. Yaffe and J. Chen (2007). 'RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly.' Cell 131(5): 901-914.
International Consortium for Systemic Lupus Erythematosus, G., J. B. Harley, M. E. Alarcon-Riquelme, L. A. Criswell, C. O. Jacob, R. P. Kimberly, K. L. Moser, B. P. Tsao, T. J. Vyse, C. D. Langefeld, S. K. Nath, J. M. Guthridge, B. L. Cobb, D. B. Mirel et al., (2008). 'Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci.' Nat Genet 40(2): 204-210.
Iwase, S., F. Lan, P. Bayliss, L. de la Torre-Ubieta, M. Huarte, H. H. Qi, J. R. Whetstine, A. Bonni, T. M. Roberts and Y. Shi (2007). 'The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases.' Cell 128(6): 1077-1088.
Jackson, S. P. and J. Bartek (2009). 'The DNA-damage response in human biology and disease.' Nature 461(7267): 1071-1078.
Jazayeri, A., A. Balestrini, E. Garner, J. E. Haber and V. Costanzo (2008). 'Mre11-Rad50-Nbs1-dependent processing of DNA breaks generates oligonucleotides that stimulate ATM activity.' EMBO J 27(14): 1953-1962.
Jeggo, P. A. and M. Lobrich (2005). 'Artemis links ATM to double strand break rejoining.' Cell Cycle 4(3): 359-362.
Jenuwein, T. and C. D. Allis (2001). 'Translating the histone code.' Science 293(5532): 1074-1080.
Joshi, A. A. and K. Struhl (2005). 'Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation.' Mol Cell 20(6): 971-978.
Keogh, M. C., S. K. Kurdistani, S. A. Morris, S. H. Ahn, V. Podolny, S. R. Collins, M. Schuldiner, K. Chin, T. Punna, N. J. Thompson, C. Boone, A. Emili, J. S. Weissman, T. R. Hughes, B. D. Strahl, M. Grunstein, J. F. Greenblatt, S. Buratowski and N. J. Krogan (2005). 'Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex.' Cell 123(4): 593-605.
Kizer, K. O., H. P. Phatnani, Y. Shibata, H. Hall, A. L. Greenleaf and B. D. Strahl (2005). 'A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation.' Mol Cell Biol 25(8): 3305-3316.
Kumagai, A., J. Lee, H. Y. Yoo and W. G. Dunphy (2006). 'TopBP1 activates the ATR-ATRIP complex.' Cell 124(5): 943-955.
Lan, F., R. E. Collins, R. De Cegli, R. Alpatov, J. R. Horton, X. Shi, O. Gozani, X. Cheng and Y. Shi (2007). 'Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression.' Nature 448(7154): 718-722.
Li, B., L. Howe, S. Anderson, J. R. Yates, 3rd and J. L. Workman (2003). 'The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II.' J Biol Chem 278(11): 8897-8903.
Li, H., S. Ilin, W. Wang, E. M. Duncan, J. Wysocka, C. D. Allis and D. J. Patel (2006). 'Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF.' Nature 442(7098): 91-95.
Li, J., D. Moazed and S. P. Gygi (2002). 'Association of the histone methyltransferase Set2 with RNA polymerase II plays a role in transcription elongation.' J Biol Chem 277(51): 49383-49388.
Lukas, J. and C. Lukas (2013). 'Molecular biology. Shielding broken DNA for a quick fix.' Science 339(6120): 652-653.
Mahaney, B. L., K. Meek and S. P. Lees-Miller (2009). 'Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining.' Biochem J 417(3): 639-650.
Matsuoka, S., B. A. Ballif, A. Smogorzewska, E. R. McDonald, 3rd, K. E. Hurov, J. Luo, C. E. Bakalarski, Z. Zhao, N. Solimini, Y. Lerenthal, Y. Shiloh, S. P. Gygi and S. J. Elledge (2007). 'ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage.' Science 316(5828): 1160-1166.
Meek, K., V. Dang and S. P. Lees-Miller (2008). 'DNA-PK: the means to justify the ends?' Adv Immunol 99: 33-58.
Mellor, J. (2006). 'It takes a PHD to read the histone code.' Cell 126(1): 22-24.
Murr, R., J. I. Loizou, Y. G. Yang, C. Cuenin, H. Li, Z. Q. Wang and Z. Herceg (2006). 'Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks.' Nat Cell Biol 8(1): 91-99.
Murray, K. (1964). 'The Occurrence of Epsilon-N-Methyl Lysine in Histones.' Biochemistry 3: 10-15.
Nagase, T., H. Koga and O. Ohara (2006). 'Kazusa mammalian cDNA resources: towards functional characterization of KIAA gene products.' Brief Funct Genomic Proteomic 5(1): 4-7.
Nakajima, D., N. Okazaki, H. Yamakawa, R. Kikuno, O. Ohara and T. Nagase (2002). 'Construction of expression-ready cDNA clones for KIAA genes: manual curation of 330 KIAA cDNA clones (supplement).' DNA Res 9(3): 107-115.
Namura, S., J. Zhu, K. Fink, M. Endres, A. Srinivasan, K. J. Tomaselli, J. Yuan and M. A. Moskowitz (1998). 'Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia.' J Neurosci 18(10): 3659-3668.
Ogiwara, H., A. Ui, A. Otsuka, H. Satoh, I. Yokomi, S. Nakajima, A. Yasui, J. Yokota and T. Kohno (2011). 'Histone acetylation by CBP and p300 at double-strand break sites facilitates SWI/SNF chromatin remodeling and the recruitment of non-homologous end joining factors.' Oncogene 30(18): 2135-2146.
Pascual, J., M. Martinez-Yamout, H. J. Dyson and P. E. Wright (2000). 'Structure of the PHD zinc finger from human Williams-Beuren syndrome transcription factor.' J Mol Biol 304(5): 723-729.
Pei, H., L. Zhang, K. Luo, Y. Qin, M. Chesi, F. Fei, P. L. Bergsagel, L. Wang, Z. You and Z. Lou (2011). 'MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites.' Nature 470(7332): 124-128.
Pena, P. V., F. Davrazou, X. Shi, K. L. Walter, V. V. Verkhusha, O. Gozani, R. Zhao and T. G. Kutateladze (2006). 'Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2.' Nature 442(7098): 100-103.
Phatnani, H. P. and A. L. Greenleaf (2006). 'Phosphorylation and functions of the RNA polymerase II CTD.' Genes Dev 20(21): 2922-2936.
Price, B. D. and A. D. D'Andrea (2013). 'Chromatin remodeling at DNA double-strand breaks.' Cell 152(6): 1344-1354.
Riley, T., E. Sontag, P. Chen and A. Levine (2008). 'Transcriptional control of human p53-regulated genes.' Nat Rev Mol Cell Biol 9(5): 402-412.
Rogakou, E. P., D. R. Pilch, A. H. Orr, V. S. Ivanova and W. M. Bonner (1998). 'DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139.' J Biol Chem 273(10): 5858-5868.
Roos, W. P. and B. Kaina (2013). 'DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis.' Cancer Lett 332(2): 237-248.
Schindler, U., H. Beckmann and A. R. Cashmore (1993). 'HAT3.1, a novel Arabidopsis homeodomain protein containing a conserved cysteine-rich region.' Plant J 4(1): 137-150.
Schreiber, V., F. Dantzer, J. C. Ame and G. de Murcia (2006). 'Poly(ADP-ribose): novel functions for an old molecule.' Nat Rev Mol Cell Biol 7(7): 517-528.
Shrivastav, M., L. P. De Haro and J. A. Nickoloff (2008). 'Regulation of DNA double-strand break repair pathway choice.' Cell Res 18(1): 134-147.
Soldani, C. and A. I. Scovassi (2002). 'Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: an update.' Apoptosis 7(4): 321-328.
Strahl, B. D. and C. D. Allis (2000). 'The language of covalent histone modifications.' Nature 403(6765): 41-45.
Suwaki, N., K. Klare and M. Tarsounas (2011). 'RAD51 paralogs: roles in DNA damage signalling, recombinational repair and tumorigenesis.' Semin Cell Dev Biol 22(8): 898-905.
Taverna, S. D., H. Li, A. J. Ruthenburg, C. D. Allis and D. J. Patel (2007). 'How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers.' Nat Struct Mol Biol 14(11): 1025-1040.
Taylor, R. C., S. P. Cullen and S. J. Martin (2008). 'Apoptosis: controlled demolition at the cellular level.' Nat Rev Mol Cell Biol 9(3): 231-241.
Traven, A. and J. Heierhorst (2005). 'SQ/TQ cluster domains: concentrated ATM/ATR kinase phosphorylation site regions in DNA-damage-response proteins.' Bioessays 27(4): 397-407.
Wagner, E. J. and P. B. Carpenter (2012). 'Understanding the language of Lys36 methylation at histone H3.' Nat Rev Mol Cell Biol 13(2): 115-126.
Wang, G. G., L. Cai, M. P. Pasillas and M. P. Kamps (2007). 'NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis.' Nat Cell Biol 9(7): 804-812.
West, S. C. (2003). 'Molecular views of recombination proteins and their control.' Nat Rev Mol Cell Biol 4(6): 435-445.
Williams, R. S., J. S. Williams and J. A. Tainer (2007). 'Mre11-Rad50-Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template.' Biochem Cell Biol 85(4): 509-520.
Wu, L., Luo, K., Lou, Z., & Chen, J. (2008). MDC1 regulates intra-S-phase checkpoint by targeting NBS1 to DNA double-strand breaks. Proc Natl Acad Sci U S A, 105(32), 11200-11205. doi: 10.1073/pnas.0802885105
Xiao, T., H. Hall, K. O. Kizer, Y. Shibata, M. C. Hall, C. H. Borchers and B. D. Strahl (2003). 'Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast.' Genes Dev 17(5): 654-663.
Xu, Y., M. K. Ayrapetov, C. Xu, O. Gursoy-Yuzugullu, Y. Hu and B. D. Price (2012). 'Histone H2A.Z controls a critical chromatin remodeling step required for DNA double-strand break repair.' Mol Cell 48(5): 723-733.
Xu, Y., Y. Sun, X. Jiang, M. K. Ayrapetov, P. Moskwa, S. Yang, D. M. Weinstock and B. D. Price (2010). 'The p400 ATPase regulates nucleosome stability and chromatin ubiquitination during DNA repair.' J Cell Biol 191(1): 31-43.
Yuryev, A., M. Patturajan, Y. Litingtung, R. V. Joshi, C. Gentile, M. Gebara and J. L. Corden (1996). 'The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins.' Proc Natl Acad Sci U S A 93(14): 6975-6980.
Zhou, B. B. and S. J. Elledge (2000). 'The DNA damage response: putting checkpoints in perspective.' Nature 408(6811): 433-439.
Zou, L. and S. J. Elledge (2003). 'Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes.' Science 300(5625): 1542-1548.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62133-
dc.description.abstract當細胞受到游離輻射 (ionizing radiation, IR) 或基因毒性藥物處理時會發生DNA雙股斷裂情形,為了維持遺傳物質的正確性,細胞進行DNA損傷反應機制偵測不同的DNA受損型態,整合所有訊息使細胞對於DNA損傷做出反應,包括停止轉錄、調控細胞週期、進行DNA修復和促進細胞凋亡等。在先前的文獻中人類PHD and RING finger domain-containing protein 1 (PHRF1) 蛋白被報導會受到蛋白激酶ataxia telangectasia-mutated (ATM) 或ataxia telangectasia and Rad3-related (ATR) 磷酸化修飾的調控,但PHRF1真正生理功能仍舊未知。為了進一步探討PHRF1蛋白質在DNA損傷反應中所扮演的角色,分別利用紫外線 (ultraviolet light, UV) 及喜樹鹼 (camptothecin, CPT) 處理細胞,發現細胞的存活能力會因為PHRF1蛋白的表現量而有不同結果;缺少PHRF1表現的細胞比正常細胞在UV和CPT處理下引發更嚴重的細胞凋亡;相對的,PHRF1大量表現細胞在UV和CPT處理下較正常細胞的凋亡現象明顯下降,因此得知PHRF1的表現會增加細胞對於DNA傷害的耐受性。
這一個新發現激勵我們深入探討PHRF1是否參與早期DNA損傷反應,  根據目前的研究結果,排除 PHRF1參與在早期的DNA損傷反應和雙股DNA同源性重組修復的可能性,反而是藉由非同源性末端接合 (Non-homologous end joining, NHEJ) 的方式維持基因體的完整性。另外,PHRF1具有特殊可與甲基化組蛋白接合的plant homeodomain (PHD) finger domain,免疫沉澱實驗顯示PHRF1能夠辨認組蛋白H3K36me2、H3K36me3和H4K20me3甲基化修飾,因此我們提出一個假說PHRF1可能透過與組蛋白甲基化的作用去影響DNA雙股斷裂後的非同源性末端接合。
zh_TW
dc.description.abstractAn effective response to damaged or abnormally replicated DNA in the mammalian cell cycle is propagated by the DNA damage checkpoint pathway. The signal transducing kinases, ataxia telangectasia-mutated (ATM), ataxia telangectasia and Rad3-related (ATR), are essential in DNA damage response. Human PHD and RING finger domain-containing protein 1 (PHRF1/KIAA1542) contains a plant homeodomain (PHD) finger, a putative methylated histone binding domain, and is identified as a phosphorylation substrate of ATM/ATR kinase. However, very little is known about its function in DNA damage response. Using different genotoxic treatments, we found that depletion of PHRF1 sensitized cells to apoptosis when cells were exposed to camptothecin (CPT) and UV light. However, PHRF1-overexpressing cells had a higher viability than control cells after genotoxic treatments.
These results prompted us to investigate whether PHRF1 is involved in early DNA damage response. However, based on our current studies, PHRF1 does not affect the formation of DNA damage foci consisted of γ-H2AX, RNF8, RNF168, and BRCA1 and the homologous recombination repair. Instead, we found PHRF1 significantly affect the efficiency of non-homologous end-joining. Furthermore, the PHD domain of PHRF1 is responsible for the association of PHRF1 with methylated histones, such as H3K36me2, H3K36me3, and H4K20me3.
On the basis of my findings, PHRF1 may link methylated histones to promote non-homologous end-joining through the interaction with H3K36me2, H3K36me3, and H4K20me3, which in turn, may contribute to maintain the genome integrity.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:29:33Z (GMT). No. of bitstreams: 1
ntu-102-R00b46020-1.pdf: 2901283 bytes, checksum: 12078f9374886ec2c7da64fb0eb86bc3 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents中文摘要…………………………………………………………………………......Ⅰ
英文摘要……………………………………………...……………………………Ⅱ
縮寫表………………………………………………………………………………..Ⅲ
目錄…………………………………………………………………………………Ⅴ
第一章 前言…………………………………………………………………………..1
1.1 DNA損傷反應機制…………………………………………………………1
1.1.1 DNA雙股斷裂修復及其染色體重組….……………………………3
1.2組蛋白修飾………………………………………………………………….6
1.2.1組蛋白甲基化修飾…………………………………………………..6
1.2.2 PHD finger domain辨認組蛋白甲基化修飾………………………..7
1.3組蛋白H3K36甲基化修飾與轉錄活化…………………………………….8
1.4組蛋白H3K36甲基化修飾促進非同源性末端接合……………………...9
1.5 PHRF1蛋白介紹……………………………………………………………9
1.6研究動機……………………………………………………………...........10
第二章 材料與方法…………………………………………………………………12
2.1 細胞株培養與轉染………………………………………………………..12
2.2 細胞毒性處理……………………………………………………………..13
2.3 蛋白質分析法及抗體……………………………………………………..13
2.4 凋亡細胞偵測……………………………………………………………..16
2.5 免疫螢光染色………………………………………………………....…..17
2.6 免疫沉澱………………………………………………………...………...18
2.7 穩定大量表現細胞株(stable line)建立…………………………………...19
2.8 抑制蛋白表現細胞株建立...……………………………………………...19
2.9 銀離子染色…………………………….…………………………….……20
2.10 In gel digestion……………………………………………………………20
2.11 Homologous recombination assay:DR-GFP reporter……………….....21
2.12 Non-homologous end joining assay:H1299 dA3-1細胞株………….…...22
第三章 實驗結果……………………………………………………………….…...23
3.1 PHRF1蛋白質在細胞內的分布及其表現大小…………………….…….23
3.2建立PHRF1蛋白質干擾表現和大量表現的細胞株……………….…….23
3.3 PHRF1具有辨認di和tri-methyl histone H3-K36的特性………….……..24
3.4 DNA受到傷害時,PHRF1的表現程度對於細胞凋亡的影響........….…..25
3.5 PHRF1與早期DNA 損傷反應機制的關係….....................................…..27
3.6 PHRF1不影響DNA雙股斷裂時同源重組修補....………....……….……28
3.7透過LC-MS/MS尋找PHRF1可能的關聯蛋白……...…………………...29
3.8 DNA雙股斷裂時,PHRF1可能藉由非同源性末端接合促進修補…….. 30
第四章 總結與討論…………………………………………………………………31
第五章 實驗結果圖表………………………………………………………………35
圖一. PHRF1為蛋白大小約170 kDa的核蛋白………………………………35
圖二. 建立PHRF1蛋白干擾表現和大量表現的細胞株……………………..36
圖三. PHRF1可與甲基化組蛋白H3K36me2、H3K36me3和H4K20me3形成免疫沉澱複合物………………………………………………………………..37
圖四. PHRF1不與甲基化組蛋白H3K4、H3K9、H3K27作用………………...39
圖五. DNA受到傷害時,PHRF1的存在程度對細胞凋亡的影響……………40
圖六. PHRF1蛋白不影響早期DNA損傷反應………………………………..42
圖七. PHRF1不影響同源重組修補…………………………………………...44
圖八. PHRF1會影響非同源性末端接合修補………………………………...45
圖九. PHRF1與甲基化組蛋白H3K36me2、H3K36me3和H4K20me3偕同影響非同源性末端結合修補示意圖……………………………………………..46
表一. 蛋白質體學鑑定結果…………………………………………………...47
附錄…………………………………………………………………………………..49
參考文獻……………………………………………………………………………..54
dc.language.isozh-TW
dc.subjectDNA損傷反應zh_TW
dc.subjectPHRF1zh_TW
dc.subjectDNA修復zh_TW
dc.subjectPHD finger domainzh_TW
dc.subject甲基化組蛋白zh_TW
dc.subjectPHRF1en
dc.subjectDNA damage responseen
dc.subjectPHD finger domainen
dc.subjectHistone H3K36en
dc.subjectDNA repairen
dc.title探討PHRF1連接甲基化組蛋白以及影響DNA損傷反應中細胞存活能力之機制zh_TW
dc.titlePHRF1 links methylated histones and affects cell survival in response to DNA damageen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee余榮熾(Lung-Chih Yu),張震東(Geen-Dong Chang),陳宏文(Hung-Wen Chen),冀宏源(Hung-Yuan Chi)
dc.subject.keywordDNA損傷反應,PHRF1,DNA修復,PHD finger domain,甲基化組蛋白,zh_TW
dc.subject.keywordDNA damage response,PHRF1,DNA repair,PHD finger domain,Histone H3K36,en
dc.relation.page62
dc.rights.note有償授權
dc.date.accepted2013-07-22
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
2.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved