Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62072
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊顯
dc.contributor.authorYu-Hsiang Tsengen
dc.contributor.author曾裕翔zh_TW
dc.date.accessioned2021-06-16T13:26:15Z-
dc.date.available2021-06-24
dc.date.copyright2020-06-24
dc.date.issued2020
dc.date.submitted2020-06-18
dc.identifier.citation[1] Weik, M. H. The ENIAC story.
https://web.archive.org/web/20110814181522/http://ftp.arl.mil/~mike/comphist/eniac-story.html.
[2] Moore, G. E., Cramming more components onto integrated circuits. Proc. IEEE 1998, 86, 82-85.
[3] Aviram, A.; Ratner, M. A., Molecular rectifiers. Chem. Phys. Lett. 1974, 29, 277-283.
[4] Metzger, R. M., Unimolecular electrical rectifiers. Chem. Rev. 2003, 103, 3803-3834.
[5] Díez-Pérez, I.; Hihath, J.; Lee, Y.; Yu, L.; Adamska, L.; Kozhushner, M. A.; Oleynik, I. I.; Tao, N., Rectification and stability of a single molecular diode with controlled orientation. Nat. Chem. 2009, 1, 635.
[6] Song, H.; Kim, Y.; Jang, Y. H.; Jeong, H.; Reed, M. A.; Lee, T., Observation of molecular orbital gating. Nature 2009, 462, 1039.
[7] Jia, C.; Migliore, A.; Xin, N.; Huang, S.; Wang, J.; Yang, Q.; Wang, S.; Chen, H.; Wang, D.; Feng, B., Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 2016, 352, 1443-1445.
[8] Chen, F.; Hihath, J.; Huang, Z. F.; Li, X. L.; Tao, N. J., Measurement of single-molecule conductance. Annu. Rev. Phys. Chem. 2007, 58, 535-564.
[9] Song, H.; Reed, M. A.; Lee, T., Single molecule electronic devices. Adv. Mater. 2011, 23, 1583-1608.
[10] Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M., Conductance of a molecular junction. Science 1997, 278, 252-254.
[11] Xu, B. Q.; Tao, N. J. J., Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 2003, 301, 1221-1223.
[12] Xu, B. Q.; Xiao, X. Y.; Tao, N. J., Measurements of single-molecule electromechanical properties. J. Am. Chem. Soc. 2003, 125, 16164-16165.
[13] Park, H.; Lim, A. K. L.; Alivisatos, A. P.; Park, J.; McEuen, P. L., Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 1999, 75, 301-303.
[14] Tsutsui, M.; Taniguchi, M., Single molecule electronics and devices. Sensors 2012, 12, 7259-7298.
[15] Johnston, D. E.; Strachan, D. R.; Johnson, A. T. C., Parallel fabrication of nanogap electrodes. Nano Lett. 2007, 7, 2774-2777.
[16] Son, J. Y.; Song, H., Molecular scale electronic devices using single molecules and molecular monolayers. Curr. Appl. Phys. 2013, 13, 1157-1171.
[17] Venkataraman, L.; Klare, J. E.; Tam, I. W.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L., Single-molecule circuits with well-defined molecular conductance. Nano Lett. 2006, 6, 458-462.
[18] Li, C.; Pobelov, I.; Wandlowski, T.; Bagrets, A.; Arnold, A.; Evers, F., Charge transport in single Au | alkanedithiol | Au junctions: Coordination geometries and conformational degrees of freedom. J. Am. Chem. Soc. 2008, 130, 318-326.
[19] Chen, F.; Li, X. L.; Hihath, J.; Huang, Z. F.; Tao, N. J., Effect of anchoring groups on single-molecule conductance: Comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules. J. Am. Chem. Soc. 2006, 128, 15874-15881.
[20] Aradhya, S. V.; Venkataraman, L., Single-molecule junctions beyond electronic transport. Nat. Nanotechnol. 2013, 8, 399-410.
[21] Bethune, D. S.; Kiang, C. H.; Devries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R., Cobalt-catalyzed grwoth of carbon nanotubes single-atomc-layerwalls. Nature 1993, 363, 605-607.
[22] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
[23] Guo, X. F.; Small, J. P.; Klare, J. E.; Wang, Y. L.; Purewal, M. S.; Tam, I. W.; Hong, B. H.; Caldwell, R.; Huang, L. M.; O'Brien, S.; Yan, J. M.; Breslow, R.; Wind, S. J.; Hone, J.; Kim, P.; Nuckolls, C., Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 2006, 311, 356-359.
[24] Zhu, J. Y.; McMorrow, J.; Crespo-Otero, R.; Ao, G. Y.; Zheng, M.; Gillin, W. P.; Palma, M., Solution-processable carbon nanoelectrodes for single-molecule investigations. J. Am. Chem. Soc. 2016, 138, 2905-2908.
[25] Cao, Y.; Dong, S. H.; Liu, S.; He, L.; Gan, L.; Yu, X. M.; Steigerwald, M. L.; Wu, X. S.; Liu, Z. F.; Guo, X. F., Building high-throughput molecular junctions using indented graphene point contacts. Angew. Chem. Int. Ed. 2012, 51, 12228-12232.
[26] Prins, F.; Barreiro, A.; Ruitenberg, J. W.; Seldenthuis, J. S.; Aliaga-Alcalde, N.; Vandersypen, L. M. K.; van der Zant, H. S. J., Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes. Nano Lett. 2011, 11, 4607-4611.
[27] Gu, C. H.; Su, D. K.; Jia, C. C.; Ren, S. Z.; Guo, X. F., Building nanogapped graphene electrode arrays by electroburning. RSC Adv. 2018, 8, 6814-6819.
[28] El Abbassi, M.; Sangtarash, S.; Liu, X. S.; Perrin, M. L.; Braun, O.; Lambert, C.; van der Zant, H. S. J.; Yitzchaik, S.; Decurtins, S.; Liu, S. X.; Sadeghi, H.; Calame, M., Robust graphene-based molecular devices. Nat. Nanotechnol. 2019, 14, 957-961.
[29] Mayer, D.; Scheer, E., Stability makes a difference. Nat. Nanotechnol. 2019, 14, 925-926.
[30] Dadosh, T.; Gordin, Y.; Krahne, R.; Khivrich, I.; Mahalu, D.; Frydman, V.; Sperling, J.; Yacoby, A.; Bar-Joseph, I., Measurement of the conductance of single conjugated molecules. Nature 2005, 436, 677-680.
[31] Jaklevic, R. C.; Lambe, J., Molecular vibration spectra by electron tunneling. Phys. Rev. Lett. 1966, 17, 1139.
[32] Lambe, J.; Jaklevic, R. C., Molecular vibration spectra by inelastic electron tunneling. Physical Review 1968, 165, 821.
[33] Reed, M. A., Inelastic electron tunneling spectroscopy. Mater. Today 2008, 11, 46-50.
[34] Song, H.; Kim, Y.; Ku, J.; Jang, Y. H.; Jeong, H.; Lee, T., Vibrational spectra of metal-molecule-metal junctions in electromigrated nanogap electrodes by inelastic electron tunneling. Appl. Phys. Lett. 2009, 94.
[35] Iijima, S., Helical microtubules of graphitic carbon. Nature 1991, 354, 56-58.
[36] Liu, J.; Rinzler, A. G.; Dai, H. J.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B.; Rodriguez-Macias, F.; Shon, Y. S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E., Fullerene pipes. Science 1998, 280, 1253-1256.
[37] Bergin, S. D.; Nicolosi, V.; Streich, P. V.; Giordani, S.; Sun, Z. Y.; Windle, A. H.; Ryan, P.; Niraj, N. P. P.; Wang, Z. T. T.; Carpenter, L.; Blau, W. J.; Boland, J. J.; Hamilton, J. P.; Coleman, J. N., Towards solutions of single-walled carbon nanotubes in common solvents. Adv. Mater. 2008, 20, 1876-1881.
[38] O'Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C.; Ma, J. P.; Hauge, R. H.; Weisman, R. B.; Smalley, R. E., Band gap fluorescence from individual single-walled carbon nanotubes. Science 2002, 297, 593-596.
[39] Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; McLean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G., DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2003, 2, 338-342.
[40] Ma, Y. F.; Ali, S. R.; Dodoo, A. S.; He, H. X., Enhanced sensitivity for biosensors: Multiple functions of DNA-wrapped single-walled carbon nanotubes in self-doped polyaniline nanocomposites. J. Phys. Chem. B 2006, 110, 16359-16365.
[41] Jorio, A.; Saito, R.; Hafner, J. H.; Lieber, C. M.; Hunter, M.; McClure, T.; Dresselhaus, G.; Dresselhaus, M. S., Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 2001, 86, 1118-1121.
[42] Jorio, A.; Pimenta, M. A.; Souza, A. G.; Saito, R.; Dresselhaus, G.; Dresselhaus, M. S., Characterizing carbon nanotube samples with resonance Raman scattering. New J. Phys. 2003, 5, 139.
[43] Dresselhaus, M. S.; Dresselhaus, G.; Jorio, A.; Souza, A. G.; Saito, R., Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 2002, 40, 2043-2061.
[44] Mamin, H. J.; Rugar, D., Thermomechanical writing with an atomic force microscope tip. Appl. Phys. Lett. 1992, 61, 1003-1005.
[45] Martinez, R. V.; Losilla, N. S.; Martinez, J.; Huttel, Y.; Garcia, R., Patterning polymeric structures with 2 nm resolution at 3 nm half pitch in ambient conditions. Nano Lett. 2007, 7, 1846-1850.
[46] Garcia, R.; Martinez, R. V.; Martinez, J., Nano-chemistry and scanning probe nanolithographies. Chem. Soc. Rev. 2006, 35, 29-38.
[47] Paul, P. C., Thermal scanning probe lithography. In Frontiers of Nanoscience, Elsevier: 2016; Vol. 11, pp 543-561.
[48] Carroll, K. M.; Lu, X.; Kim, S.; Gao, Y.; Kim, H. J.; Somnath, S.; Polloni, L.; Sordan, R.; King, W. P.; Curtis, J. E.; Riedo, E., Parallelization of thermochemical nanolithography. Nanoscale 2014, 6, 1299-1304.
[49] Zheng, X. R.; Calo, A.; Albisetti, E.; Liu, X. Y.; Alharbi, A. S. M.; Arefe, G.; Liu, X. C.; Spieser, M.; Yoo, W. J.; Taniguchi, T.; Watanabe, K.; Aruta, C.; Ciarrocchi, A.; Kis, A.; Lee, B. S.; Lipson, M.; Hone, J.; Shahrjerdi, D.; Riedo, E., Patterning metal contacts on monolayer MoS2 with vanishing Schottky barriers using thermal nanolithography. Nat. Electron. 2019, 2, 17-25.
[50] Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A., Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.
[51] Cui, X.; Shih, E. M.; Jauregui, L. A.; Chae, S. H.; Kim, Y. D.; Li, B. C.; Seo, D.; Pistunova, K.; Yin, J.; Park, J. H.; Choi, H. J.; Lee, Y. H.; Watanabe, K.; Taniguchi, T.; Kim, P.; Dean, C. R.; Hone, J. C., Low-temperature ohmic contact to monolayer MoS2 by van der Waals bonded Co/h-BN electrodes. Nano Lett. 2017, 17, 4781-4786.
[52] Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A., Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195-1205.
[53] Wolf, H.; Cho, Y. K. R.; Karg, S.; Mensch, P.; Schwemmer, C.; Knoll, A.; Spieser, M.; Bisig, S.; Rawlings, C.; Paul, P. In Thermal scanning probe lithography (t-SPL) for nano-fabrication, 2019 Pan Pacific Microelectronics Symposium (Pan Pacific), IEEE: 2019; pp 1-9.
[54] Pires, D.; Hedrick, J. L.; De Silva, A.; Frommer, J.; Gotsmann, B.; Wolf, H.; Despont, M.; Duerig, U.; Knoll, A. W., Nanoscale three-dimensional patterning of molecular resists by scanning probes. Science 2010, 328, 732-735.
[55] SwissLitho, NanoFrazor manual. 2017.
[56] Song, H.; Kim, Y.; Jang, Y. H.; Jeong, H.; Reed, M. A.; Lee, T., Observation of molecular orbital gating. Nature 2009, 462, 1039-1043.
[57] Wang, W. Y.; Lee, T.; Kretzschmar, I.; Reed, M. A., Inelastic electron tunneling spectroscopy of an alkanedithiol self-assembled monolayer. Nano Lett. 2004, 4, 643-646.
[58] Lauhon, L. J.; Ho, W., Effects of temperature and other experimental variables on single molecule vibrational spectroscopy with the scanning tunneling microscope. Rev. Sci. Instrum. 2001, 72, 216-223.
[59] TUNA, C. M. B., Simultaneous electrical and mechanical property mapping at the nanoscale with PeakForce TUNA.
[60] MICROPOSIT S1800 SERIES PHOTO RESISTS.
https://amolf.nl/wp-content/uploads/2016/09/datasheets_S1800.pdf.
[61] Cheng, Q. H.; Debnath, S.; O'Neill, L.; Hedderman, T. G.; Gregan, E.; Byrne, H. J., Systematic study of the dispersion of SWNTs in organic solvents. J. Phys. Chem. C 2010, 114, 4857-4863.
[62] Penzo, E.; Palma, M.; Chenet, D. A.; Ao, G. Y.; Zheng, M.; Hone, J. C.; Wind, S. J., Directed assembly of single wall carbon nanotube field effect transistors. Acs Nano 2016, 10, 2975-2981.
[63] Penzo, E.; Pama, M.; Wang, R. S.; Cai, H. G.; Zheng, M.; Wind, S. J., Directed assembly of end-functionalized single wall carbon nanotube segments. Nano Lett. 2015, 15, 6547-6552.
[64] Tanaka, T.; Morigami, M.; Atoda, N., Mechanism of resist pattern collapse during development process. Jpn. J. Appl. Phys., Part 1 1993, 32, 6059-6064.
[65] Balasubramanian, K.; Lee, E. J. H.; Weitz, R. T.; Burghard, M.; Kern, K., Carbon nanotube transistors - chemical functionalization and device characterization. Phys. Status Solidi A 2008, 205, 633-646.
[66] Zhou, C. W.; Kong, J.; Dai, H. J., Intrinsic electrical properties of individual single-walled carbon nanotubes with small band gaps. Phys. Rev. Lett. 2000, 84, 5604-5607.
[67] Kim, W.; Javey, A.; Tu, R.; Cao, J.; Wang, Q.; Dai, H. J., Electrical contacts to carbon nanotubes down to 1 nm in diameter. Appl. Phys. Lett. 2005, 87, 173101.
[68] Kane, C. L.; Mele, E. J.; Lee, R. S.; Fischer, J. E.; Petit, P.; Dai, H.; Thess, A.; Smalley, R. E.; Verschueren, A. R. M.; Tans, S. J.; Dekker, C., Temperature-dependent resistivity of single-wall carbon nanotubes. Europhys. Lett. 1998, 41, 683-688.
[69] Kong, J.; Zhou, C.; Morpurgo, A.; Soh, H. T.; Quate, C. F.; Marcus, C.; Dai, H., Synthesis, integration, and electrical properties of individual single-walled carbon nanotubes. Appl. Phys. A 1999, 69, 305-308.
[70] Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S., Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 1992, 60, 2204-2206.
[71] Wang, C. A.; Ryu, K. M.; Badmaev, A.; Zhang, J. L.; Zhou, C. W., Metal contact engineering and registration-free fabrication of complementary metal-oxide semiconductor integrated circuits using aligned carbon nanotubes. Acs Nano 2011, 5, 1147-1153.
[72] Martel, R.; Derycke, V.; Lavoie, C.; Appenzeller, J.; Chan, K. K.; Tersoff, J.; Avouris, P., Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett. 2001, 87, 256805.
[73] Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, P., Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 1998, 73, 2447-2449.
[74] Tans, S. J.; Verschueren, A. R. M.; Dekker, C., Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49-52.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62072-
dc.description.abstract在分子電性的領域中,掃描式探針顯微術破裂接合法(STM-BJ)能夠產生大量實驗數據作統計分析,被廣泛應用在單分子電性的量測,也為單分子層級的物理化學現象,提供了一個強大的研究管道,但礙於此技術無法形成長時間穩定的分子接合點,使得它不能用來製作真正的分子元件。如何製作出穩固的單分子元件成為此領域的一大考驗,製作單分子元件的技術門檻在於如何形成與分子尺寸相符的電極間隙,目前分子元件主流的製作方式多屬於由上而下的方法,先製作出金屬電極間隙,再使分子跨接其中,形成「金屬電極-目標分子-金屬電極」(metal-molecule-metal, MMM),如機械破裂接合法、電遷徙法。以由上而下方法製作出的電極間隙大小難以調控,目標分子的尺寸未必與間隙吻合,使得分子接合率很低;此外,由於金屬電極與分子是透過化學吸附連接,接合強度不足,容易造成分子脫附;形成接合點時,電極上的金屬原子亦可能移動,這些因素都會使得分子接合點的結構並非穩定不變,影響分子電性的測量。為解決分子尺寸與電極間隙不匹配的問題,並形成穩定的分子-電極鍵結,本研究選用奈米碳管作為電極材料,以由下而上的方式製作分子元件。藉由偶聯劑如EDC/NHS,催化醯胺化反應,將管壁末端帶有羧酸基的碳管與首尾皆為胺基的分子進行接合,使碳管與胺分子之間形成穩定的醯胺共價鍵,於晶片表面先建構出「碳管-目標分子-碳管」,再透過熱敏式掃描探針微影技術,製作鉑奈米電極,使碳管與外部電路導通,組成「鉑電極-碳管-目標分子-碳管-鉑電極」(Pt-CNT-molecule-CNT-Pt)。本論文以開發新型態的單分子元件製作方法為目標,提供了系統性的討論,內容包含雙光阻製程的優化以提升元件製作良率、金屬型奈米碳管電性之研究、分子接合點之形成,為往後單分子電晶體的製作打下基礎。zh_TW
dc.description.abstractIn the field of molecular electronics, the STM-BJ is the most popular technique for creating single-molecule junctions. However, molecular junctions formed by the STM-BJ are not stable for a long time, impeding detailed studies of electrical transport and practical applications. Therefore, a new methodology for fabricating robust molecular devices is urgently needed. One of main challenges in fabricating molecular devices is to build the electrode gap that can accommodate the specific molecule. Most approaches for constructing molecular junctions are based on top-down fabrication strategies, such as MCBJs and electromigration. In the top-down fabricated devices, nanogaps are firstly constructed and then the target molecules are introduced into the nanogaps to form metal-molecule-metal junctions. Nonetheless, it is difficult to control the nanogaps to match the size of molecules by top-down methods, thus leading to low connection yield in molecular junctions. In addition, electron transport through molecules will be affected by the contact between the molecules and the metal surface. Therefore, the ill-defined bonding between molecules and metallic electrodes will lead to a large variability in the electrical properties of molecules. To solve the problem mentioned above, we construct molecular junctions employing carbon nanotubes as electrodes by the bottom-up method. Through EDC/NHS coupling, carbon nanotubes are covalently attached to amine molecules by amide linkages, forming CNT-molecule-CNT junctions on the surface of the substrate. After that, we use thermally scanning probe lithography to fabricate nanoelectrodes that aim at connecting the carbon nanotube to the pre-fabricated electrode. Finally, the molecular junction, Pt-CNT-molecule-CNT-Pt, is obtained. In this study, we focus on developing a new methodology for building molecular junctions and provide more insight into the bilayer lift-off in t-SPL and electrical properties of metallic carbon nanotubes.en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:26:15Z (GMT). No. of bitstreams: 1
ntu-109-R07223105-1.pdf: 6997007 bytes, checksum: c194049d90eef6346e2ad326e048cc25 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents謝辭 I
中文摘要 II
ABSTRACT III
目錄 IV
圖目錄 VII
第一章 緒論 1
1.1 前言 1
1.2 分子橋接系統的建構 3
1.2.1 破裂接合法 4
1.2.2 電遷徙誘發破裂接合法 7
1.2.3 碳電極共價橋接系統 9
1.2.4 由下而上建造分子橋接系統 15
1.3 非彈性電子穿隧能譜 17
1.4 單壁奈米碳管 21
1.4.1 結構與分類 21
1.4.2 奈米碳管之分散 22
1.4.3 奈米碳管之拉曼光譜 23
1.5 進階微影技術 24
1.5.1 熱敏式掃描探針微影技術 25
1.6 研究動機 33
第二章 實驗部分 34
2.1 藥品、耗材及儀器 34
2.1.1 藥品與耗材 34
2.1.2 儀器 36
2.2 實驗原理與設備介紹 38
2.2.1 黃光微影技術 38
2.2.2 電性量測與降溫系統 39
2.2.3 非彈性電子穿隧能譜量測系統 41
2.2.4 導電原子力顯微鏡 48
2.3 量測元件的製備 49
2.3.1 鉑基底電極製作 50
2.3.2 奈米碳管溶液前處理及沉積於元件表面 52
2.3.4 以AFM定位元件表面的單根奈米碳管 53
2.3.4 固相合成 54
2.3.5 熱敏式掃描探針微影技術製作鉑奈米電極 56
2.3.6 降溫系統之元件載體製作 58
2.3.7 超音波焊線 61
第三章 結果與討論 62
3.1 雙光阻製程優化 62
3.2 金屬型奈米碳管之電性量測 68
3.2.1 DNA輔助分散金屬型奈米碳管 69
3.2.2 鉑奈米電極-單根奈米碳管-鉑奈米電極結構製作結果 70
3.2.3 常溫之I-V曲線量測結果 71
3.2.4 變溫之I-V曲線量測結果 74
3.3 閘極電壓對於碳管電性表現之影響 77
3.4 奈米碳管之非彈性電子穿隧能譜 78
3.5 以導電原子力顯微鏡量測碳管之電性 81
3.6 分子接合點 82
第四章 結論 84
參考文獻 85
附錄 92
dc.language.isozh-TW
dc.subject單分子裝置zh_TW
dc.subject碳管電極zh_TW
dc.subject熱敏式微影技術zh_TW
dc.subjectmolecular deviceen
dc.subjectthermal scanning probe lithographyen
dc.subjectCNT-based electrodeen
dc.title以熱敏式微影技術開發單分子裝置製作方法zh_TW
dc.titleFabrication of CNT-Based Molecular Devices by Thermal Scanning Probe Lithographyen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何佳安,廖尉斯,陳以文
dc.subject.keyword熱敏式微影技術,碳管電極,單分子裝置,zh_TW
dc.subject.keywordthermal scanning probe lithography,CNT-based electrode,molecular device,en
dc.relation.page94
dc.identifier.doi10.6342/NTU202000986
dc.rights.note有償授權
dc.date.accepted2020-06-18
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
6.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved