Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62063
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor方俊民(Jim-Min Fang)
dc.contributor.authorChih-An Chenen
dc.contributor.author陳志安zh_TW
dc.date.accessioned2021-06-16T13:25:46Z-
dc.date.available2015-07-26
dc.date.copyright2013-07-26
dc.date.issued2013
dc.date.submitted2013-07-23
dc.identifier.citation1. Webster, R. G.; Bean, W. J.; Gorman, O. T.; Chambers, T. M.; Kawaoka, Y. Evolution and ecology of influenza-A viruses. Microbiol. Rev. 1992, 56, 152–179.
2. Suzuki, Y. Sialobiology of influenza molecular mechanism of host range variation of influenza viruses. Biol. Pharm. Bull. 2005, 28, 399–408.
3. Oxford, J. S. Influenza A pandemics of the 20th century with special reference to 1918: virology, pathology and epidemiology. Rev. Med. Virol. 2000, 10, 119–133.
4. De Clercq, E. Antiviral agents active against influenza A viruses. Nat. Rev. Drug Discov. 2006, 5, 1015–1025.
5. Subbarao, K.; Joseph, T. Scientific barriers to developing vaccines against avian influenza viruses. Nat. Rev. Immunol. 2007, 7, 267–278.
6. Wilson, I. A.; Skehel, J. J.; Wiley, D. C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature 1981, 289, 366–373.
7. Weis, W.; Brown, J. H.; Cusack, S.; Paulson, J. C.; Skehel, J. J.; Wiley, D. C. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 1988, 333, 426–431.
8. Skehel, J. J.; Wiley, D. C. Receptor binding and membrance fusion in virusentry : the influenza hemagglutinin. Annu. Rev. Biochem. 2000, 69, 531–569.
9. Ha, Y.; Stevens, D. J.; Skehel, J. J.; Wiley, D. C. X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 11181–11186.
10. Colman, P. M. Influenza virus neuraminidase: structure, antibodies, and inhibitors. Protein Sci. 1994, 3, 1687–1696.
11. Bossart-Whitaker, P.; Carson, M.; Babu, Y. S.; Smith, C. D.; Laver, W. G.; Air, G. M. Three-dimensional structure of influenza A N9 neuraminidase and its complex with the inhibitor 2-deoxy 2,3-dehydro-N-acetyl neuraminic acid. J. Mol. Biol. 1993, 232, 1069–1083.
12. Schnell, J. R.; Chou, J. J. Structure and mechanism of the M2 proton channel of influenza A virus. Nature 2008, 451, 591–595.
13. Stouffer, A. L.; Acharya, R.; Salom, D.; Levine, A. S.; Di Costanzo, L.; Soto, C. S.; Tereshko, V.; Nanda, V.; Stayrook, S.; DeGrado, W. F. Structural basis for the function and inhibition of an influenza virus proton channel. Nature 2008, 451, 596–599.
14. von Itzstein, M. The war against influenza: discovery and development of sialidase inhibitors. Nat. Rev. Drug Discov. 2007, 6, 967–974.
15. Davies, W. L.; Hoffmann, C. E.; Paulshock, M.; Wood, T. R.; Haff, R. F.; Grunert, R. R.; Watts, J. C.; Hermann, E. C.; Neumayer, E. M.; Mcgahen, J. W. Antiviral activity of 1-adamantanamine (amantadine). Science 1964, 144, 862–863.
16. Jing, X. H.; Ma, C. L.; Ohigashi, Y.; Oliveira, F. A.; Jardetzky, T. S.; Pinto, L. H.; Lamb, R. A. Functional studies indicate amantadine binds to the pore of the influenza A virus M2 proton-selective ion channel. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 10967–10972.
17. Pielak, R. M.; Schnell, J. R.; Chou, J. J. Mechanism of drug inhibition and drug resistance of influenza A M2 channel. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 7379–7384.
18. Ohigashi, Y.; Ma, C. L.; Jing, X. H.; Balannick, V.; Pinto, L. H.; Lamb, R. A. An amantadine-sensitive chimeric BM2 ion channel of influenza B virus has implications for the mechanism of drug inhibition. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 18775–18779.
19. Cady, S. D.; Schmidt-Rohr, K.; Wang, J.; Soto, C. S.; DeGrado, W. F.; Hong, M. Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 2010, 463, 689–692.
20. Varghese, J. N.; Laver, W. G.; Colman, P. M. Structure of the influenza-virus glycoprotein antigen neuraminidase at 2.9 A resolution. Nature 1983, 303, 35–40.
21. Colman, P. M.; Varghese, J. N.; Laver, W. G. Structure of the catalytic and antigenic sites in influenza-virus neuraminidase. Nature 1983, 303, 41–44.
22. von Itzstein, M.; Wu, W. Y.; Kok, G. B.; Pegg, M. S.; Dyason, J. C.; Jin, B.; Phan, T. V.; Smythe, M. L.; White, H. F.; Oliver, S. W.; Colman, P. M.; Varghese, J. N.; Ryan, D. M.; Woods, J. M.; Bethell, R. C.; Hotham, V. J.; Cameron, J. M.; Penn, C. R. Rational design of potent sialidase-based inhibitors of influenza-virus replication. Nature 1993, 363, 418–423.
23. Holzer, C. T.; Vonitzstein, M.; Jin, B.; Pegg, M. S.; Stewart, W. P.; Wu, W. Y. Inhibition of sialidases from viral, bacterial and mammalian sources by analogs of 2-deoxy-2,3-didehydro-N-acetylneuraminic acid modified at the C-4 position. Glycoconj. J. 1993, 10, 40–44.
24. Taylor, N. R.; Vonitzstein, M. Molecular modeling studies on ligand-binding to sialidase from influenza-virus and the mechanism of catalysis. J. Med. Chem. 1994, 37, 616–624.
25. von Itzstein, M.; Dyason, J. C.; Oliver, S. W.; White, H. F.; Wu, W. Y.; Kok, G. B.; Pegg, M. S. A study of the active site of influenza virus sialidase: An approach to the rational design of novel anti-influenza drugs. J. Med. Chem. 1996, 39, 388–391.
26. Andrews, D. M.; Cherry, P. C.; Humber, D. C.; Jones, P. S.; Keeling, S. P.; Martin, P. F.; Shaw, C. D.; Swanson, S. Synthesis and influenza virus sialidase inhibitory activity of analogues of 4-guanidino-Neu5Ac2en (zanamivir) modified in the glycerol side-chain. Eur. J. Med. Chem. 1999, 34, 563–574.
27. Honda, T.; Masuda, T.; Yoshida, S.; Arai, M.; Kaneko, S.; Yamashita, M. Synthesis and anti-influenza virus activity of 7-O-alkylated derivatives related to zanamivir. Bioorg. Med. Chem. Lett. 2002, 12, 1925–1928.
28. Honda, T.; Masuda, T.; Yoshida, S.; Arai, M.; Kobayashi, Y.; Yamashita, M. Synthesis and anti-influenza virus activity of 4-guanidino-7-substituted Neu5Ac2en derivatives. Bioorg. Med. Chem. Lett. 2002, 12, 1921–1924.
29. Yamashita, M.; Tomozawa, T.; Kakuta, M.; Tokumitsu, A.; Nasu, H.; Kubo, S. CS-8958, a prodrug of the new neuraminidase inhibitor R-125489, shows long-acting anti-influenza virus activity. Antimicrob. Agents Chemother. 2009, 53, 186–192.
30. Honda, T.; Kubo, S.; Masuda, T.; Arai, M.; Kobayashi, Y.; Yamashita, M. Synthesis and in vivo influenza virus-inhibitory effect of ester prodrug of 4-guanidino-7-O-methyl-Neu5Ac2en. Bioorg. Med. Chem. Lett. 2009, 19, 2938–2940.
31. Watson, K. G.; Cameron, R.; Fenton, R. J.; Gower, D.; Hamilton, S.; Jin, B.; Krippner, G. Y.; Luttick, A.; McConnell, D.; MacDonald, S. J. F.; Mason, A. M.; Nguyen, V.; Tucker, S. P.; Wu, W. Y. Highly potent and long-acting trimeric and tetrameric inhibitors of influenza virus neuraminidase. Bioorg. Med. Chem. Lett. 2004, 14, 1589–1592.
32. Macdonald, S. J.; Watson, K. G.; Cameron, R.; Chalmers, D. K.; Demaine, D. A.; Fenton, R. J.; Gower, D.; Hamblin, J. N.; Hamilton, S.; Hart, G. J.; Inglis, G. G. A.; Jin, B.; Jones, H. T.; McConnell, D. B.; Mason, A. M.; Nguyen, V.; Owens, I. J.; Parry, N.; Reece, P. A.; Shanahan, S. E.; Smith, D.; Wu, W. Y.; Tucker, S. P. Potent and long-acting dimeric inhibitors of influenza virus neuraminidase are effective at a once-weekly dosing regimen. Antimicrob. Agents Chemother. 2004, 48, 4542–4549.
33. Macdonald, S. J. F.; Cameron, R.; Demaine, D. A.; Fenton, R. J.; Foster, G.; Gower, D.; Hamblin, J. N.; Hamilton, S.; Hart, G. J.; Hill, A. P.; Inglis, G. G. A.; Jin, B.; Jones, H. T.; McConnell, D. B.; McKimm-Breschkin, J.; Mills, G.; Nguyen, V.; Owens, I. J.; Parry, N.; Shanahan, S. E.; Smith, D.; Watson, K. G.; Wu, W. Y.; Tucker, S. P. Dimeric zanamivir conjugates with various linking groups are potent, long-lasting inhibitors of influenza neuraminidase including H5N1 avian influenza. J. Med. Chem. 2005, 48, 2964–2971.
34. Kim, C. U.; Lew, W.; Williams, M. A.; Liu, H. T.; Zhang, L. J.; Swaminathan, S.; Bischofberger, N.; Chen, M. S.; Mendel, D. B.; Tai, C. Y.; Laver, W. G.; Stevens, R. C. Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: Design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J. Am. Chem. Soc. 1997, 119, 681–690.
35. Yamamoto, T.; Kumazawa, H.; Inami, K.; Teshima, T.; Shiba, T. Syntheses of sialic-acid isomers with inhibitory activity against neuraminidase. Tetrahedron Lett. 1992, 33, 5791–5794.
36. Babu, Y. S.; Chand, P.; Bantia, S.; Kotian, P.; Dehghani, A.; El-Kattan, Y.; Lin, T. H.; Hutchison, T. L.; Elliott, A. J.; Parker, C. D.; Ananth, S. L.; Horn, L. L.; Laver, G. W.; Montgomery, J. A. BCX-1812 (RWJ-270201): Discovery of a novel, highly potent, orally active, and selective influenza neuraminidase inhibitor through structure-based drug design. J. Med. Chem. 2000, 43, 3482–3486.
37. Russell, R. J.; Haire, L. F.; Stevens, D. J.; Collins, P. J.; Lin, Y. P.; Blackburn, G. M.; Hay, A. J.; Gamblin, S. J.; Skehel, J. J. The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 2006, 443, 45–49.
38. Collins, P. J.; Haire, L. F.; Lin, Y. P.; Liu, J. F.; Russell, R. J.; Walker, P. A.; Skehel, J. J.; Martin, S. R.; Hay, A. J.; Gamblin, S. J. Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature 2008, 453, 1258–1261.
39. Shie, J. J.; Fang, J. M.; Wang, S. Y.; Tsai, K. C.; Cheng, Y. S. E.; Yang, A. S.; Hsiao, S. C.; Su, C. Y.; Wong, C. H. Synthesis of Tamiflu and its phosphonate congeners possessing potent anti-influenza activity. J. Am. Chem. Soc. 2007, 129, 11892–11893.
40. Rohloff, J. C.; Kent, K. M.; Postich, M. J.; Becker, M. W.; Chapman, H. H.; Kelly, D. E.; Lew, W.; Louie, M. S.; McGee, L. R.; Prisbe, E. J.; Schultze, L. M.; Yu, R. H.; Zhang, L. J. Practical total synthesis of the anti-influenza drug GS-4104. J. Org. Chem. 1998, 63, 4545–4550.
41. Chuanopparat, N.; Kongkathip, N.; Kongkathip, B. A concise and practical synthesis of oseltamivir phosphate(Tamiflu) from D-mannose. Tetrahedron 2012, 68, 6803–6809.
42. Chuanopparat, N.; Kongkathip, N.; Kongkathip, B. A new and efficient asymmetric synthesis of oseltamivir phosphate (Tamiflu) from D-mannose. Tetrahedron Lett. 2012, 53, 6209–6211.
43. Osato, H.; Jones, I. L.; Chen, A. Q.; Chai, C. L. L. Efficient formal synthesis of oseltamivir phosphate (Tamiflu) with inexpensive D-ribose as the starting material. Org. Lett. 2010, 12, 60–63.
44. Osato, H.; Jones, I. L.; Goh, H.; Chai, C. L. L.; Chen, A. Q. Expeditious access to (–)-shikimic acid derivatives for Tamiflu synthesis. Tetrahedron Lett. 2011, 52, 6352–6354.
45. Ma, J.; Zhao, Y.; Ng, S.; Zhang, J.; Zeng, J.; Than, A.; Chen, P.; Liu, X. W. Sugar-Based Synthesis of Tamiflu and Its Inhibitory Effects on Cell Secretion. Chem. Eur. J. 2010, 16, 4533–4540.
46. Oshitari, T.; Mandai, T. Azide-free synthesis of oseltamivir from L-methionine. Synlett 2009, 787–789.
47. Cong, X.; Yao, Z. J. Ring-closing metathesis-based synthesis of (3R,4R,5S)-4-acetylamino-5-amino-3-hydroxycyclohex-1-ene-carboxylic acid ethyl ester: A functionalized cycloalkene skeleton of GS4104. J. Org. Chem. 2006, 71, 5365–5368.
48. Mandai, T.; Oshitari, T. Efficient asymmetric synthesis of oseltamivir from D-mannitol. Synlett 2009, 783–786.
49. Ko, J. S.; Keum, J. E.; Ko, S. Y. A synthesis of oseltamivir (Tamiflu) starting from D-mannitol. J. Org. Chem. 2010, 75, 7006–7009.
50. Weng, J.; Li, Y. B.; Wang, R. B.; Li, F. Q.; Liu, C.; Chan, A. S. C.; Lu, G. A practical and azide-free synthetic approach to oseltamivir from diethyl D-tartrate. J. Org. Chem. 2010, 75, 3125–3128.
51. Abrecht, S.; Harrington, P.; Iding, H.; Karpf, M.; Trussardi, R.; Wirz, B.; Zutter, U. The synthetic development of the anti-influenza neuraminidase inhibitor oseltamivir phosphate (Tamiflu): A challenge for synthesis & process research. Chimia 2004, 58, 621–629.
52. Yeung, Y. Y.; Hong, S.; Corey, E. J. A short enantioselective pathway for the synthesis of the anti-influenza neuramidase inhibitor oseltamivir from 1,3-butadiene and acrylic acid. J. Am. Chem. Soc. 2006, 128, 6310–6311.
53. Satoh, N.; Akiba, T.; Yokoshima, S.; Fukuyama, T. A practical synthesis of (–)-oseltamivir. Angew. Chem. Int. Ed. 2007, 46, 5734–5736.
54. Ishikawa, H.; Suzuki, T.; Hayashi, Y. High-yielding synthesis of the anti-influenza neuramidase inhibitor (–)-oseltamivir by three 'one-pot' operations. Angew. Chem. Int. Ed. 2009, 48, 1304–1307.
55. Ishikawa, H.; Bondzic, B. P.; Hayashi, Y. Synthesis of (–)-oseltamivir by using a microreactor in the Curtius rearrangement. Eur. J. Org. Chem. 2011, 6020–6031.
56. Zhu, S. L.; Yu, S. Y.; Wang, Y.; Ma, D. W. Organocatalytic Michael addition of aldehydes to protected 2-amino-1-nitroethenes: The practical syntheses of oseltamivir (Tamiflu) and substituted 3-aminopyrrolidines. Angew. Chem. Int. Ed. 2010, 49, 4656–4660.
57. Weng, J.; Li, Y. B.; Wang, R. B.; Lu, G. Organocatalytic Michael Reaction of Nitroenamine Derivatives with Aldehydes: Short and Efficient Asymmetric Synthesis of (–)-Oseltamivir. ChemCatChem 2012, 4, 1007–1012.
58. Trost, B. M.; Zhang, T. A concise synthesis of (–)-oseltamivir. Angew. Chem. Int. Ed. 2008, 47, 3759–3761.
59. Shie, J. J.; Fang, J. M.; Wong, C. H. A concise and flexible synthesis of the potent anti-influenza agents tamiflu and tamiphosphor. Angew. Chem. Int. Ed. 2008, 47, 5788–5791.
60. Sullivan, B.; Carrera, I.; Drouin, M.; Hudlicky, T. Symmetry-based design for the chemoenzymatic synthesis of oseltamivir (Tamiflu) from ethyl benzoate. Angew. Chem. Int. Ed. 2009, 48, 4229–4231.
61. Zutter, U.; Iding, H.; Spurr, P.; Wirz, B. New, efficient synthesis of oseltamivir phosphate (Tamiflu) via enzymatic desymmetrization of a meso-1,3-cyclohexanedicarboxylic acid diester. J. Org. Chem. 2008, 73, 4895–4902.
62. Fukuta, Y.; Mita, T.; Fukuda, N.; Kanai, M.; Shibasaki, M. De novo synthesis of Tamiflu via a catalytic asymmetric ring-opening of meso-aziridines with TMSN3. J. Am. Chem. Soc. 2006, 128, 6312–6313.
63. Mita, T.; Fukuda, N.; Roca, F. X.; Kanai, M.; Shibasaki, M. Second generation catalytic asymmetric synthesis of tamiflu: Allylic substitution route. Org. Lett. 2007, 9, 259–262.
64. Oh, H. S.; Kang, H. Y. Synthesis of (–)-oseltamivir phosphate (Tamiflu) starting from cis-2,3-bis(hydroxymethyl)aziridine. J. Org. Chem. 2012, 77, 8792–8796.
65. Lai, J.; Fang, J. M. Transformation of D-serine to highly functionalized cyclohexenecarboxylates in study of oseltamivir synthesis. J. Chin. Chem. Soc. (Taipei) 2012, 59, 426–435.
66. Trajkovic, M.; Ferjancic, Z.; Saicic, R. N. Formal synthesis of (–)-oseltamivir phosphate. Synthesis-Stuttgart 2013, 45, 389–395.
67. Federspiel, M.; Fischer, R.; Hennig, M.; Mair, H. J.; Oberhauser, T.; Rimmler, G.; Albiez, T.; Bruhin, J.; Estermann, H.; Gandert, C.; Gockel, V.; Gotzo, S.; Hoffmann, U.; Huber, G.; Janatsch, G.; Lauper, S.; Rockel-Stabler, O.; Trussardi, R.; Zwahlen, A. G. Industrial synthesis of the key precursor in the synthesis of the anti-influenza drug oseltamivir phosphate (Ro 64-0796/002, GS-4104-02): Ethyl (3R,4S,5S)-4,5-epoxy-3-(1-ethyl-propoxy)-cyclohex-1-ene-1-carboxylate. Org. Process Res. Dev. 1999, 3, 266–274.
68. Karpf, M.; Trussardi, R. New, azide-free transformation of epoxides into 1,2-diamino compounds: Synthesis of the anti-influenza neuraminidase inhibitor oseltamivir phosphate (Tamiflu). J. Org. Chem. 2001, 66, 2044–2051.
69. Karpf, M.; Trussardi, R. Efficient access to oseltamivir phosphate (Tamiflu) via the O-trimesylate of shikimic acid ethyl ester. Angew. Chem. Int. Ed. 2009, 48, 5760–5762.
70. Nie, L. D.; Shi, X. X.; Ko, K. H.; Lu, W. D. A short and practical synthesis of oseltamivir phosphate (Tamiflu) from (–)-shikimic acid. J. Org. Chem. 2009, 74, 3970–3973.
71. Nie, L. D.; Shi, X. X. A novel asymmetric synthesis of oseltamivir phosphate (Tamiflu) from (–)-shikimic acid. Tet. Asym. 2009, 20, 124–129.
72. Nie, L. D.; Shi, X. X.; Quan, N.; Wang, F. F.; Lu, X. Novel asymmetric synthesis of oseltamivir phosphate (Tamiflu) from (–)-shikimic acid via cyclic sulfite intermediates. Tetrahedron: Asymmetry 2011, 22, 1692–1699.
73. Nie, L. D.; Ding, W.; Shi, X. X.; Quan, N.; Lu, X. A novel and high-yielding asymmetric synthesis of oseltamivir phosphate (Tamiflu) starting from (–)-shikimic acid. Tetrahedron: Asymmetry 2012, 23, 742–747.
74. Rawat, V.; Dey, S.; Sudalai, A. Synthesis of the anti-influenza agent (–)-oseltamivir free base and (–)-methyl 3-epi-shikimate. Org. Biomol. Chem. 2012, 10, 3988–3990.
75. Kim, H. K.; Park, K. J. J. A new efficient synthesis of oseltamivir phosphate (Tamiflu) from (–)-shikimic acid. Tetrahedron Lett. 2012, 53, 1561–1563.
76. Stigers, K. D.; Mar-Tang, R.; Bartlett, P. A. Synthesis of two potential inhibitors of para-aminobenzoic acid synthase. J. Org. Chem. 1999, 64, 8409–8410.
77. Albert, R.; Dax, K.; Link, R. W.; Stutz, A. E. Carbohydrate triflates: reaction with nitrite, leading directly to epi-hydroxy compounds. Carbohydr. Res. 1983, 118, C5–C6.
78. Bernet, B.; Vasella, A. Carbocyclische verbindungen aus monosacchariden. I. umsetzungen in der glucosereihe. Helv. Chim. Acta 1979, 62, 1990–2016.
79. Nakane, M.; Hutchinson, C. R.; Gollman, H. A convenient and general synthesis of 5-vinylhexofuranosides from 6-halo-6-deoxypyranosides. Tetrahedron Lett. 1980, 21, 1213–1216.
80. Furstner, A.; Jumbam, D.; Teslic, J.; Weidmann, H. Metal-graphite reagents in carbohydrate chemistry. 8. The scope and limitations of the use of zinc/silver-graphite in the synthesis of carbohydrate-derived substituted hex-5-enals and pent-4-enals. J. Org. Chem. 1991, 56, 2213–2217.
81. Hyldtoft, L.; Madsen, R. Carbohydrate carbocyclization by a novel zinc-mediated domino reaction and ring-closing olefin metathesis. J. Am. Chem. Soc. 2000, 122, 8444–8452.
82. Wichienukul, P.; Akkarasamiyo, S.; Kongkathip, N.; Kongkathip, B. An efficient synthesis of oseltamivir phosphate (Tamiflu) via a metal-mediated domino reaction and ring-closing metathesis. Tetrahedron Lett. 2010, 51, 3208–3210.
83. Greenber.S; Moffatt, J. G. Reactions of 2-acyloxyisobutyryl halides with nucleosides .1. Reactions of model diols and of uridine. J. Am. Chem. Soc. 1973, 95, 4016–4025.
84. Boyd, D. R.; Sharma, N. D.; O'Dowd, C. R.; Hempenstall, F. Enantiopure arene dioxides: chemoenzymatic synthesis and application in the production of trans-3,4-dihydrodiols. Chem. Commun. 2000, 2151–2152.
85. Boyd, D. R.; Sharma, N. D.; Llamas, N. M.; Malone, J. F.; O'Dowd, C. R.; Allen, C. C. R. Chemoenzymatic synthesis of carbasugars from iodobenzene. Org. Biomol. Chem. 2005, 3, 1953–1963.
86. Boyd, D. R.; Sharma, N. D.; Llamas, N. M.; O'Dowd, C. R.; Allen, C. C. R. Chemoenzymatic synthesis of the trans-dihydrodiol isomers of monosubstituted benzenes via anti-benzene dioxides. Org. Biomol. Chem. 2006, 4, 2208–2217.
87. Blacker, A. J.; Booth, R. J.; Davies, G. M.; Sutherland, J. K. Syntheses of 6β-hydroxyshikimic acid and Its derivatives. J. Chem. Soc. Perkin Trans. 1 1995, 2861–2870.
88. Werner, L.; Machara, A.; Sullivan, B.; Carrera, I.; Moser, M.; Adams, D. R.; Hudlicky, T.; Andraos, J. Several generations of chemoenzymatic synthesis of oseltamivir (Tamiflu): Evolution of strategy, quest for a process-quality synthesis, and evaluation of efficiency metrics. J. Org. Chem. 2011, 76, 10050–10067.
89. Yeung, Y. Y.; Gao, X. R.; Corey, E. J. A general process for the haloamidation of olefins. Scope and mechanism. J. Am. Chem. Soc. 2006, 128, 9644–9645.
90. Yamatsugu, K.; Kamijo, S.; Suto, Y.; Kanai, M.; Shibasaki, M. A concise synthesis of Tamiflu: third generation route via the Diels-Alder reaction and the Curtius rearrangement. Tetrahedron Lett. 2007, 48, 1403–1406.
91. Yamatsugu, K.; Yin, L.; Kamijo, S.; Kimura, Y.; Kanai, M.; Shibasaki, M. A synthesis of Tamiflu by using a barium-catalyzed asymmetric Diels-Alder-type reaction. Angew. Chem. Int. Ed. 2009, 48, 1070–1076.
92. Moriarty, R. M.; Chany, C. J.; Vaid, R. K.; Prakash, O.; Tuladhar, S. M. Preparation of methyl carbamates from primary alkylcarboxamides and arylcarboxamides using hypervalent iodine. J. Org. Chem. 1993, 58, 2478–2482.
93. Bromfield, K. M.; Graden, H.; Hagberg, D. P.; Olsson, T.; Kann, N. An iron carbonyl approach to the influenza neuraminidase inhibitor oseltamivir. Chem. Commun. 2007, 3183–3185.
94. Trost, B. M.; Zhang, T. Development of a concise synthesis of (–)-oseltamivir (Tamiflu). Chem. Eur. J. 2011, 17, 3630–3643.
95. Trost, B. M.; Massiot, G. S. New synthetic reactions - Chemoselective approach to cleavage α to a carbonyl group via β-keto sulfides - Preparation of 1,2-diketones. J. Am. Chem. Soc. 1977, 99, 4405–4412.
96. Guthikonda, K.; Du Bois, J. A unique and highly efficient method for catalytic olefin aziridination. J. Am. Chem. Soc. 2002, 124, 13672–13673.
97. Espino, C. G.; Fiori, K. W.; Kim, M.; Du Bois, J. Expanding the scope of C-H amination through catalyst design. J. Am. Chem. Soc. 2004, 126, 15378–15379.
98. Fiori, K. W.; Du Bois, J. Catalytic intermolecular amination of C-H bonds: Method development and mechanistic insights. J. Am. Chem. Soc. 2007, 129, 562–568.
99. Bessieres, B.; Schoenfelder, A.; Verrat, C.; Mann, A.; Ornstein, P.; Pedregal, C. Synthesis of constrained cycloalkyl analogues of glutamic acid with an ω-phosphonic acid function. Tetrahedron Lett. 2002, 43, 7659–7662.
100. Carbain, B.; Collins, P. J.; Callum, L.; Martin, S. R.; Hay, A. J.; McCauley, J.; Streicher, H. Efficient synthesis of highly active phospha-isosteres of the influenza neuraminidase inhibitor oseltamivir. ChemMedChem 2009, 4, 335–337.
101. Mack, H.; Basabe, J. V.; Brossmer, R. 2-Acetamido-2-deoxy-D-gluco- furanose and 2-acetamido-2-deoxy-D-manno-furanose: A simple preparation of 2-acetamido-2-deoxy-D-mannose. Carbohydr. Res. 1988, 175, 311–316.
102. Fleet, G. W. J.; Shing, T. K. M.; Warr, S. M. Enantiospecific synthesis of shikimic acid from D-mannose: Formation of a chiral cyclohexene by intramolecular olefination of a carbohydrate-derived intermediate. J. Chem. Soc. Perkin Trans. 1 1984, 905–908.
103. Reetz, M. T.; Peter, R.; Vonitzstein, M. Titanium-mediated stereoselective Knoevenagel condensation of ethyl (diethoxyphosphoryl)acetate with aldehydes. Chem. Ber. 1987, 120, 121–122.
104. Katayama, M.; Nagase, R.; Mitarai, K.; Misaki, T.; Tanabe, Y. Isolation of intermediary anti-aldol adducts of the Horner–Wadsworth–Emmons reaction utilizing direct titanium-aldol addition and successive Bronsted acid promoted stereoselective elimination leading to (Z)-α,β-unsaturated esters. Synlett 2006, 129–132.
105. Goddard-Borger, E. D.; Stick, R. V. An efficient, inexpensive, and shelf-stable diazotransfer reagent: Imidazole-1-sulfonyl azide hydrochloride. Org. Lett. 2007, 9, 3797–3800.
106. Mirza, S.; Harvey, J. Synthesis of shikimic acid and its phosphonate analog via Knoevenagel condensation. Tetrahedron Lett. 1991, 32, 4111–4114.
107. Cai, Y.; Ling, C. C.; Bundle, D. R. Concise and efficient synthesis of 2-acetamido-2-deoxy-β-D-hexopyranosides of diverse aminosugars from 2-acetamido-2-deoxy-β-D-glucose. J. Org. Chem. 2009, 74, 580–589.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62063-
dc.description.abstract流行性感冒長期對人類健康傷害,歷史上幾次大流行更造成數千萬人的死亡,為了抵抗流感病毒的侵襲,由Hoffmann La-Roche及GlaxoSmithKline藥廠分別開發出針對唾液酸水解酶(Neuraminidase)的抑制劑—克流感(Tamiflu)及瑞樂沙(Relenza),讓人類免於流感病毒傷害。然而近幾年許多突變型流感病毒已經有出現對於克流感抗藥性的情況,雖然目前瑞樂沙仍能有效殺死流感病毒,但新型的流感藥物開發刻不容緩,因為誰也無法預料下一次人類流感大流行何時到來,又會有多少生命喪失。
2007年我們實驗室以木醣(D-xylose)為起始物,開發出零流感(Tamiphosphor)化合物,因為磷酸基可以與流感病毒唾液酸水解酶活性中心的三個精胺酸Arg形成較強的靜電作用力(electrostatic interaction),所以也具有更強的病毒抑制能力,對於克流感抗藥性病毒株能有效抑制,動物實驗也證實服用零流感可增加感染流感病毒的小鼠之存活率。同步進行中,實驗室2008年開發另一個以3-溴-1,2-二羥基環己二烯為起始物的零流感合成途徑,步驟更短產率更高。可惜這兩個合成途徑投入藥廠大量生產時,因為起始物昂貴或者步驟過多等問題,造成生產成本過高,因此希望能開發第三種合成路徑。我們選用便宜的乙醯葡萄醣胺(N-acetyl-glucosamine)為起始物,可以成功合成出文獻中克流感的關鍵中間產物azide 32,經由相似步驟也可得到另一中間產物azide 225,經由phosphoramidite中間產物順利建構3-戊烷氧基,預期可順利得到零流感。
zh_TW
dc.description.abstractInfluenza has endangered human for a long time. Anti-influenza drugs are regarded as the last line of defense against influenza pandemics. Hoffmann La-Roche and GlaxoSmithKline companies have developed two neuraminidase inhibitors – Tamiflu and Relenza against influenza virus. Recently, the emergence of drug-resistant strains of avian influenza has endangered human. The development of new anti-influenza drug is important work to defend the threat of pandemic flu.
Tamiphosphor, a phosphonate congener of oseltamivir carboxylate, contains a phosphonate group to exhibit strong electrostatic interactions to bind with the three arginine residues (Arg118, Arg292 and Arg371) in neuraminidase. In our lab, two methods have been explored to synthesize Tamiphosphor from D-xylose and cis-3-bromo-3-cyclohexadiene-1,2-diol, respectively. In order to meet the need of drug development, we further improve the Tamiphosphor synthesis in large scale using D-xylose and D-N-acetylglucosamine, respectively, as the starting materials. We used D-N-acetylglucosamine to prepare the key intermediate azide 32, for a formal synthesis of oseltamivir. Azide 225 and mesylate 230 were also prepared as an approach to the synthesis of Tamiphosphor.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:25:46Z (GMT). No. of bitstreams: 1
ntu-102-D97223120-1.pdf: 26936668 bytes, checksum: 50dd2aa725d73c38c028d374ccc4096f (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents謝誌 I
中文摘要 III
Abstract V
目錄 VII
表目錄 IX
圖目錄 X
流程目錄 XI
反應目錄 XIII
List of Abbreviations XIV
第一章 緒論 1
第一節 流感病毒與人類 1
第二節 流感病毒簡介 3
2-1 流感病毒組成 3
2-2 病毒表面重要的膜蛋白 3
2-2-1 血液凝集素(Haemagglutinin, HA) 4
2-2-2 神經胺酸酶(Neuraminidase, NA) 6
2-2-3 離子通道蛋白M2 7
第三節 流感病毒感染宿主細胞的生命週期 9
第四節 抗流感藥物開發 11
4-1 離子通道蛋白抑制劑 11
4-2 神經胺酸酶抑制劑 12
4-2-1 瑞樂沙的開發 13
4-2-2 克流感的開發 16
4-2-3 Peramivir的開發 18
4-3 抗藥性問題 19
4-4 零流感的開發 20
第五節 克流感的合成 23
5-1 使用天然物合成克流感 24
5-2 經由Diels-Alder反應合成克流感 36
5-3 Desymmetrical techniques 41
5-4 One-pot reaction 45
第六節 零流感的合成 48
第二章 結果與討論 51
第一節 零流感的開發 51
第二節 新的零流感合成路徑分析 53
第三節 新合成路徑開發與探討 57
3-1 開發新的克流感合成路徑 57
3-2 新的零流感合成路徑開發 70
3-3 零流感合成步驟討論 75
第四節 結論 79
第三章 實驗部份 83
第一節 一般說明 83
第二節 化學合成步驟以及結構鑑定 85
第四章 參考文獻 133
附錄 化合物之核磁共振光譜 155
dc.language.isozh-TW
dc.subject克流感zh_TW
dc.subject零流感zh_TW
dc.subject流感病毒zh_TW
dc.subjectOseltamiviren
dc.subjectinfluenzaen
dc.subjectTamiphosphoren
dc.title由乙醯葡萄醣胺合成克流感及零流感zh_TW
dc.titleSynthesis of Oseltamivir and Tamiphosphor from N-acetyl-glucosamineen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.oralexamcommittee楊圖信,陳焜銘,汪根欉,羅禮強,陳榮傑
dc.subject.keyword克流感,零流感,流感病毒,zh_TW
dc.subject.keywordOseltamivir,Tamiphosphor,influenza,en
dc.relation.page267
dc.rights.note有償授權
dc.date.accepted2013-07-23
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
26.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved