Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6205
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor高振宏
dc.contributor.authorKuan-Yu Huangen
dc.contributor.author黃冠育zh_TW
dc.date.accessioned2021-05-16T16:23:05Z-
dc.date.available2016-07-19
dc.date.available2021-05-16T16:23:05Z-
dc.date.copyright2013-07-19
dc.date.issued2013
dc.date.submitted2013-07-15
dc.identifier.citation[1] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, 'Solar cell efficiency tables (version 41),' Progress in Photovoltaics, vol. 21, pp. 1-11, 2013.
[2] M. Berger, M. Welsch, M. Fischer, J. Muller, A. Krtschil, T. Spiess, et al., 'International technology roadmap for photovoltaics (ITRPV) Results 2011,'
[3] C. Chen, F. M. Lin, H. T. Hu and F. Y. Yeh, 'Residual stress and bow analysis for silicon solar cell induced by soldering,' International Symposium on Solar Cell Technologies, 2008.
[4] J. Moyer, W. Zhang, E. Kurtz, R. Tavares, D. Buzby, and S. Kleinbach, 'The role of silver contact paste on reliable connectivity systems,' Presented at the 25th European Photovoltaic Solar Energy Conference and Exhibition, Valencia, Spain, 2010.
[5] B. Lalaguna, P. S. Friera, H. Mackel, D. Sanchez, and J. Alonso, 'Evaluation of stress on cells during during different interconnet in different interconnection reocess,' Presented at the 23rd European Photovoltaic Solar Energy Conference, Valencia,Spain, 2008.
[6] P. Schmitt, D. Eberlein, P. Voos, M. Tranitz, and H. Wirth, 'Metallographic preparation of solar cell samples for quality assurance and material evaluation,' Energy Procedia, vol. 8, pp. 402-408, 2011.
[7] P. Schmitt, P. Kaiser, C. Savio, M. Tranitz, and U. Eitner, 'Intermetallic phase growth and reliability of Sn-Ag-soldered solar cell joints,' Energy Procedia, vol. 27, pp. 664-669, 2012.
[8] E.A. Brandes, Smithells Metals Reference Book, 6th ed, pp. 16-2 (Butterworths, London, 1983).
[9] J. Glazeri, ' Microstructure and mechanical properties of Pb-free solder alloys for low-cost electronic assembly: A review,' Electronic Materials, vol. 23 pp. 693-700, 1994.
[10] H. P. R. Frederikse, R. J. Fields, and A. Feldman, 'Thermal and electrical properties of copper-tin and nickel-tin intermetallics,' Journal of Applied Physics, vol. 72, pp. 2879 - 2882, 1992.
[11] W. Xiaojing, Z. Qingsheng, W. Zhongguang, and S. Jianku, 'Modeling of Ag3Sn coarsning and its effect on creep in Sn-Ag-Cu solder,' Acta Metallurgica Sinica, vol. 45 pp. 912-918, 2009.
[12] H. J. Fecht, M. X. Zhang, Y. A. Chang, and J. H. Perepezko, 'Metastable phase equilibria in the lead-tin alloy system,' Metall. Trans. A, vol. 20 pp. 795-803, 1989.
[13] K. W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello, and C. A. Handwerker, 'Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloys,' Journal of Electronic Materials, vol. 29, pp. 1122-1136, 2000.
[14] B. J. Lee, C. S. Oh, and J. H. Shim, 'Thermodynamic assessments of the Sn-In and Sn-Bi binary systems,' Journal of Electronic Materials, vol. 25 pp. 983-991, 1996.
[15] J. H. Shim, C. S. Oh, B. J. Lee, and D. N. Lee, 'Thermodynamic assessment of the Cu-Sn system,' Z. Metallkd, vol. 87, pp. 205-212,1996.
[16] S. W. Chen and Y. W. Yen, 'Interfacial reactions in Ag-Sn/Cu couples,' Journal of Electronic Materials, vol. 28, pp. 1203-1208, 1999.
[17] P. T. Vianco, A. C. Kilgo, and R. Grant, 'Intermetallic compound layer growth by solid state reactions between 58Bi-42Sn solder and copper,' Journal of Electronic Materials, vol. 24, pp. 1493-1505, 1995.
[18] J. W. Yoon, C. B. Lee, and S. B. Jung, 'Interfacial reactions between Sn-58 mass% Bi eutectic solder and (Cu, Electroless Ni-P/Cu) substrate,' Materials Transactions(Japan), vol. 43, pp. 1821-1826, 2002.
[19] I. Karakaya and W. T. Thompson, 'The Ag-Sn (Silver-Tin) system,' Bulletin of Alloy Phase Diagrams, vol. 8, pp. 340-347, 1987.
[20] K. N. Tu and R. Rosenberg, 'Room-temperature interaction in bimetallic thin-film couples,' Japanese Journal of Applied Physics, pp. 633-636, 1974.
[21] V. Simic and Z. Marinkovic, 'Room-temperature interactions in Ag-metals thin-film couples,' Thin Solid Films, vol. 61, pp. 149-160, 1979.
[22] S. K. Sen, A. Ghorai, A. K. Bandyopadhyay, and S. Sen, 'Interfacial reactions in bimetallic Ag-Sn thin-film Couples,' Thin Solid Films, vol. 155, pp. 243-253, 1987.
[23] Z. Marinkovic and V. Simik, 'Kinetics of reaction at room temperature in thin silver-metal couples,' Thin Solid Films, vol. 195, pp. 127-135, 1991.
[24] T. Su, L. Tsao, S. Chang, and T. Chuang, 'Interfacial reactions of liquid Sn and Sn-3.5 Ag solders with Ag thick films,' Journal of Materials Engineering and Performance, vol. 11, pp. 481-486, 2002.
[25] G. Ghosh, 'Interfacial reaction between multicomponent lead-free solders and Ag, Cu, Ni, and Pd substrates,' Journal of Electronic Materials, vol. 33, pp. 1080-1091, 2004.
[26] J. F. Li, P. A. Agyakwa, and C. M. Johnson, 'Kinetics of Ag3Sn growth in Ag–Sn–Ag system during transient liquid phase soldering process,' Acta Materialia, vol. 58, pp. 3429-3443, 2010.
[27] P. Skrzyniarz, A. Sypień, J. Wojewoda-Budka, R. Filipek, and P. Zięba, 'Microstructure and kinetics of intermetallic phases growth in Ag/Sn/Ag joint obtained as the result of diffusion soldering,' Arch. Metall. Mater, vol. 5, pp. 123-130, 2010.
[28] R. W. Wu, L. C. Tsao, S. Y. Chang, C. C. Jain, and R. S. Chen, 'Interfacial reactions between liquid Sn3.5Ag0.5Cu solders and Ag substrates,' Journal of Materials Science: Materials in Electronics, vol. 22, pp. 1181-1187, 2010.
[29] C. P. Lin, C. M. Chen, Y. W. Yen, H. J. Wu, and S. W. Chen, 'Interfacial reactions between high-Pb solders and Ag,' Journal of Alloys and Compounds, vol. 509, pp. 3509-3514, 2011.
[30] M. B. Zhou, X. Ma, and X. P. Zhang, 'Premelting behavior and interfacial reaction of the Sn/Cu and Sn/Ag soldering systems during the reflow process,' Journal of Materials Science-Materials in Electronics, vol. 23, pp. 1543-1551, 2012.
[31] P. T. Vianco, R. D. Wright, P. F. Hlava, and J. J. Martin, 'Dissolution and interface reactions between the 95.5Sn-3.9Ag-0.6Cu, 99.3Sn-0.7Cu, and 63Sn-37Pb Solders on silver base metal,' Metallurgical and Materials Transactions A, vol. 37, pp. 1551-1561, 2006.
[32] P. T. Vianco, R. D. Wright, P. F. Hlava, and J. J. Martin, 'Dissolution behavior of Cu and Ag substrates in molten solders,' Journal of Electronic Materials, vol. 35, pp. 978-987, 2006.
[33] Y. W. Yen, W. T. Chou, Y. Tseng, C. Lee, and C.-L. Hsu, 'Investigation of dissolution behavior of metallic substrates and intermetallic compound in molten lead-free solders,' Journal of Electronic Materials, vol. 37, pp. 73-83, 2007.
[34] C. M. Chen and S. W. Chen, 'Electromigration effect upon the Sn-Ag and Sn-Ni interfacial reactions at various temperatures' Acta Materialia, vol. 50, pp. 2461-2469, 2002.
[35] W. M. Tang, A. Q. He, Q. Liu, and G. D. Ivey, ' Interfacial reaction and its kinetics of electroplated Ag/Sn couples,' The Chinese Journal of Nonferrous Metals, 2009.
[36] K. Suzuki, S. Kano, M. Kajihara, N. Kurokawa, and K. Sakamoto, 'Reactive diffusion between Ag and Sn at solid state temperatures,' Mater Trans JIM, vol. 46, pp. 969-973, 2005.
[37] P. T. Vianco, J. J. Martin, R. D. Wright, and P. F. Hlava, 'Solid-state interface reactions between silver and 95.5Sn-3.9Ag-0.6Cu and 63Sn-37Pb solders,' Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, vol. 38A, pp. 2488-2502, 2007.
[38] V. A. Skudnov, L. D. Sokolov, A. N. Gladkikh, and V. M. Solenov,' Mechanical properties of bismuth at different temperature and strain rates,' Metal Science and Heat Treatment, vol. 11, pp. 981-984, 1969.
[39] C. C. Chang, Y. W. Wang, Y. S. Lai, and C. R. Kao, 'Interfacial reaction between 95Pb-5Sn solder bump and 37Pb-63Sn presolder in flip-chip solder joints,' Journal of Electronic Materials, vol. 39, pp. 1289-1294, 2010.
[40] S. Choi, T. R. Bieler, J. P. Lucas, and K. N. Subramanian, 'Characterization of the growth of intermetallic interfacial layers of Sn-Ag and Sn-Pb eutectic solders and their composite solders on Cu substrate during isothermal long-term aging,' Journal of Electronic Materials., vol. 28, pp. 1209-1215, 1999.
[41] T. Y. Lee, W. J. Choi, K. N. Tu, J. W. Jang, S. M. Kuo, J. K. Lin, et al., 'Morphology, kinetics, and thermodynamics of solid-state aging of eutectic SnPb and Pb-free solders (Sn–3.5Ag, Sn–3.8Ag–0.7Cu and Sn–0.7Cu) on Cu,' Journal of Materials Research, vol. 17, pp. 291-301, 2011.
[42] H. Y. Chuang, 'Critical issues in soldering reactions arising from space confinement in 3D IC packages,' PhD thesis, National Taiwan University, 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6205-
dc.description.abstract矽晶太陽電池通常用鍍錫銅帶來進行彼此的串接,串焊之銲料厚度約為10±5μm,在高度如此小之接點,界面反應對太陽電池模組可靠度扮演著極重要的角色,不同材料性質之界面的反應,不論是在開發新型銲料,或為預測太陽電池模組壽命及長期可靠度,都是極其重要之基礎研究。本實驗觀測矽晶太陽電池模組焊接結構(Cu/Solder/Ag paste)的界面反應,使用不同銲料(Sn37Pb、Sn36Pb2Ag、Sn3.5Ag0.5Cu、Sn58Bi),進行100,120, 150, 180±1°C固固高溫熱儲存加速實驗,隨著使用時間增長,界面生成電阻係數較高之介金屬化合物,將使得串聯電阻RS上升導致輸出效率下降,且介金屬化合物較為硬脆,也將導致機械性質之弱化,未來如何減緩介金屬化合物生成將是矽晶太陽電池模組可靠度中極為重要的一環,因此本實驗將量測不同銲料在Cu端的與Ag電極端之介金屬成長動力學,並針對尚未有人研究之太陽能電池Ag電極端,量測其介金屬活化能,實驗結果顯Sn37Pb、Sn36Pb2Ag、Sn3.5Ag0.5Cu、Sn58Bi四種銲料在Cu端皆生成Cu6Sn5與Cu3Sn介金屬化合物,而銀電極端皆生成Ag3Sn介金屬化合物,且雙邊介金屬成長皆為擴散控制速率,Cu端總介金屬成長速率不隨銲料種類改變而產生改變,而太陽能電池Ag電極端之介金屬成長速率,會因銲料種類不同而有相當大之差異,介金屬Ag3Sn生成速率由最快排到最慢之銲料分別為,Sn58Bi > Sn37Pb = Sn36Pb2Ag > Sn3Ag0.5Cu,研究顯示對於Ag3Sn介金屬之成長速率將可透過銲料之改變有效的抑制成長。zh_TW
dc.description.provenanceMade available in DSpace on 2021-05-16T16:23:05Z (GMT). No. of bitstreams: 1
ntu-102-R00527048-1.pdf: 6128476 bytes, checksum: 4612f245a226757faf5e4cd1acc463be (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
圖目錄 Ⅴ
表目錄 xi
第一章 緒論 1
1.1 太陽能目前發展趨勢 1
1.1.1 太陽能 電池簡介 1
1.1.2 矽晶太陽能電池發展趨勢 3
1.1.3 矽晶太陽能電池薄型化之問題 4
1.1.4 太陽能電池封裝簡介 6
1.2 研究動機 8
1.2.1 電性性質 9
1.2.2 機械性質 10
第二章 文獻回顧 13
2.1 錫鉛銲料特性 13
2.2 SAC銲料特性 14
2.3 Sn58Bi銲料特性 15
2.4 銅基材與銲料之界面反應 16
2.5 銀基材與銲料之界面反應 17
第三章 實驗步驟與方法 23
3.1 實驗設備儀器 23
3.2 實驗步驟 23
3.2.1 試片製備 23
3.2.2 固態時效 24
3.3 實驗分析 25
3.3.1 光學顯微鏡 Optical Microscopy(OM)觀察 25
3.3.2 掃描式電子顯微鏡(SEM)觀察 25
3.3.3 X光能量散佈儀(EDX)觀察 25
3.3.4 動力學分析理論與假設 25
第四章 結果與討論 28
4.1 不同銲料之顯微形貌觀察 28
4.1.1 Sn36Pb2Ag銲料 28
4.1.2 Sn36Pb2Ag熱處理顯微結構觀 28
4.1.3 Sn37Pb銲料 32
4.1.4 Sn37Pb熱處理顯微結構觀察 32
4.1.5 Sn3Ag0.5Cu銲料 35
4.1.6 Sn3Ag0.5Cu熱處理顯微結構觀察 35
4.1.7 Sn58Bi銲料 38
4.1.8 Sn58Bi熱處理顯微結構觀察 38
4.1.9 不同銲料之顯微形貌比較 43
4.2 不同銲料與基材之界面反應動力學 44
4.2.1 Sn37Pb銲料與銅端介金屬成長(鉛濃度效應) 44
4.2.2 Sn36Pb2Ag與銅端介金屬成長 46
4.2.1 Sn3Ag0.5Cu與銅端介金屬成長 49
4.2.2 Sn37Pb銲料與燒結銀電極反應動力學與活化能 49
4.2.1 Sn36Pb2Ag銲料與燒結銀電極反應動力學與活化能 53
4.2.1 Sn3Ag0.5Cu銲料與燒結銀電極反應動力學與活化能 56
4.3 不同銲料於120°C熱處理顯微結構比較 60
4.3.1 不同銲料與銅導線反應動力學比較分析 66
4.3.2 不同銲料與燒結銀電極反應動力學比較分析 67
結論 69
參考文獻 71
dc.language.isozh-TW
dc.title不同銲料與基材之界面反應於矽晶太陽能電池封裝應用zh_TW
dc.titleInterfacial Reaction of Different Solders
in Solar Cell Interconnect
en
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee顏怡文,陳志銘
dc.subject.keyword太陽能串接,界面反應,介金屬化合物,活化能,可靠度,zh_TW
dc.subject.keywordcrystalline silicon solar cell interconnect,interfacial reaction,intermetallic compounds,activation energy,reliability.,en
dc.relation.page78
dc.rights.note同意授權(全球公開)
dc.date.accepted2013-07-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf5.98 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved