Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62051
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor葉丙成(Ping-Cheng Yeh)
dc.contributor.authorWei-Chih Hungen
dc.contributor.author洪暐智zh_TW
dc.date.accessioned2021-06-16T13:25:09Z-
dc.date.available2018-08-09
dc.date.copyright2013-08-09
dc.date.issued2013
dc.date.submitted2013-07-23
dc.identifier.citation[1] “WirelessHD,” http://www.wirelesshd.org/.
[2] “Wireless Gigabit Alliance,” http://www.wigig.org/.
[3] H. Singh, J. Oh, C. Kweon, X. Qin, H.R. Shao, and C. Ngo, “A 60 GHz wireless network for enabling uncompressed video communication,” Communications
Magazine, IEEE, vol. 46, no. 12, pp. 71–78, 2008.
[4] S.E. Hong and W.Y. Lee, “Flexible unequal error protection scheme for uncompressed video transmission over 60ghz multi-gigabit wireless system,” in Computer
Communications and Networks (ICCCN), 2011 Proceedings of 20th International
Conference on. IEEE, 2011, pp. 1–6.
[5] K. Sayood and J.C. Borkenhagen, “Use of residual redundancy in the design of joint
source/channel coders,” Communications, IEEE Transactions on, vol. 39, no. 6, pp.
838–846, 1991.
[6] D. Slepian and J. Wolf, “Noiseless coding of correlated information sources,” Information Theory, IEEE Transactions on, vol. 19, no. 4, pp. 471–480, 1973.
[7] J. Hagenauer, “Source-controlled channel decoding,” Communications, IEEE
Transactions on, vol. 43, no. 9, pp. 2449–2457, 1995.
[8] T. Fingscheidt and P. Vary, “Softbit speech decoding: a new approach to error
concealment,” Speech and Audio Processing, IEEE Transactions on, vol. 9, no. 3,
pp. 240–251, 2001.
[9] Norbert Gortz, “Iterative source-channel decoding using soft-in/soft-out decoders,”
in Information Theory, 2000. Proceedings. IEEE International Symposium on, 2000,
p. 173.
[10] T. Hindelang, T. Fingscheidt, N. Seshadri, and R. Cox, “Combined source/channel
(de-)coding: can a priori information be used twice?,” in Information Theory, 2000.
Proceedings. IEEE International Symposium on, 2000, pp. 266–.
[11] M. Adrat, P. Vary, and J. Spittka, “Iterative source-channel decoder using extrinsic
information from softbit-source decoding,” in Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP ’01). 2001 IEEE International Conference on,
2001, vol. 4, pp. 2653–2656 vol.4.
[12] Norbert Gortz, “On the iterative approximation of optimal joint source-channel
decoding,” Selected Areas in Communications, IEEE Journal on, vol. 19, no. 9, pp.
1662–1670, 2001.
[13] Marc Adrat and Peter Vary, “Iterative source-channel decoding: Improved system
design using exit charts,” EURASIP Journal on Advances in Signal Processing, vol.
2005, no. 6, pp. 178541, 2005.
[14] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-correcting
coding and decoding: Turbo-codes. 1,” in Communications, 1993. ICC 93. Geneva.
Technical Program, Conference Record, IEEE International Conference on. IEEE,
1993, vol. 2, pp. 1064–1070.
[15] Jorg Kliewer and Norbert Gortz, “Iterative source-channel decoding for robust image transmission,” in Acoustics, Speech, and Signal Processing (ICASSP), 2002
IEEE International Conference on, 2002, vol. 3, pp. III–2173–III–2176.
[16] Yongkai Huo, Chuan Zhu, and L. Hanzo, “Spatio-temporal iterative source-channel
decoding aided video transmission,” Vehicular Technology, IEEE Transactions on,
vol. 62, no. 4, pp. 1597–1609, 2013.
[17] J. Kliewer, Norbert Gortz, and A. Mertins, “On iterative source-channel image decoding with markov random field source models,” in Acoustics, Speech, and Signal
Processing, 2004. Proceedings. (ICASSP ’04). IEEE International Conference on,
2004, vol. 4, pp. iv–661–iv–664 vol.4.
[18] Jorg Kliewer, N. Goertz, and A. Mertins, “Iterative source-channel decoding with
markov random field source models,” Signal Processing, IEEE Transactions on, vol.
54, no. 10, pp. 3688–3701, 2006.
[19] S.Z. Li, Markov random field modeling in computer vision, Springer-Verlag New
York, Inc., 1995.
[20] J M Hammersley and P Clifford, “Markov fields on finite graphs and lattices,”
Unpublished manuscript, vol. 3, 1971.
[21] J.G. Proakis, “Digital communications,” 2007.
[22] K. Larsen, “Short convolutional codes with maximal free distance for rates 1/2, 1/3,
and 1/4 (corresp.),” Information Theory, IEEE Transactions on, vol. 19, no. 3, pp.
371–372, 1973.
[23] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for
minimizing symbol error rate (corresp.),” Information Theory, IEEE Transactions
on, vol. 20, no. 2, pp. 284–287, 1974.
[24] Julian Besag, “Spatial interaction and the statistical analysis of lattice systems,”
Journal of the Royal Statistical Society. Series B (Methodological), pp. 192–236,
1974.
[25] B. Girod, A.M. Aaron, S. Rane, and D. Rebollo-Monedero, “Distributed video
coding,” Proceedings of the IEEE, vol. 93, no. 1, pp. 71–83, 2005.
[26] A. Aaron, Rui Zhang, and B. Girod, “Wyner-ziv coding of motion video,” in Signals, Systems and Computers, 2002. Conference Record of the Thirty-Sixth Asilomar
Conference on, 2002, vol. 1, pp. 240–244 vol.1.
[27] H. Derin and Howard Elliott, “Modeling and segmentation of noisy and textured
images using gibbs random fields,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. PAMI-9, no. 1, pp. 39–55, 1987.
[28] S. Ten Brink, “Convergence behavior of iteratively decoded parallel concatenated
codes,” Communications, IEEE Transactions on, vol. 49, no. 10, pp. 1727–1737,
2001.
[29] M. Adrat, M. Antweiler, L. Schmalen, P. Vary, and T. Clevorn, “On the overshooting
effect in exit charts of iterative source-channel decoding,” in Communications (ICC),
2010 IEEE International Conference on, 2010, pp. 1–5.
[30] L. Schmalen, M. Adrat, T. Clevorn, and P. Vary, “Exit chart based system design for
iterative source-channel decoding with fixed-length codes,” Communications, IEEE
Transactions on, vol. 59, no. 9, pp. 2406–2413, 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62051-
dc.description.abstract因為近期的60GHz高頻無線傳輸技術能提供相當大的無線網路頻寬,無線視訊傳輸系統被視為未來家用網路的一大重要特點。然而,在如此高的頻率下進行傳輸,無線訊號往往會受到相當的干擾。換句話說,此類無線視訊系統將會在相當低的訊噪比下進行傳輸。而如何在此種高干擾的無線網路下有效率的利用發送器的能量以及維持系統的穩定性便成了一個相當具有挑戰性的問題。在本論文中,我們提出了一個基於三維馬可夫場模型的迭代式共同視訊-通道解碼系統。提出的三維馬可夫場是一個基於位元層的馬可夫場模型,能成功的描述視訊中空間和時間的冗餘性。對於具有強烈攝影機移動的視訊內容,我們利用了實現在解碼端的運動估計來定位三維馬可夫場中的時間上的冗餘性。透過提出的三維馬可夫場模型,我們更進一步地提出了一個軟進軟出的視訊內容解碼演算法。提出的視訊內容解碼演算法有著比傳統的最大事後機率馬可夫場解碼更低的複雜度以及相當好的效能。最後,基於提出的視訊內容解碼演算法,我們更進一步設計基於此演算法的迭代式共同視訊-通道解碼系統。此系統能在解碼端根據視訊的內容估計三維馬可夫場模型的參數,而不需要在傳送端附加任何的變更,使得我們的解碼系統更能輕易地被整合。此外,在此解碼系統的設計中,我們利用了一個緩衝器來傳遞時間上的冗餘資訊,使得此時間上的冗餘資訊能夠不斷的在傳輸解碼過程中被傳遞並提升解碼效能。我們的模擬結果呈現出提出的模型和系統能夠大幅的增加無線視訊傳輸系統的效能及穩定性。zh_TW
dc.description.abstractDue to the emergence of mmWave systems that provide multi-Gbps data rate over 60GHz band, uncompressed video transmission has been considered as a commonly used feature for wireless multimedia transmission over the wireless personal area networks (WPANs). However, mmWaves signals usually have higher attenuation than the conventional low-frequency wireless signals, and therefore supporting transmission in a low SNR condition becomes a challenging problem for such systems. In this thesis, we propose an iterative source-channel decoding method for uncompressed video transmission based on a proposed novel 3D-MRF model. The 3D-MRF model is a bit-plane level MRF model which successfully reveals the spatial and temporal redundancy of video sequences. For those video sequences of intense movement, we utilize the motion estimation at the decoder side to precisely locate the temporal movement under the block-base view, and thus the temporal redundancy can be fully used by the 3D-MRF. Through the 3D-MRF model, we develop the 3D-MRF based soft-in soft-out (SISO) source decoder. The 3D-MRF based SISO source decoder has much lower complexity than conventional iterative MAP-MRF decoder while still significantly improves the decoding performance. We design an iterative source-channel decoding structure which is capable of jointly estimating the MRF parameters at the receiver, and thus the proposed decoder can automatically adjust the amount of the information exchange according to the decoding video sequence. Also, by adding a single buffer into our decoder structure, the temporal extrinsic information is allowed to propagate throughout the video decoding process. We show that the proposed ISCD method can significantly enhance the video quality in terms of peak signal-to-noise ratio (PSNR). Even under very low SNR condition, the video frames are still maintained in good quality.en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:25:09Z (GMT). No. of bitstreams: 1
ntu-102-R00942060-1.pdf: 3017223 bytes, checksum: ed67edcbc7cde8044294111b3c6713c0 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
誌謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
英文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Background Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Markov Random Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Trellis based code decoding algorithm . . . . . . . . . . . . . . . . . . . 6
2.2.1 Overview of convolutional code encoder . . . . . . . . . . . . . . 6
2.2.2 BCJR - MAP decoding rule . . . . . . . . . . . . . . . . . . . . 9
3 3D-MRF Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Low-level Markov Random Field . . . . . . . . . . . . . . . . . . . . . . 14
3.1.1 Gibbs Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Neighborhood System of 3D-MRF . . . . . . . . . . . . . . . . . . . . . 17
3.2.1 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 3D-MRF Conditional Distribution . . . . . . . . . . . . . . . . . . . . . 20
4 3D-MRF based SISO Source Decoding . . . . . . . . . . . . . . . . . . . . . . 23
4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Decoder Side Motion Estimation . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 3D-MRF Based SISO Source Decoding . . . . . . . . . . . . . . . . . . 28
4.5 Numerical Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5 Iterative Source-Channel Decoding Based on 3D-MRF Model . . . . . . . . . . 41
5.1 Iterative Source-Channel Decoder Structure . . . . . . . . . . . . . . . . 41
5.2 Iterative Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3 Numerical Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6 EXIT Chart Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1 Mutual Information Measurement . . . . . . . . . . . . . . . . . . . . . 55
6.2 EXIT Chart of 3D-MRF based ICSD Decoder . . . . . . . . . . . . . . . 57
6.3 Overshooting Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
dc.language.isoen
dc.subject馬可夫隨機場zh_TW
dc.subject視訊訊號處理zh_TW
dc.subject無線通訊zh_TW
dc.subjectwireless communicationen
dc.subjectMarkov random fieldsen
dc.subjectIterative source-channel decodingen
dc.subjectvideo signal processingen
dc.title基於三維馬可夫隨機場模型之迭代式無線視訊解碼系統zh_TW
dc.titleIterative 3D-MRF based Decoder for Uncompressed Wireless Video Transmissionen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李佳翰(Chia-Han Lee),簡韶逸(Shao-Yi Chen),林昌鴻(Chang-Hong Lin)
dc.subject.keyword馬可夫隨機場,無線通訊,視訊訊號處理,zh_TW
dc.subject.keywordMarkov random fields,Iterative source-channel decoding,wireless communication,video signal processing,en
dc.relation.page66
dc.rights.note有償授權
dc.date.accepted2013-07-24
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
Appears in Collections:電信工程學研究所

Files in This Item:
File SizeFormat 
ntu-102-1.pdf
  Restricted Access
2.95 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved