Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62044
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏家鈺(Jia-Yush Yen)
dc.contributor.authorChe-Jung Hsuen
dc.contributor.author許哲榮zh_TW
dc.date.accessioned2021-06-16T13:24:47Z-
dc.date.available2016-07-30
dc.date.copyright2013-07-30
dc.date.issued2013
dc.date.submitted2013-07-23
dc.identifier.citation[1] P. M. Corry, K. Jabboury, E. P. Armour and J. S. Kong, “Human cancer treatment with ultrasound”, IEEE TRANS. SONICS ULTRASONICS, 31(5), 444-456, 1984.
[2] B. S. Hu, “The future of real-time cardiac magnetic resonance imaging”, Current cardiology reports, 7(1), 45-51, 2005.
[3] M. C. Hsu, H. Chang, Y. Y. Chen, and W. L. Lin, “High Intensity Focused Ultrasound Thermal Therapy for Liver Tumor with Respiration Motion”, In Ultrasonics Symposium. IEEE, 1734-1737, 2006.
[4] K. Kitamura, H. Shirato, S. Shimizu, K. Miyasaka, T. Demura, N. Shinohara, and T. Harabayashi, “Real-time tumor-tracking radiotherapy combined with neoadjuvant hormonal therapy for prostate cancer”, Nihon rinsho. Japanese journal of clinical medicine, 58, 326, 2000.
[5] F. Wu, Z. B. Wang, Y. D. Cao, Z. L. Xu, Q. Zhou, H. Zhu, and W. Z. Chen, “Heat fixation of cancer cells ablated with high-intensity–focused ultrasound in patients with breast cancer”, The American journal of surgery, 192(2), 179-184, 2006.
[6] K. Hynynen, and F. A. Jolesz, “Demonstration of potential noninvasive ultrasound brain therapy through an intact skull”, Ultrasound in medicine & biology, 24(2), 275-283, 1998.
[7] K. Steinke, “Recent Results in Cancer Research. Minimally Invasive Tumor Therapies”, Springer, 107-122, 2006.
[8] R. T. Hoffmann, T. F. Jakobs, T. K. Helmberger, and M. F. Reiser, “Radiofrequency Ablation (RFA)”, In Percutaneous Tumor Ablation in Medical Radiology, Springer Berlin Heidelberg, 145-151. 2008
[9] J. H. Kim, and E. W. Hahn, “Clinical and biological studies of localized hyperthermia”, Cancer research, 39(6), 2258-2261, 1979.
[10] J. C. Bolomey, M. H. Seegenschmiedt, P. Fessenden, and C. C. Vernon, “Thermoradiotherapy and Thermochemotherapy”, Springer-Verlag, 1996.
[11] H. Wang, E. S. Ebbini, M. O'Donnell, and C. A. Cain, “Phase aberration correction and motion compensation for ultrasonic hyperthermia phased arrays: Experimental results”, Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 41(1), 34-43, 1994.
[12] C. M. Janet, D. phil, “Percutaneous Radiofrequency Ablation of Tumors in the Liver and Kidney”, Radiology Rounds, 2(9), 1-4, 2004.
[13] R. Seip, W. Chen, J. Tavakkoli, L. A. Frizzell, and N. T. Sanghvi, “High-intensity focused ultrasound (HIFU) phased arrays: Recent developments in transrectal transducers and driving electronics design”, In Proc. 3rd Int. Symp. on Therapeutic Ultrasound, 423-428, 2003.
[14] P. Zhang, and T. Porter, “An in vitro Study of a Phase-Shift Nanoemulsion: A Potential Nucleation Agent for Bubble-Enhanced HIFU Tumor Ablation”, Ultrasound in medicine & biology, 36(11), 1856-1866, 2010.
[15] Y. C. Angel, S. Pichardo, R. Salomir, L. Petrusca, and J. Y. Chapelon, “Testing of a HIFU probe for the treatment of superficial venous insufficiency by using MRI”, In Engineering in Medicine and Biology Society, 28th Annual International Conference of the IEEE, 3533-3536, 2006.
[16] J. A. Bargoshadi, and E. Najafiaghdam, “Ultrasonic dispersion system design and optimization using multiple transducers”, In Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA) and 2009 China Symposium on Frequency Control Technology, Joint Conference of the 2009 Symposium on, 96-96, 2009.
[17] S. D. Paolis, F. Lionetto, and A. Maffezzoli, “Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization”, Excerpt from the Proceedings of the COMSOL Conference, 3, 4, 2009.
[18] R. Lerch, “Simulation of piezoelectric devices by two-and three-dimensional finite elements”, Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 37(3), 233-247, 1990.
[19] Y. Kagawa, and T. Yamabuchi, “Finite element simulation of a composite piezoelectric ultrasonic transducer. Sonics and Ultrasonics”, IEEE Transactions on, 26(2), 81-87, 1979.
[20] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, “Fundamentals of acoustics”, Wiley Publishing, 4th Edition , 1999.
[21] D. R. Raichel, “The science and applications of acoustics”, Springer, 2006.
[22] M. L. Munjal, and M. L. Munjal, “Acoustics of ducts and mufflers with application to exhaust and ventilation system design”, Wiley, 1987.
[23] 黎志勤, 黎蘇主, “排氣系統雜訊與消音器設計”, 中國環境科學出版社, 1991.
[24] H. V. Helmholtz, “On the Sensations of Tone as a Physiological Basis for the Theory of Music”, Kessinger Publishing, 2005.
[25] M. F. Hamilton and D. T. Blackstock, “Nonlinear Acoustics”, Academic Press Publishing, 1998.
[26] D.T. Blackstock, “Fundamentals of Physical Acoustics”, John Wiley & Sons, 2000.
[27] E. H. Wissler, “Pennes’ 1948 paper revisited”, Journal of Applied Physiology, 85(1), 35-41, 1998.
[28] H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm”, Journal of applied physiology, 1(2), 93-122, 1948.
[29] J. Koo, and C. Kleinstreuer, “Viscous dissipation effects in microtubes and microchannels”, International journal of heat and mass transfer, 47(14), 3159-3169, 2004.
[30] H. L. Liu, H. Chang, W. S. Chen, T. C. Shih, J. K. Hsiao, and W. L. Lin, “Feasibility of transrib focused ultrasound thermal ablation for liver tumors using a spherically curved 2D array: A numerical study”, Medical physics, 34, 3436, 2007.
[31] S. W. Huang, and P. C. Li, “Ultrasonic computed tomography reconstruction of the attenuation coefficient using a linear array”, Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 52(11), 2011-2022, 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62044-
dc.description.abstractHIFU (High Intensity Focused Ultrasound)手術為腫瘤患者提供一種較少副作用的療程,HIFU療程可適用燒灼在多種類型的腫瘤上並已有許多治療成功的案例,近年來HIFU手術開始嘗試治療更棘手的腫瘤,此類型的腫瘤許多都埋藏在肋骨後方,肋骨會阻擋並吸收原本應該進入腫瘤的超音波能量造成治療效果降低並有肋骨過熱壞死的風險,本論文藉由消音器原理設計直接在肋骨前方貼附於表皮上的特殊聲學結構,將聲能在進入肋骨之前先行困在結構內並消耗殆盡,同時達到保護肋骨與超音波探頭的目標,本論文將陳述特殊聲學結構的原理與設計準則,並利用模擬與實驗同步驗證特殊聲學結構設計的成效。zh_TW
dc.description.abstractHIFU (High Intensity Focused Ultrasound) offers conservative malignant tumor treatment with very little side effects. The uses of HIFU in medical treatment for malignant tumor have excited many research interests. Its applications range over the treatment of various types of tumors, and there have been many reports on successful treatments. More recent researches on HIFU therapy have started to look into some difficulties to treat tumors. The most encountered situations are the tumors that are hidden behind the rib cage. The ribs both blocked and absorbed the HIFU energy, rendering the treatment ineffective while cause pain to the patient. This thesis explores ways for rib sparing HIFU technology. Instead of the straight forward blocking by sound absorbing material, this thesis looks into the application of muffler theorem and design sound reflecting or sound annihilation channels to redirect the ultrasound energy. It is believed that the sound channel is a more energy-efficient way of rib sparing. The thesis provides both the theoretical development and the design guidelines for the sound annihilation channels. The thesis also provides experimental verifications to show that the approach is in fact effective and is easy to implement.en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:24:47Z (GMT). No. of bitstreams: 1
ntu-102-R00522807-1.pdf: 15875581 bytes, checksum: a3c4f6b49e966089ef3528c2d85ab354 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents中文摘要 i
Abstract iii
Contents v
List of Figure ix
List of Table xiii
Glossary of Symbols xv
Chapter 1 Introduction...1
1.1 Motivation...1
1.2 Evolution and Challenge of HIFU Surgery...2
1.3 Goals of This Thesis...6
1.4 Thesis Structure and Contribution...9
Chapter 2 Muffler Structure Theorem and Design...11
2.1 Type of Muffler...11
2.1.1 Reactive Muffler...11
2.1.2 Dissipative Muffler ...12
2.2 Muffler Performance Indicators...13
2.2.1 Transmission Loss (TL)...13
2.2.2 Insertion Loss (IL)...13
2.2.3 Noise Reduction (NR)...13
2.3 Electro-Mechano-Acoustical Analogies...14
2.4 Helmholtz Resonator...19
2.4.1 General Helmholtz Resonator Impedance...19
2.4.2 Traditional Helmholtz Resonator analysis...22
2.4.3 Helmholtz Resonator Impedance in Small Wave Length...24
2.5 Transfer Matrix Method...26
2.5.1 Duct...28
2.5.2 Area Discontinuity...29
2.5.3 Side Branch...30
2.6 Special Acoustic Blocking Structure Design...31
2.6.1 Size Decision of Acoustic Blocking Structure...32
2.6.2 Resonant Frequency and Vibration Mode Calculation...34
2.6.3 Transfer Matrix Representation of Designed Structure...36
2.6.4 Transmission Loss Calculated by Transfer Matrix...37
Chapter 3 HIFU Simulation Verification...41
3.1 Governing Equation of Acoustic Wave...41
3.2 Bioheat Transfer Theory...43
3.3 Simulation Framework and Parameters...45
3.4 Simulation Results...49
3.4.1 HIFU Ablation without Ribs Protection...49
3.4.2 HIFU Ablation with Baffle Protection...52
3.4.3 HIFU Ablation with Perforated PU Foam Protection...55
3.4.4 HIFU Ablation with Acoustic Blocking Structure Protection...58
3.5 Summary...63
Chapter 4 HIFU Experiment Verification...65
4.1 Equipment Specification...65
4.1.1 Phantom...65
4.1.2 Transducer...66
4.1.3 RF Generator...67
4.1.4 Thermocouple Module ...68
4.2 Experiment Arrangement...68
4.3 Experiment Result...71
4.3.1 HIFU Ablation without Rib Protection...72
4.3.2 HIFU Ablation with Baffle Protection...74
4.3.3 HIFU Ablation with Perforated PU Foam Protection...75
4.3.4 HIFU Ablation with Acoustic Blocking Structure Protection...77
4.4 Summary...79
Chapter 5 Conclusion...81
References...83
dc.language.isoen
dc.subject聲機電類比zh_TW
dc.subject消音器zh_TW
dc.subjectHIFU手術zh_TW
dc.subjectPennes方程式zh_TW
dc.subject轉移矩陣分析法zh_TW
dc.subject赫姆霍茲共鳴器zh_TW
dc.subjectMuffleren
dc.subjectElectro-mechano-acoustical analogyen
dc.subjectHelmholtz resonatoren
dc.subjectTransfer matrix methoden
dc.subjectPennes equationen
dc.subjectHIFU therapyen
dc.title應用於HIFU手術肋骨保護之聲學設計zh_TW
dc.titleThe Acoustic Design for Rib Sparing HIFU Surgeryen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳永耀(Yung-Yao Chen),連豊力(Li-Li Lien),何明志(Ming-Chih He)
dc.subject.keyword消音器,HIFU手術,Pennes方程式,轉移矩陣分析法,赫姆霍茲共鳴器,聲機電類比,zh_TW
dc.subject.keywordMuffler,HIFU therapy,Pennes equation,Transfer matrix method,Helmholtz resonator,Electro-mechano-acoustical analogy,en
dc.relation.page86
dc.rights.note有償授權
dc.date.accepted2013-07-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
15.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved