Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62012
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林致廷(Chih-Ting Lin)
dc.contributor.authorPu-Sung Huangen
dc.contributor.author黃普嵩zh_TW
dc.date.accessioned2021-06-16T13:23:10Z-
dc.date.available2013-07-30
dc.date.copyright2013-07-30
dc.date.issued2013
dc.date.submitted2013-07-24
dc.identifier.citation[1]Vittadello, M., M. Y. Gorbunov, et al. (2010). 'Photoelectron Generation by Photosystem II Core Complexes Tethered to Gold Surfaces.' Chemsuschem 3(4): 471-475.
[2]Maly, J., J. Masojidek, et al. (2005). 'Direct mediatorless electron transport between the monolayer of photosystem II and poly (mercapto-p-benzoquinone) modified gold electrode-new design of biosensor for herbicide detection.' Biosensors & Bioelectronics 21(6): 923-932.
[3]Koblizek, M., J. Maly, et al. (2002). 'A biosensor for the detection of triazine and phenylurea herbicides designed using Photosystem II coupled to a screen-printed electrode.' Biotechnology and Bioengineering 78(1): 110-116.
[4]Maly, J., J. Krejci, et al. (2005). 'Monolayers of photosystem II on gold electrodes with enhanced sensor response - effect of porosity and protein layer arrangement.' Analytical and Bioanalytical Chemistry 381(8): 1558-1567.
[5]Tan, S. C., L. I. Crouch, et al. (2012). 'Generation of Alternating Current in Response to Discontinuous Illumination by Photoelectrochemical Cells Based on Photosynthetic Proteins.' Angewandte Chemie-International Edition 51(27): 6667-6671.
[6]Tan, S. C., L. I. Crouch, et al. (2012). 'Increasing the Open-Circuit Voltage of Photoprotein-Based Photoelectrochemical Cells by Manipulation of the Vacuum Potential of the Electrolytes.' Acs Nano 6(10): 9103-9109..
[7]Yaghoubi, H., Z. Li, et al. (2012). 'The Role of Gold-Adsorbed Photosynthetic Reaction Centers and Redox Mediators in the Charge Transfer and Photocurrent Generation in a Bio-Photoelectrochemical Cell.' Journal of Physical Chemistry C 116(47): 24868-24877.
[8]Boutopoulos, C., E. Touloupakis, et al. (2011). 'Direct laser immobilization of photosynthetic material on screen printed electrodes for amperometric biosensor.' Applied Physics Letters 98(9).
[9]ETouloupakis, E., C. Boutopoulos, et al. (2012). 'A photosynthetic biosensor with enhanced electron transfer generation realized by laser printing technology.' Analytical and Bioanalytical Chemistry 402(10): 3237-3244..
[10]Tsukada, J., H. Ozawa, et al. (2010). 'Photosystem I Bio-Photosensor Integrated with Complementary Metal-Oxide-Semiconductor Source-Drain Follower on a Chip.' Japanese Journal of Applied Physics 49(1).
[11]Terasaki, N., N. Yamamoto, et al. (2007). 'Bio-photo sensor: Cyanobacterial photosystem I coupled with transistor via molecular wire.' Biochimica Et Biophysica Acta-Bioenergetics 1767(6): 653-659..
[12]Terasaki, N., N. Yamamoto, et al. (2006). 'Fabrication of novel photosystem I-gold nanoparticle hybrids and their photocurrent enhancement.' Thin Solid Films 499(1-2): 153-156.
[13]Terasaki, N., M. Iwai, et al. (2008). 'Photocurrent generation properties of Histag-photosystem II immobilized on nanostructured gold electrode.' Thin Solid Films 516(9): 2553-2557.
[14]Miyachi, M., Y. Yamanoi, et al. (2010). 'A photosensing system composed of photosystem I, molecular wire, gold nanoparticle, and double surfactants in water.' Chemical Communications 46(15): 2557-2559.
[15]Mukherjee, D., M. May, et al. (2010). 'Controlling the Morphology of Photosystem I Assembly on Thiol-Activated Au Substrates.' Langmuir 26(20): 16048-16054.
[16]Iwuchukwu, I. J., M. Vaughn, et al. (2010). 'Self-organized photosynthetic nanoparticle for cell-free hydrogen production.' Nature Nanotechnology 5(1): 73-79.
[17]Cardoso, M. B., D. Smolensky, et al. (2011). 'Supramolecular assembly of biohybrid photoconversion systems.' Energy & Environmental Science 4(1): 181-188.
[18]Weilnboeck, F., R. L. Bruce, et al. (2010). 'Photoresist modifications by plasma vacuum ultraviolet radiation: The role of polymer structure and plasma chemistry.' Journal of Vacuum Science & Technology B 28(5): 993-1004.
[19]Ron, I., I. Pecht, et al. (2010). 'Proteins as Solid-State Electronic Conductors.' Accounts of Chemical Research 43(7): 945-953.
[20]Bhalla, V. and V. Zazubovich (2011). 'Self-assembly and sensor response of photosynthetic reaction centers on screen-printed electrodes.' Analytica Chimica Acta 707(1): 184-190.
[21]Bhalla, V. and V. Zazubovich (2012). 'Immobilization and nanoscale film structure of bacterial reaction centers on gold.' Surface Science 606(15-16): 1323-1326.
[22]Bhalla, V., X. Zhao, et al. (2011). 'Detection of explosive compounds using Photosystem II-based biosensor.' Journal of Electroanalytical Chemistry 657(1-2): 84-90.
[23]Bhalla, V., S. Carrara, et al. (2010). 'Chip cleaning and regeneration for electrochemical sensor arrays.' Thin Solid Films 518(12): 3360-3366.
[24]Yan, X., C. J. Faulkner, et al. (2012). 'Photosystem I in Langmuir-Blodgett and Langmuir-Schaefer Monolayers.' Langmuir 28(42): 15080-15086.
[25]Yasuda, Y., H. Sugino, et al. (1994). 'CONTROL OF PROTEIN ORIENTATION IN MOLECULAR PHOTOELECTRIC DEVICES USING LANGMUIR-BLODGETT-FILMS OF PHOTOSYNTHETIC REACTION CENTERS FROM RHODOPSEUDOMONAS-VIRIDIS.' Bioelectrochemistry and Bioenergetics 34(2): 135-139.
[26]LeBlanc, G., G. P. Chen, et al. (2012). 'Photoreduction of Catalytic Platinum Particles Using Immobilized Multilayers of Photosystem I.'Langmuir 28(21): 7952-7956.
[27]Ciobanu, M., H. A. Kincaid, et al. (2007). 'Electrochemistry and photoelectrochemistry of photosystem I adsorbed on hydroxyl-terminated monolayers.' Journal of Electroanalytical Chemistry 599(1): 72-78.
[28]Santabarbara, S., G. Agostini, et al. (2007). 'Chlorophyll triplet states associated with Photosystem I and Photosystem II in thylakoids of the green alga Chlamydomonas reinhardtii.' Biochimica Et Biophysica Acta-Bioenergetics 1767(1): 88-105.
[29]Ko, B. S., B. Babcock, et al. (2004). 'Effect of surface composition on the adsorption of photosystem I onto alkanethiolate self-assembled monolayers on gold.' Langmuir 20(10): 4033-4038.
[30]Ciobanu, M., H. A. Kincaid, et al. (2005). 'Photosystem I patterning imaged by scanning electrochemical microscopy.' Langmuir 21(2): 692-698.
[31]Kincaid, H. A., T. Niedringhaus, et al. (2006). 'Entrapment of photosystem I within self-assembled films.' Langmuir 22(19): 8114-8120.
[32]Ciesielski, P. N., D. E. Cliffel, et al. (2011). 'Kinetic Model of the Photocatalytic Effect of a Photosystem I Monolayer on a Planar Electrode Surface.' Journal of Physical Chemistry A 115(15): 3326-3334.
[33]Faulkner, C. J., S. Lees, et al. (2008). 'Rapid assembly of photosystem I monolayers on gold electrodes.' Langmuir 24(16): 8409-8412.
[34]Ciesielski, P. N., C. J. Faulkner, et al. (2010). 'Enhanced Photocurrent Production by Photosystem I Multilayer Assemblies.' Advanced Functional Materials 20(23): 4048-4054.
[35]Ciesielski, P. N., F. M. Hijazi, et al. (2010). 'Photosystem I - Based biohybrid photoelectrochemical cells.' Bioresource Technology 101(9): 3047-3053.
[36]Ciesielski, P. N., A. M. Scott, et al. (2008). 'Functionalized Nanoporous Gold Leaf Electrode Films for the Immobilization of Photosystem I.' Acs Nano 2(12): 2465-2472.
[37]Frolov, L., O. Wilner, et al. (2008). 'Fabrication of oriented multilayers of photosystem I proteins on solid surfaces by auto-metallization.' Advanced Materials 20(2): 263-+.
[38]Carmeli, I., M. Mangold, et al. (2007). 'A photosynthetic reaction center covalently bound to carbon nanotubes.' Advanced Materials 19(22): 3901-+.
[39]Frolov, L., Y. Rosenwaks, et al. (2005). 'Fabrication of a photoelectronic device by direct chemical binding of the photosynthetic reaction center protein to metal surfaces.' Advanced Materials 17(20): 2434-+.
[40]Govorov, A. O. and I. Carmeli (2007). 'Hybrid structures composed of photosynthetic system and metal nanoparticles: Plasmon enhancement effect.' NANO LETTERS 7(3): 620-625.
[41]Kaniber, S. M., M. Brandstetter, et al. (2010). 'On-Chip Functionalization of Carbon Nanotubes with Photosystem I.' Journal of the American Chemical Society 132(9): 2872-+.
[42]Carmeli, I., L. Frolov, et al. (2007). 'Photovoltaic activity of photosystem I-based self-assembled monolayer.' Journal of the American Chemical Society 129(41): 12352-+.
[43]Frolov, L., Y. Rosenwaks, et al. (2008). 'Photoelectric junctions between GaAs and photosynthetic reaction center protein.' Journal of Physical Chemistry C 112(35): 13426-13430.
[44]Sepunaru, L., I. Tsimberov, et al. (2009). 'Picosecond Electron Transfer from Photosynthetic Reaction Center Protein to GaAs.' NANO LETTERS 9(7): 2751-2755.
[45]Kaniber, S. M., F. C. Simmel, et al. (2009). 'The optoelectronic properties of a photosystem I-carbon nanotube hybrid system.' Nanotechnology 20(34).
[46]Carmeli, I., I. Lieberman, et al. (2010). 'Broad Band Enhancement of Light Absorption in Photosystem I by Metal Nanoparticle Antennas.' NANO LETTERS 10(6): 2069-2074.
[47]Shin, J., P. Bhattacharya, et al. (2004). 'Monolithically integrated bacteriorhodopsin-GaAs/GaAlAs phototransceiver.' Optics Letters 29(19): 2264-2266.
[48]Bromley, K. M., A. J. Patil, et al. (2007). 'Bio-functional mesolamellar nanocomposites based on inorganic/polymer intercalation in purple membrane (bacteriorhodopsin) films.' Advanced Materials 19(18): 2433-+.
[49]Gerster, D., J. Reichert, et al. (2012). 'Photocurrent of a single photosynthetic protein.' Nature Nanotechnology 7(10): 673-676.
[50]Toporik, H., I. Carmeli, et al. (2012). 'Large Photovoltages Generated by Plant Photosystem I Crystals.' Advanced Materials 24(22): 2988-2991.
[51]Das, R., P. J. Kiley, et al. (2004). 'Integration of photosynthetic protein molecular complexes in solid-state electronic devices.' NANO LETTERS 4(6): 1079-1083.
[52]Trammell, S. A., L. Y. Wang, et al. (2004). 'Orientated binding of photosynthetic reaction centers on gold using Ni-NTA self-assembled monolayers.' Biosensors & Bioelectronics 19(12): 1649-1655.
[53]Lebedev, N., S. A. Trammell, et al. (2006). 'Conductive wiring of immobilized photosynthetic reaction center to electrode by cytochrome c.' Journal of the American Chemical Society 128(37): 12044-12045.
[54]Trammell, S. A., A. Spano, et al. (2006). 'Effect of protein orientation on electron transfer between photosynthetic reaction centers and carbon electrodes.' Biosensors & Bioelectronics 21(7): 1023-1028.
[55]Lebedev, N., S. A. Trammell, et al. (2008). 'Increasing efficiency of photoelectronic conversion by encapsulation of photosynthetic reaction center proteins in arrayed carbon nanotube electrode.' Langmuir 24(16): 8871-8876.
[56]Trammell, S. A., I. Griva, et al. (2007). 'Effects of distance and driving force on photoinduced electron transfer between photosynthetic reaction centers and gold electrodes.' Journal of Physical Chemistry C 111(45): 17122-17130.
[57]Ko, B. S., B. Babcock, et al. (2004). 'Effect of surface composition on the adsorption of photosystem I onto alkanethiolate self-assembled monolayers on gold.' Langmuir 20(10): 4033-4038.
[58]Lee, I., J. W. Lee, et al. (1997). 'Biomolecular electronics: Vectorial arrays of photosynthetic reaction centers.' Physical Review Letters 79(17): 3294-3297.
[59]Lee, I., J. W. Lee, et al. (1995). 'MOLECULAR ELECTRONICS OF A SINGLE PHOTOSYSTEM-I REACTION-CENTER - STUDIES WITH SCANNING-TUNNELING-MICROSCOPY AND SPECTROSCOPY.' Proceedings of the National Academy of Sciences of the United States of America 92(6): 1965-1969.
[60]Lee, I., J. W. Lee, et al. (2000). 'Measurement of electrostatic potentials above oriented single photosynthetic reaction centers.' Journal of Physical Chemistry B 104(11): 2439-2443.
[61]Lee, J. W. and E. Greenbaum (1995). 'BIOELECTRONICS AND BIOMETALLOCATALYSIS FOR PRODUCTION OF FUELS AND CHEMICALS BY PHOTOSYNTHETIC WATER-SPLITTING.' Applied Biochemistry and Biotechnology 51-2: 295-305.
[62]Evans, B. R., H. M. O'Neill, et al. (2004). 'Enhanced photocatalytic hydrogen evolution by covalent attachment of plastocyanin to photosystem I.' NANO LETTERS 4(10): 1815-1819.
[63]Croisetiere, L., R. Rouillon, et al. (2001). 'A simple mediatorless amperometric method using the cyanobacterium Synechococcus leopoliensis for the detection of phytotoxic pollutants.' Applied Microbiology and Biotechnology 56(1-2): 261-264.
[64]Rouillon, R., N. Boucher, et al. (2000). 'Potential for the use of photosystem II submembrane fractions immobilised in poly(vinylalcohol) to detect heavy metals in solution or in sewage sludge.' Journal of Chemical Technology and Biotechnology 75(11): 1003-1007.
[65]Curnow, P. (2009). 'Membrane proteins in nanotechnology.' Biochemical Society Transactions 37: 643-652.
[66]Kasuno, M., M. Torimura, et al. (2009). 'Characterization of the photoinduced electron transfer reaction from the photosynthetic system in Rhodobacter sphaeroides to an exogenous electron acceptor.' Journal of Electroanalytical Chemistry 636(1-2): 101-106.
[67]Ron, I., I. Pecht, et al. (2010). 'Proteins as Solid-State Electronic Conductors.' Accounts of Chemical Research 43(7): 945-953.
[68]Ron, I., L. Sepunaru, et al. (2010). 'Proteins as Electronic Materials: Electron Transport through Solid-State Protein Monolayer Junctions.' Journal of the American Chemical Society 132(12): 4131-4140.
[69]Ron, I., N. Friedman, et al. (2010). 'Enhanced Electronic Conductance across Bacteriorhodopsin, Induced by Coupling to Pt Nanoparticles.' Journal of Physical Chemistry Letters 1(20): 3072-3077.
[70]Yehezkeli, O., R. Tel-Vered, et al. (2012). 'Integrated photosystem II-based photo-bioelectrochemical cells.' Nature Communications 3.
[71]Nocera, D. G. (2012). 'The Artificial Leaf.' Accounts of Chemical Research 45(5): 767-776.
[72]Mershin, A., K. Matsumoto, et al. (2012). 'Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO.' Scientific Reports 2.
[73]Hsin, J., D. E. Chandler, et al. (2010). 'Self-Assembly of Photosynthetic Membranes.' Chemphyschem 11(6): 1154-1159.
[74] Dau, H. and I. Zaharieva (2009). 'Principles, Efficiency, and Blueprint Character of Solar-Energy Conversion in Photosynthetic Water Oxidation.' Accounts of Chemical Research 42(12): 1861-1870.
[75]Anthiny F. Collings, Christa Critcgley (2005). “Artificial Photosynthesis” WILEY-VCH Verlag GmbH & Co. KGaA.
[76] 張正華,李陵嵐,葉楚平,楊平華 '有機與塑膠太陽能電池'(2007). 五南圖書出版公司.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62012-
dc.description.abstract近年來地球暖化以及能源問題逐漸被重視,大量的碳元素被儲存在石化燃料中,近年來人口成長及能源大量的運用,將這一些碳元素再一次地釋放到大氣中,被認為是可能造成全球暖化的因素之一。在能源方面開始尋找替代石化燃料的解決方案:風力、水力、潮汐、地熱以及太陽能等等。植物光合作用所使用的蛋白質複合體光系統一(Photosystem I, PSI)與光系統二(Photosystem II, PSII)具有接近100%的光電轉換效率。本論文採用植物擷取光能蛋白質光系統二(Photosystem II, PSII)作為擷取光能的材料使用,為了達成增加元件使用壽命的目的,本文針對元件結構上做兩個方向的研究:溶液狀態PSII(Solution-State PSII)元件與乾燥狀態PSII(Solid-State PSII)元件。
為了驗證本論文欲達到的目的,兩種元件均製作完成且經過實驗上的驗證。溶液狀態PSII(Solution-State PSII)元件能針對不同光強度與閃爍頻率變化上產生與過去文獻相對應的光電流反應;進而驗證乾燥狀態PSII(Solid-State PSII)元件也能在不同光強度與閃爍頻率上產生光電流反應。由這兩種類型元件的結果可知,本論文的實驗結果證實了植物擷取光能蛋白質光系統二(Photosystem II, PSII)具有成為擷取光能元件材料的潛力。
zh_TW
dc.description.abstractIn recent years, the global warming and energy problems have gradually taken seriously by the people. A huge number of carbon atoms were stored in fossil fuels in the past; a large number of population growth and energy use in recent years, these elements of carbon once again are released into the atmosphere, which are considered as one of the factors causing global warming. In the energy issues, people began to looking for alternative solutions to fossil fuels: wind, hydro, tidal, geothermal and solar energy and so on. Plant photosynthesis protein complexes, such as Photosystem I(PSI) and Photosystem II(PSII), their photoelectric conversion efficiency are nearly 100%. In this paper, using PSII extracted from spinach which can capture light energy, and we trying to increase stability of the devices. In the paper, we design two kinds of device structure to use the PSII: the solution-state PSII device and solid-state PSII device.
In order to verify the purpose of this paper, two kinds of device structure are made and measured. Solution-state PSII device can generate proportional photocurrent to different light intensity and different on/off frequency light source; further verify the solid-state PSII device can also generate photocurrent in a different light intensity and flashing frequency light source. Both types of devices by the results of our experimental are confirm that PSII is a potential material to capture light energy.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:23:10Z (GMT). No. of bitstreams: 1
ntu-102-R00945014-1.pdf: 10022120 bytes, checksum: 5c8279162b92ef35bfd83a759ad599f1 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 1
摘要 2
ABSTRACT 3
目錄 4
圖目錄 6
第一章 序論 9
一.1 序言 9
一.2 研究動機 10
一.3 論文架構 11
第二章 文獻回顧及原理介紹 12
二.1 光系統一(PSI)與光系統二(PSII)蛋白質複合體介紹 13
二.2 光系統一(PSI)與光系統二(PSII)擷能元件之發展 15
第三章 Solution-State PSII元件製作與量測方法 25
三.1 Solution-State PSII光擷取元件製程步驟 25
三.1.1 電極製程步驟 25
三.1.2 光系統二蛋白質複合體(PSII)萃取 27
三.1.3 表面修飾與固定化 28
三.1.4量測架構與方法 33
三.1.5 Solution-State PSII實驗結果與文獻對照 36
三.2 Solid-State PSII元件製作與量測方法 39
三.2.1 Solid-State PSII光擷取元件製程步驟 39
三.2.2 量測架構與方法 41
第四章 實驗結果與討論 44
四.1 Solution-State PSII電性分析 44
四.1.1 元件光電流反應圖形與文獻比較 46
四.1.2 元件光電流反應對照不同光源強度 50
四.1.3 不同頻率閃爍光源對照光電流反應圖形 52
四.2 Solid-State PSII電性分析 58
四.2.1 元件光電流反應圖形 59
四.2.2 元件光電流反應對照不同光源強度 61
四.2.3 不同頻率閃爍光源對照光電流反應圖形 63
四.3 兩種元件的量測結果比較 67
四.3.1 元件光電流反應圖形 67
四.3.2 元件光電流反應與光源強度 70
四.3.3 元件穩定性(Stability)比較 72
第五章 結論與未來展望 75
五.1 結論 75
五.2 未來展望 76
參考文獻 77
dc.language.isozh-TW
dc.title利用光系統二蛋白質複合體之光能源擷取元件之開發zh_TW
dc.titleA Study of An Energy Harvesting Device Based on Photosystem-II Protein Complex.en
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林啟萬(Chii-Wann Lin),朱修安
dc.subject.keyword光系統二,電子傳遞蛋白質,光能擷取元件,zh_TW
dc.subject.keywordPhotosystem I (PSI),Electron Transfer Protein,Energy Harvesting Device,en
dc.relation.page85
dc.rights.note有償授權
dc.date.accepted2013-07-24
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
9.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved