Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62011
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳家麟(Ja-Ling Wu)
dc.contributor.authorTsung-Hao Kuen
dc.contributor.author顧宗浩zh_TW
dc.date.accessioned2021-06-16T13:23:07Z-
dc.date.available2013-08-20
dc.date.copyright2013-08-20
dc.date.issued2013
dc.date.submitted2013-07-24
dc.identifier.citation[1] H. Chang, D.-Y. Yeung, and Y. Xiong. Super-resolution through neighbor embedding.
In Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings
of the 2004 IEEE Computer Society Conference on, volume 1, pages I–275 – I–282
Vol.1, june-2 july 2004.
[2] R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of
Eugenics, 2:179–188, 1936.
[3] A. Griffin and D. Viehland. Demographic factors in assessing perceived risk in online
shopping. In Proceedings of the 13th International Conference on Electronic
Commerce, ICEC ’11, pages 9:1–9:6, New York, NY, USA, 2012. ACM.
[4] S. Gutta, H. Wechsler, and P. Phillips. Gender and ethnic classification of face images.
In Automatic Face and Gesture Recognition, 1998. Proceedings. Third IEEE
International Conference on, pages 194–199, 1998.
[5] A. Hadid and M. Pietikainen:. Demographic classification from face videos using
manifold learning. Neurocomputing, 100(0):197 – 205, 2013.
[6] X. He and P. Niyogi. Locality preserving projections. In In Advances in Neural
Information Processing Systems 16. MIT Press, 2003.
[7] B. J. Jansen and L. Solomon. Gender demographic targeting in sponsored search. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’10, pages 831–840, New York, NY, USA, 2010.
[8] S. Khan, M. Nazir, S. Akram, and N. Riaz. Gender classification using image processing
techniques: A survey. In Multitopic Conference (INMIC), 2011 IEEE 14th
International, pages 25–30, 2011.
[9] B. Li, H. Chang, S. Shan, and X. Chen. Low-resolution face recognition via coupled
locality preserving mappings. Signal Processing Letters, IEEE, 17(1):20 –23, jan.
2010.
[10] B. Moghaddam and M.-H. Yang. Learning gender with support faces. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 24(5):707–711, 2002.
[11] K. Pearson. On lines and planes of closest fit to systems of points in space. Philosophical
Magazine, 11:559–572, 1901.
[12] P. Phillips, H. Moon, S. Rizvi, and P. Rauss. The feret evaluation methodology
for face-recognition algorithms. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 22(10):1090–1104, Oct.
[13] R. Roscher, F. Schindler, and W. Forstner. High dimensional correspondences from
low dimensional manifolds: an empirical comparison of graph-based dimensionality
reduction algorithms. In Proceedings of the 2010 international conference on Computer
vision - Volume part II, ACCV’10, pages 334–343. Springer-Verlag, 2011.
[14] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear
embedding. SCIENCE, 290:2323–2326, 2000.
[15] D. D. L. Sebastian H. Seung. The manifold ways of perception science. Science,
290(0):2268 – 2269, 2000.
[16] C. Shan. Learning local binary patterns for gender classification on real-world face
images. Pattern Recognition Letters, 33(4):431 – 437, 2012. Intelligent Multimedia
Interactivity.
[17] C. Shan. Learning local binary patterns for gender classification on real-world face
images. Pattern Recogn. Lett., 33(4):431–437, Mar. 2012.
[18] U. Tariq, Y. Hu, and T. Huang. Gender and ethnicity identification from silhouetted
face profiles. In Image Processing (ICIP), 2009 16th IEEE International Conference
on, pages 2441–2444, 2009.
[19] J. Tenenbaum. A global geometric framework for nonlinear dimensionality reduction.
Science, 290:2319–2323, 2000.
[20] C. Wang and S. Mahadevan. A general framework for manifold alignment, 2009.
[21] X. Wang and X. Tang. Hallucinating face by eigentransformation. Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 35(3):425 –
434, aug. 2005.
[22] Z. Yang and H. Ai. Demographic classification with local binary patterns. In Proceedings
of the 2007 international conference on Advances in Biometrics, ICB’07,
pages 464–473, Berlin, Heidelberg, 2007. Springer-Verlag.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62011-
dc.description.abstract近年來,使用人臉影像進行人口特性的分類,性別、年齡與種族,
是在多媒體研究裡一項熱門的主題。它在使用者互動系統,或是市場
策略中都扮演著重要的角色。但是高解析度的人臉影像並非永遠唾手
可得,舉例來說,若人臉太遠離攝影機的鏡頭或是攝影的硬體限制都
會產生低解析度的人臉影像。在目前的文獻中,我們是第一位進行處
理高解析度與低解析度影像的連結,在性別、年齡與種族分類問題。
在這項研究中,我們推出了一項系統,能夠快速地處理此類問題,而
不是直觀地使用超解析度(Super Resolution)去處理低解析度影像。
我們使用了流型對齊(Manifold Alignment)直接連接高與低解析度影
像。在我們設計的實驗中,能夠證明我們的方法不但在準確率上高於
傳統的演算法,而且在速度上也能夠超越。
zh_TW
dc.description.abstractImage-based demographic classification from human faces has been an
active topic of multimedia research over the past few years because of its fundamental
role in creating a wide context of applications, such as user-aware
interaction and strategic marketing planning. However, facial images of high
resolution are not always available. For example, due to the hardware limitations
of consumer surveillance cameras or people standing at a distance with
their faces in small size, it is possible to cause the so-called Low Resolution
(LR) problem. To the best of our knowledge, this work is the first in the literature
to study the demographic classification problem with a focus on the
connection between high resolution (HR) and LR images. Instead of using
Super-Resolution (SR) as a preprocessing step, intuitively, to upsample LR
images first, in this work, we developed an efficient framework to identify
the demographic information, including age and gender, by employing the
Manifold alignment techniques to connect the LR and the HR image spaces
directly. In the experiments, the proposed approach is evaluated on a public
dataset FERET and compared with the baseline algorithm. The results
showed that our “one-step” framework can not only achieve better classification
performances but also better time efficiency, which implies the proposed
approach is more suitable for practical usage.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:23:07Z (GMT). No. of bitstreams: 1
ntu-102-R00922028-1.pdf: 4678483 bytes, checksum: 56e7e07da0897d637dd0012d5306559c (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents摘要ii
Abstract iii
1 Introduction 1
2 Related Work 4
2.1 Demographic Classification . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Underlying Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Manifold Learning . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Manifold Alignment . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Manifold Alignment Based Classification System 7
3.1 The Overview of Manifold Alignment . . . . . . . . . . . . . . . . . . . 9
3.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3.1 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3.2 Optimal Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Efficient Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4 Experiment of Results 15
4.1 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.1 The Baseline Algorithm . . . . . . . . . . . . . . . . . . . . . . 15
4.1.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.2 The influence of correspondence weight . . . . . . . . . . . . . . 20
4.2.3 Visualization of Manifold Alignment . . . . . . . . . . . . . . . 20
4.2.4 Execution Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5 Conclusion 23
Bibliography 24
dc.language.isoen
dc.subject超解析度zh_TW
dc.subject流行對齊zh_TW
dc.subject性別分類zh_TW
dc.subject年齡分類zh_TW
dc.subject種族分類zh_TW
dc.subjectManifold Alignmenten
dc.subjectSuper-Resolutionen
dc.subjectGender Classificationen
dc.subjectAge Classificationen
dc.subjectRace Classification.en
dc.title使用低解析度人臉影像進行性別、年齡與種族分類zh_TW
dc.titleDemographic Classification based on Low-Resolution
Facial Images
en
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張智星(Jyh-Shing Jang),許秋婷(Chiou-Ting Hsu),鄭文皇(Wen-Huang Cheng)
dc.subject.keyword流行對齊,超解析度,性別分類,年齡分類,種族分類,zh_TW
dc.subject.keywordManifold Alignment,Super-Resolution,Gender Classification,Age Classification,Race Classification.,en
dc.relation.page26
dc.rights.note有償授權
dc.date.accepted2013-07-24
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
4.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved