Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61983
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳哲夫(Jeffrey D. Ward)
dc.contributor.authorWei-En Linen
dc.contributor.author林煒恩zh_TW
dc.date.accessioned2021-06-16T13:21:43Z-
dc.date.available2020-06-24
dc.date.copyright2020-06-24
dc.date.issued2020
dc.date.submitted2020-06-19
dc.identifier.citation[1] Amminudin, K. A.; Smith, R.; Thong, D. Y. C.; Towler, G. P., Design and Optimization of Fully Thermally Coupled Distillation Columns. Chemical Engineering Research and Design 2001, 79, (7), 701-715.
[2] Dejanović, I.; Matijašević, L.; Olujić, Ž., Dividing wall column—A breakthrough towards sustainable distilling. Chemical Engineering and Processing: Process Intensification 2010, 49, (6), 559-580.
[3] Kiss, A. A., Distillation technology - still young and full of breakthrough opportunities. Journal of Chemical Technology Biotechnology 2014, 89, (4), 479-498.
[4] Lorenza, H.-M.; Staaka, D.; Grütznerb, T.; Repkec, J.-U., Divided wall columns: Usefulness and challenges. CHEMICAL ENGINEERING 2018, 69.
[5] Sánchez-Ramírez, E.; Quiroz-Ramírez, J. J.; Hernández, S.; Segovia Hernández, J. G.; Contreras-Zarazúa, G.; Ramírez-Márquez, C., Synthesis, design and optimization of alternatives to purify 2, 3-Butanediol considering economic, environmental and safety issues. Sustainable Production and Consumption 2019, 17, 282-295.
[6] Glinos, K. N.; Malone, M. F., Design of sidestream distillation columns. Industrial Engineering Chemistry Process Design and Development 1985, 24, (3), 822-828.
[7] Kraller, M. A.; Udugama, I. A.; Kirkpatrick, R.; Yu, W.; Young, B. R., Side draw optimisation of a high-purity, multi-component distillation column. Asia-Pacific Journal of Chemical Engineering 2016, 11, (6), 958-972.
[8] Shi, T.; Chun, W.; Yang, A.; Su, Y.; Jin, S.; Ren, J.; Shen, W., Optimization and control of energy saving side-stream extractive distillation with heat integration for separating ethyl acetate-ethanol azeotrope. Chemical Engineering Science 2020, 215.
[9] Agrawal, R., Synthesis of distillation column configurations for a multicomponent separation. Industrial Engineering Chemistry Research 1996, 35, (4), 1059-1071.
[10] Kim, Y. H., Structural design of extended fully thermally coupled distillation columns. Industrial Engineering Chemistry Research 2001, 40, (11), 2460-2466.
[11] Tedder, D. W.; Rudd, D. F., Parametric Studies in Industrial Distillation .1. Design Comparisons. Aiche J 1978, 24, (2), 303-315.
[12] Nishida, N.; Stephanopoulos, G.; Westerberg, A. W., A Review of Process Synthesis. Aiche J 1981, 27, (3), 321-351.
[13] Chu, K.-T.; Cadoret, L.; Yu, C.-C.; Ward, J. D., A New Shortcut Design Method and Economic Analysis of Divided Wall Columns. Industrial Engineering Chemistry Research 2011, 50, (15), 9221-9235.
[14] Dung, N. T.; Thai, V. H., Effects of the ease of separation index (ESI) and feed composition on the selection of distillation configuration. Vietnam Journal of Chemistry 2018, 56, (4), 498-503.
[15] Fidkowski, Z.; Krolikowski, L., Thermally Coupled System of Distillation-Columns - Optimization Procedure. Aiche J 1986, 32, (4), 537-546.
[16] Fidkowski, Z.; Krolikowski, L., Minimum Energy-Requirements of Thermally Coupled Distillation Systems. Aiche J 1987, 33, (4), 643-653.
[17] Dunnebier, G.; Pantelides, C. C., Optimal design of thermally coupled distillation columns. Industrial Engineering Chemistry Research 1999, 38, (1), 162-176.
[18] Agrawal, R.; Fidkowski, Z. T., New thermally coupled schemes for ternary distillation. Aiche J 1999, 45, (3), 485-496.
[19] Halvorsen, I. J.; Skogestad, S., Shortcut analysis of optimal operation of petlyuk distillation. Industrial Engineering Chemistry Research 2004, 43, (14), 3994-3999.
[20] Kraemer, K.; Harwardt, A.; Marquardt, W., Design of heat-integrated distillation processes using shortcut methods and rigorous optimization. In Computer Aided Chemical Engineering 2009; 27, 993-998.
[21] Nguyen, T. D.; Rouzineau, D.; Meyer, M.; Meyer, X., Design and simulation of divided wall column: Experimental validation and sensitivity analysis. Chemical Engineering and Processing: Process Intensification 2016, 104, 94-111.
[22] Seihoub, F.-Z.; Benyounes, H.; Shen, W.; Gerbaud, V., An Improved Shortcut Design Method of Divided Wall Columns Exemplified by a Liquefied Petroleum Gas Process. Industrial Engineering Chemistry Research 2017, 56, (34), 9710-9720.
[23] Zhai, C.; Liu, Q.; Romagnoli, J. A.; Sun, W., Modeling/Simulation of the Dividing Wall Column by Using the Rigorous Model. Processes 2019, 7, (1).
[24] Dejanović, I.; Halvorsen, I. J.; Skogestad, S.; Jansen, H.; Olujić, Ž., Hydraulic design, technical challenges and comparison of alternative configurations of a four-product dividing wall column. Chemical Engineering and Processing: Process Intensification 2014, 84, 71-81.
[25] Okoli, C. O.; Adams, T. A., Design of dividing wall columns for butanol recovery in a thermochemical biomass to butanol process. Chemical Engineering and Processing: Process Intensification 2015, 95, 302-316.
[26] Aurangzeb, M.; Jana, A. K., Dividing wall column: Improving thermal efficiency, energy savings and economic performance. Applied Thermal Engineering 2016, 106, 1033-1041.
[27] Long, H.; Clark, J.; Benyounes, H.; Shen, W.; Dong, L.; Wei, S. a., Optimal Design and Economic Evaluation of Dividing-Wall Columns. Chemical Engineering Technology 2016, 39, (6), 1077-1086.
[28] Rathore, R. N. S.; Vanworme.Ka; Powers, G. J., Synthesis Strategies for Multicomponent Separation Systems with Energy Integration. Aiche J 1974, 20, (3), 491-502.
[29] Annakou, O.; Mizsey, P., Rigorous comparative study of energy-integrated distillation schemes. Industrial Engineering Chemistry Research 1996, 35, (6), 1877-1885.
[30] Agrawal, R.; Fidkowski, Z. T., Are thermally coupled distillation columns always thermodynamically more efficient for ternary distillations? Industrial Engineering Chemistry Research 1998, 37, (8), 3444-3454.
[31] Luyben, W. L., Comparison of extractive distillation and pressure-swing distillation for acetone/chloroform separation. Computers Chemical Engineering 2013, 50, 1-7.
[32] Andrecovich, M. J.; Westerberg, A. W., A Simple Synthesis Method Based on Utility Bounding for Heat-Integrated Distillation Sequences. Aiche J 1985, 31, (3), 363-375.
[33] Ge, X.; Yuan, X.; Ao, C.; Yu, K.-K., Simulation based approach to optimal design of dividing wall column using random search method. Computers Chemical Engineering 2014, 68, 38-46.
[34] Gutiérrez-Antonio, C., Multiobjective Stochastic Optimization of Dividing-wall Distillation Columns Using a Surrogate Model Based on Neural Networks. Chemical and Biochemical Engineering Quarterly 2016, 29, (4), 491-504.
[35] Franke, M. B., Design of Dividing-Wall Columns by Mixed-Integer Nonlinear Programming Optimization. Chemie Ingenieur Technik 2017, 89, (5), 582-597.
[36] Su, Y.; Jin, S.; Zhang, X.; Shen, W.; Eden, M. R.; Ren, J., Stakeholder-oriented multi-objective process optimization based on an improved genetic algorithm. Computers Chemical Engineering 2020, 132.
[37] Waltermann, T.; Skiborowski, M., Conceptual Design of Highly Integrated Processes - Optimization of Dividing Wall Columns. Chemie Ingenieur Technik 2017, 89, (5), 562-581.
[38] Wang, F.; Luo, Y.; Yuan, X., A formulation methodology for multicomponent distillation sequences based on stochastic optimization. Chinese Journal of Chemical Engineering 2016, 24, (9), 1229-1235.
[39] Ni, Y.-W.; Ward, J. D., Automatic Design and Optimization of Column Sequences and Column Stacking Using a Process Simulation Automation Server. Industrial Engineering Chemistry Research 2018, 57, (21), 7188-7200.
[40] Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E., Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics 1953, 21, (6), 1087-1092.
[41] Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P., Optimization by Simulated Annealing. Science 1983, 220, (4598), 671-680.
[42] Tjur, T., Coefficients of Determination in Logistic Regression Models—A New Proposal: The Coefficient of Discrimination. The American Statistician 2009, 63, (4), 366-372.
[43] Pasek, A. D.; Fauzi Soelaiman, T. A.; Gunawan, C., Thermodynamics study of flash–binary cycle in geothermal power plant. Renewable and Sustainable Energy Reviews 2011, 15, (9), 5218-5223.
[44] Díaz, I.; Palomar, J.; Rodríguez, M.; de Riva, J.; Ferro, V.; González, E. J., Ionic liquids as entrainers for the separation of aromatic–aliphatic hydrocarbon mixtures by extractive distillation. Chemical Engineering Research and Design 2016, 115, 382-393.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61983-
dc.description.abstract在本篇論文中,利用模擬最適化並以年總成本為目標函數,比較三成分無共沸物系統之分離程序,共有七種分離程序做比較:直接序列設計、直接序列設計搭配堆疊整合、間接序列設計、間接序列設計搭配堆疊整合以及三種內隔壁式蒸餾塔,所有分離程序皆是使用嚴謹程序模擬,並利用模擬退火演算法做最適化。
在結果呈現中,運用三元相圖表示不同進料組成之最適分離程序,此外,以所有數據回歸出為進料組成、相對揮發度、分離難度指標函數之模型,此模型可用於預測未知系統,若擁有未知系統之進料組成與其相對揮發度,便可預測其最適分離程序。
本篇論文結果指出堆疊整合於分離三成分系統之重要性,當考慮堆疊整合之應用時,許多進料組成之最適分離程序,相較於不考慮堆疊整合時,都更傾向於使用直接序列設計搭配堆疊整合或間接序列設計搭配堆疊整合,而非使用內隔壁式蒸餾塔。
zh_TW
dc.description.abstractAlternatives for separation of three-component zeotropic mixtures are compared using simulation-optimization with total annual cost as the objective function. Conventional two-column sequences with and without column stacking are compared with three types of dividing-wall columns (DWCs). All processes are modeled with a rigorous process simulator and optimized using simulated annealing algorithm (SA). The results are represented using ternary maps and used to regress parameters of a model that predicts the relative cost of process alternatives as a function of the feed composition, relative volatilities (α) and ease of separation index (ESI). The results highlight the importance of considering column stacking when choosing a process alternative for ternary separation: In some cases, the region where the stacked two-column configuration is preferable to a dividing-wall column is significantly larger than the area where a conventional two-column configuration is preferable to a dividing-wall column.en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:21:43Z (GMT). No. of bitstreams: 1
U0001-1806202017031400.pdf: 3397838 bytes, checksum: 5bfa9dae3931af50b4949e3c96c06a9e (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsTable of Contents
口試委員會審定書 ii
謝辭 iii
中文摘要及關鍵詞 iv
Abstract v
Table of Contents vi
List of Figures x
List of Tables xiii
1. Introduction 1
2. Methods 3
2.1. Column Sequencing with Column Stacking 7
2.2. DWCs 10
2.3. Optimization Method 12
2.3.1. SA Overview 13
2.3.2. SA Parameters 15
2.3.3. SA Flowchart 17
2.4. Representation of Results 19
2.4.1. Regression for Individual Ternary Mixtures 20
2.4.2. α and ESI 22
2.5. Contour Map 23
2.6. Case Studies 24
2.6.1. Ethanol / 1-Propanol / 1-Butanol (EPB) 24
2.6.2. N-Butane / I-Pentane / N-Pentane (BPP) 25
2.6.3. N-Heptane/Toluene/O-Xylene (HTX) 26
3. Results 27
3.1. EPB System 27
3.2. BPP System 38
3.3. HTX System 48
3.4. Regression including α and ESI 58
4. Conclusions 62
References 64
Appendix A. TAC Calculation 72
1. Column Capital Cost 72
2. Condenser Capital Cost 72
3. Condenser Energy Cost 73
4. Reboiler Capital Cost 73
5. Reboiler Energy Cost 74
6. Heat Exchanger Capital Cost 74
7. Vacuum System Capital Cost and Energy Cost 77
8. TAC 79
Appendix B. Optimized Process Design Variables 80
1. Nomenclature 80
2. Optimized Process Design Variables for D for EPB System 84
3. Optimized Process Design Variables for DH for EPB System 85
4. Optimized Process Design Variables for I for EPB System 86
5. Optimized Process Design Variables for IH for EPB System 87
6. Optimized Process Design Variables for DWCL for EPB System 88
7. Optimized Process Design Variables for DWCM for EPB System 89
8. Optimized Process Design Variables for DWCU for EPB System 90
9. Optimized Process Design Variables for D for BPP System 91
10. Optimized Process Design Variables for DH for BPP System 92
11. Optimized Process Design Variables for I for BPP System 93
12. Optimized Process Design Variables for IH for BPP System 94
13. Optimized Process Design Variables for DWCL for BPP System 95
14. Optimized Process Design Variables for DWCM for BPP System 96
15. Optimized Process Design Variables for DWCU for BPP System 97
16. Optimized Process Design Variables for D for HTX System 98
17. Optimized Process Design Variables for DH for HTX System 99
18. Optimized Process Design Variables for I for HTX System 100
19. Optimized Process Design Variables for IH for HTX System 101
20. Optimized Process Design Variables for DWCL for HTX System 102
21. Optimized Process Design Variables for DWCM for HTX System 103
22. Optimized Process Design Variables for DWCU for HTX System 104
dc.language.isoen
dc.subject最適化zh_TW
dc.subject直接序列設計zh_TW
dc.subject堆疊整合zh_TW
dc.subject內隔壁式蒸餾塔zh_TW
dc.subject模擬退火演算法zh_TW
dc.subject間接序列設計zh_TW
dc.subjectease of separation indexen
dc.subjectdirect sequenceen
dc.subjectindirect sequenceen
dc.subjectcolumn stackingen
dc.subjectdividing-wall columnen
dc.subjectsimulated annealing algorithmen
dc.subjectregions of optimalityen
dc.title利用嚴謹模擬、隨機最適化與蒸餾塔熱整合辨別最適分離程序zh_TW
dc.titleRegions of Optimality for Separation System Synthesis Using Rigorous Modeling, Stochastic Optimization and Column Stackingen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee錢義隆(I-Lung Chien),陳誠亮(Cheng-Liang Chen),李豪業(Hao-Yeh Lee)
dc.subject.keyword直接序列設計,間接序列設計,堆疊整合,內隔壁式蒸餾塔,模擬退火演算法,最適化,zh_TW
dc.subject.keyworddirect sequence,indirect sequence,column stacking,dividing-wall column,simulated annealing algorithm,regions of optimality,ease of separation index,en
dc.relation.page104
dc.identifier.doi10.6342/NTU202001051
dc.rights.note有償授權
dc.date.accepted2020-06-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-1806202017031400.pdf
  未授權公開取用
3.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved