請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61967完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳延平 | |
| dc.contributor.author | Yi-Ping Wu | en |
| dc.contributor.author | 吳翊萍 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:20:56Z | - |
| dc.date.available | 2015-07-30 | |
| dc.date.copyright | 2013-07-30 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-25 | |
| dc.identifier.citation | Adisasmito, S., Frank, R.J., Sloan, E.D. Hydrates of carbon
dioxide and methane mixtures, Journal of Chemical & Engineering Data, 36, 68-71 (1991) Bishnoi, P.R. and Dholabhai, P.D. Experimental study on propane hydrate equilibrium conditions in aqueous electrolyte solutions, Fluid Phase Equilibria, 83, 455-462 (1993) Clarke, M.A., Majumdar, A. and Bishnoi, P.R. Experimental investigation of carbon dioxide hydrate formation conditions in the presence of KNO3, MgSO4, and CuSO4, Journal of Chemical & Engineering Data, 49, 1436-1439 (2004) Chatti, I., Delahaye, A., Fournaison, L. and Petitet, J.P. Benefits and drawbacks of clathrate hydrates: a review of their areas of interest, Energ Conversion Management, 46 , 1333-1343 (2005) Chen, Q., Yu, Y., Zeng, P., Yang,W., Liang, Q., Peng, X., Liu, Y. and Hu, Y. Effect of 1-butyl-3-methylimidazolium tetrafluoroborate on the formation rate of CO2 hydrate. Journal of Natural Gas Chemistry, 17, 264–267 (2008) Chun, M.H. and Lee, H. Phase equilibria of carbon dioxide hydrate system in the presence of sucrose, glucose and fructose, Journal of Chemical & Engineering Data, 44, 1081-1084 (1999) Deroo, J.L., Peters, C.J., Lichtenthaler, R.N., Diepen, G.A.M. Occurrence of methane hydrate in saturated and unsaturated solutions of sodium-chloride and water in dependence of temperature and pressure, AIChE Journal, 29, 651-657 (1983) Dholabhai, P.D., Englezos, P., Kalogerakis, N. and Bishnoi, P.R. Equilibrium conditions for methane hydrate formation in aqueous mixed electrolyte solutions, Canadian Journal of Chemical Engineering, 69, 800-805 (1991) Fan, S.S. and Guo, T.M. Hydrate formation of CO2-rich binary and quaternary gas mixtures in aqueous sodium chloride solutions, Journal of Chemical & Engineering Data, 44, 829-832 (1999) Goel, N. In situ methane hydrate dissociation with carbon dioxide sequestration: Current knowledge and issues, Journal of Petroleum Science and Engineering, 51, 169-184 (2006) Hatakeyama, T., Aida, E., Yokomori, T., Ohmura, R. and Ueda, T. Fire extinction using carbon dioxide hydrate, Industrial & Engineering Chemistry Research, 48 4083-4087 (2009) Huo, Z.X., Hester, K., Slon, E.D., Miller, K.T., Methane hydrate nonstoichiometry and phase diagram, AIChE Journal, 49, 1300-1306 (2003) Jager, M.D., Peters, C. J. and Sloan, E.D. Experimental determination of methane hydrate stability in methanol and electrolyte solutions, Fluid Phase Equilibria, 193, 17-28 (2002) Jeffrey, G.A. Hydrate inclusion compounds, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1, 211-222 (1984) John, A.R. and Christopher, I.R., The diverse nature of dodecahedral cages in clathrate hydrates as revealed by 129Xe and 13C NMR spectroscopy: CO2 as a small-cage guest. Energy & Fuels, 12, 197-200 (1998) Kang, S.P. and Lee, H. Recovery of CO2 from flue gas using gas hydrate: Thermodynamic verification through phase equilibrium measurements, Environmental Science and Technology, 34, 4397-4400 (2000) Kelland, M.A. History of the development of low dosage hydrate inhibitors, Energy and Fuels, 20, 825-847 (2006) Koh, C.A., Sum, A.K. and Sloan, E. D. Gas hydrates: Unlocking the energy from icy cages, Journal of Applied Physics, 106, 1061101-1 - 1061101-14 (2009) Kubota, H., Shimizu, K., Tanaka,Y. and Makita, T. Thermodynamic Properties of R13 (CClF3), R23 (CHF3), R152a (C2H4F2), and Propane Hydrates for Desalination of Sea-Water, Journal Chemical Engineering Jpn, 17, 423-429 (1984) Kuo, P.C., Chen, L.J., Lin, S.T., Chen, Y.P. Measurememts for the dissociation conditions of methane hydrate in the presence of 2-Methyl-2-propanol, Journal of Chemical & Engineering Data, 550, 5036-5039 (2010) Lederhos, J.P., Long, J.P., Sum, A., Christiansen, R.L. and Sloan, E.D., Effective kinetic inhibitors for natural gas hydrates, Chemical Engineering Science, 51, 1221-1229 (1996) Lee, J.W., Lu,H. Moudrakovski, I.L., Ratcliffe, C.I. and Ripmeester, J.A. Thermodynamic and molecular-scale analysis of new systems of water-soluble hydrate formers + CH4 , Journal of Physical Chemistry B, 114, 13393–13398 (2010) Li, S., Fan, S., Wang, J., Lang, X. and Wang, Y. Semiclathrate hydrate phase equilibria for CO2 in the presence of tetra-n-butyl ammonium halide (bromide, chloride, or fluoride), Journal of Chemical & Engineering Data, 55, 3212–3215 (2010) Maekawa, T. Equilibrium conditions for carbon dioxide hydrates in the presence of aqueous solutions of alcohols, glycols, and glycerol, Journal of Chemical and Engineering Data, 55, 1280-1284 (2010) Maekawa, T. Equilibrium conditions of clathrate hydrates formed from carbon dioxide and aqueous acetone solutions. Fluid Phase Equilibria, 303, 76–79 (2011) Metz, B., Davidson, O., Coninck, H.C.D., Loos, M. and Meyer, L.A. IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press, New York, (2005) Meysel, P., Oellricha, L., Bishnoi, P.R. and Clarke, M.A. Experimental investigation of incipient equilibrium conditions for the formation of semi-clathrate hydrates from quaternary mixtures of (CO2 + N2 + TBAB + H2O). Journal of Chemical Thermodynamics, 43, 1475–1479 (2011) Mohammadi, A.H. and Richon,D. Clathrate hydrate dissociation conditions for the methane plus cycloheptane/cyclooctane plus water and carbon dioxide plus cycloheptane/cyclooctane plus water systems, Chemical Engineering Science, 65, 3356-3361 (2010) Mohammadi, A.H. and Richon, D. Phase equilibria of clathrate hydrates of methyl cyclopentane, methyl cyclohexane, cyclopentane or cyclohexane plus carbon dioxide, Chemical Engineering Science, 64, 5319-5322 (2009) Mohammadi, A.H., Afzal, W. and Richon, D. Gas hydrates of methane, ethane, propane, and carbon dioxide in the presence of single NaCl, KCl, and CaCl2 aqueous solutions: Experimental measurements and predictions of dissociation conditions, Journal of Chemical Thermodynamics, 40, 1693-1697 (2008) Mohammadi, A.H., Anderson, R., and Tohidi,B. Carbon Monoxide Clathrate Hydrates: Equilibrium Data and Thermodynamic Modeling. AIChE Journal October , 51, No. 10 (2005) Mooijer-van den Heuvel, M.M., Witteman, R. and Peters, C.J. Phase behaviour of gas hydrates of carbon dioxide in the presence of tetrahydropyran, cyclobutanone, cyclohexane and methylcyclohexane, Fluid Phase Equilibria, 182, 97-110 (2001) Ng, H.J. and Robinson, D.B. Hydrate formation in systems containing methane, ethane, propane, carbon-dioxide or hydrogen-sulfide in the presence of methanol, Fluid Phase Equilibria, 21, 145-155 (1985) North,W.J., Blackwell,V.R. and Morgan,J.J. Studies of CO2 hydrate formation and dissolution. Environmental Science Technology, 32, 5, 6767–7681. (1998) Ohmura, R., Matsuda, S., Takeya, S., Ebinuma, T. and Narita, H. Phase equilibrium for structure-H hydrates formed with methane and methyl-substituted cyclic ether, International Journal of Thermophysics, 26, 1515-1523 (2005) Ota, M., Morohashi, K., Abe, Y., Watanabe, M., Smith, R.L. and Inomata, H. Replacement of CH4 in the hydrate by use of liquid CO2. Energy Conversion and Management, 46, 1680–1691 (2005) Peng, X., Hu, K., Liu, Y., Jin, C., Lin, H. Separation of ionic liquids from dilute aqueous solutions using the method based on CO2 hydrates, Journal of Natural Gas Chemistry, 19, 81–85 (2010) Rochelle, C.A., Camps, A.P., Long, Milodowski, D.A., Bateman, K., Gunn, D., Jackson, P., Lovell, M.A. and Rees, J. Can CO2 hydrate assist in the underground storage of carbon dioxide?, Geological Society, London, Special Publications, 319, 171-183 (2009) Sa, J.H., Lee, B.R., Park, D.H., Han, K., Chun, H.D. and Lee,K.H. Amino acids as natural inhibitors for hydrate formation in CO2 sequestration, Environmental Science Technology, 45, 5885-5891 (2011) Sabil, K.M., Duarte, A.R.C., Zevenbergen, J., Ahmad, M.M., Yusup, S., Omar, A.A. and Peters, C. Kinetic of formation for single carbon dioxide and mixed carbon dioxide and tetrahydrofuran hydrates in water and sodium chloride aqueous solution. International Journal of Greenhouse Gas Control, 4, 798–805 (2010) Sabil, K.M., Witkamp, G.J. and Peters, C.J. Phase equilibria of mixed carbon dioxide and tetrahydrofuran hydrates in sodium chloride aqueous solutions. Fluid Phase Equilibria, 284, 38–43 (2009) Servio, P., Lagers, F., Peters, C. and Englezos, P. Gas hydrate phase equilibrium in the system methane–carbon dioxide–neohexane and water, Fluid Phase Equilibria, 158–160, 795–800 (1999) Seo, Y., Kang, S.P., Lee, S. and Lee, H. Experimental measurements of hydrate phase equilibria for carbon dioxide in the presence of THF, propylene oxide, and 1,4-dioxane, Journal of Chemical and Engineering Data, 53, 2833–2837 (2008) Sloan, E.D. and Koh, C.A. Clathrate Hydrates of Natural Gases, Third Edition,1-699 (2008) Sloan, E.D. Fundamental principles and applications of natural gas hydrates, Nature, 426, 353-359 (2003) Sloan, E.D. and Fleyfel, F. Hydrate dissociation enthalpy and guest size. Fluid Phase Equilibria, 76, 123-140 (1992) Stewart, P.B. and Munjal, P. Solubility of carbon dioxide in pure water, synthetic sea water, and synthetic sea water concentrates at -5 ℃ to 25 ℃ and 10 atm to 45 atm pressure, Journal of Chemical and Engineering Data, 15, 67-71 (1970) Tohidi, B., Yang, J.H., Salehabadi, M., Anderson, R. and Chapoy, A., CO2 hydrates could provide secondary safety factor in subsurface sequestration of CO2, Environmental Science Technology, 44, 1509-1514 (2010) Tohidi, B., Burgass, R.W., Danesh, A., Ostergaard, K.K. and Todd, A.C. Improving the accuracy of gas hydrate dissociation point measurements, Annals of the New York Academy of Science, 912, 924-931 (2000) Tumba, K., Reddy, P., et al, Naidoo, P. and Ramjugernath, D. Phase equilibria of methane and carbon dioxide clathrate hydrates in the presence of aqueous solutions of tributylmethylphosphonium methylsulfate ionic liquid, Journal of Chemical and Engineering Data, 56, 3620–3629 (2011) Wendland, M., Hasse, H. and Maurer, G. Experimental pressure−temperature data on three- and four-phase equilibria of fluid, hydrate, and ice phases in the system carbon dioxide−water, Journal of Chemical & Engineering Data, 44 , 901-906 (1999) Zhang, J. and Lee, J.W. Enhanced kinetics of CO2 hydrate formation under static conditions. Industrial Engineering Chemimstry Research, 48, 5934–5942 (2009) 許益嘉 添加1,3,5-三氧六環、2,5-二氫呋喃及1,3-二氧五環對於二氧化碳水合物分解狀態之實驗量測,國立台灣大學化學工程學研究所碩士論文 (2012) 歐陽湘 國際溫室氣體減量及二氧化碳捕獲與封存,經濟部能源期刊,10,4-9 (2011) 林殿順 台灣二氧化碳地質封存潛能及安全性,環保專欄(2010) http://basin.earth.ncu.edu.tw/publications/papers/LinAT_2010_CGS_Taiwan_Economic%20Outlook.pdf 朱少華 二氧化碳地質封存未來發展與中油公司可能扮演之角色,鑛.冶第53卷第4期,7-13 (2009) 俞旗文 二氧化碳捕獲與封存,水利土木科技資訊季刊41期,27-32 (2008) 樊燕,劉道平,謝應明,鍾棟梁,肖楊 用CO2 置换水合物沉积层中CH4 可行性分析,天然地球科學,18, No.2,317-320 (2007) 孫志高,石磊,樊栓獅,郭開華,王如竹 氣體水合物相平衡測定方法研究, 石油與天然氣化工,30,164-166 (2001) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61967 | - |
| dc.description.abstract | 本研究使用一套高壓低溫的設備,以等容溫度循環法量測二氧化碳+純水+添加劑之熱力學相平衡數據,以及在等容之系統中以升壓方式進行動力學實驗。本研究選用之添加劑為環酮類之環戊酮與環己酮、環醚類之1,3,5-三氧六環、2,5-二氫呋喃和1,3-二氧五環及醇類之2-甲基-2-丙醇。
由本研究之實驗結果顯示當添加環戊酮、1,3,5-三氧六環、2,5-二氫呋喃和1,3-二氧五環,對於水合物的生成皆有促進效果,使二氧化碳水合物穩定生成之區域擴大,而其促進效果隨著添加之濃度增加而提升,15wt% 之環戊酮、1,3,5-三氧六環、2,5-二氫呋喃和1,3-二氧五環之平衡溫度分別可增加約6.9 K、6.4 K、8.1 K和5.6 K。此外,為了模擬海水的環境,本研究也進行二氧化碳+鹽水+環醚類之水合物系統相平衡條件的量測,由實驗結果發現當添加環醚類藥品至鹽水系統中亦有促進二氧化碳水合物生成之效果,但由於受到鹽分的影響,其促進效果較添加至純水系統時為低。另外,添加環己酮和 2-甲基-2-丙醇則是使二氧化碳水合物相平衡曲線往溫度更低和壓力更高的方向移動,其具有抑制二氧化碳水合物生成之效果,在給定的壓力下,平衡溫度最高可分別減少約0.5 K和2.2 K。 另外,在熱力學實驗中發現添加2-甲基-2-丙醇可能有動力學上之促進效果,故以2-甲基-2-丙醇作為添加劑進行動力學實驗。由實驗之結果證實,相較於純水系統而言,添加2-甲基-2-丙醇可縮短水合物生成之誘導時間並增加水合物生成之速率,水合物生成時間約可縮短26小時並且增加約一倍的生成速率。 | zh_TW |
| dc.description.abstract | In this study, an apparatus which can be operated at high pressure and low temperature conditions was built and operated to measure the thermodynamic properties of liquid water-hydrate-vapor (Lw-H-V) three-phase dissociation temperatures and pressures for cabon dioxide hydrate in the presence of additives by employing the isochoric method, and the kinetic formation rate of carbon dioxide hydrates was measured by the method of pressurization in isochoric system.
In thermodynamic work, two cyclic ketons(Cyclopentanone and Cyclohexanone), three cyclic ethers (1,3,5-Trioxane, 2,5-Dihydrofuran and 1,3-Dioxolane) and 2-Methyl-2-Propanol were chosen as additives. The experimental results showed that the addition of Cyclopentanone, 1,3,5-Trioxane, 2,5-Dihydrofuran and 1,3-Dioxolane in carbon dioxide system had effective promotion effects on formation of carbon dioxide in comparison with pure water system at a given pressure, and they could broaden the hydrates stability region. Furthermore, the promotion effect could increase as the concentration of additives increased. With concentration of 15wt% Cyclopentanone, 1,3,5-Trioxane, 2,5-Dihydrofuran and 1,3-Dioxolane additives, the dissociation temperatures were increased about 6.9 K、6.4 K、8.1 K and 5.6 K respectively. In addition, the hydrate dissociation conditions for brine systems with 3.5 wt% NaCl were also measured in this study. The promotion effect for carbon dioxide hydrate formation in brine environments were also observed with cyclic ether additives. However, the promotion effects in the presence of cyclic ether additives in the salt system was less than those in the pure water system. On the other hand, the inhibition effects were observed when adding Cyclohexanone and 2-Methyl-2-Propanol in carbon dioxide system; the equilibrium conditions shifted to higher pressure and lower temperature in comparison with pure water system. The dissociation temperature for additions of Cyclohexanone and 2-Methyl-2-Propanol in carbon dioxide systems decreased respectively 0.5 K and 2.2 K at most at a given pressure in comparison with those in pure water system. It seemed that 2-Methyl-2-Propanol could increase the quantity and the formation rate of carbon dioxide hydrates in thermodynamic results so 2-Methyl-2-Propanol was chosen as additive in kinetic experiments. The kinetic results proved 2-Methyl-2-Propanol could reduce the induction time of forming carbon dioxide hydrates in comparison with pure water system, and hydrate formation rate and amount of hydrate forming in 2-Methyl-2-Propanol system increased about twofold than pure water system. In conclusion, 2-Methyl-2-Propanol was effective kinetic promoter to form carbon dioxide hydrates in this work. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:20:56Z (GMT). No. of bitstreams: 1 ntu-102-R00524028-1.pdf: 3037356 bytes, checksum: 982ea5dad900403dfe1a16fd852c9d06 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目錄 IV 表目錄 VII 圖目錄 IX 第一章 緒論 1 1-1 二氧化碳的捕捉與封存(Carbon Dioxide Capture and Storage, CCS) 2 1-2 水合物的簡介 5 1-3 二氧化碳水合物簡介與其相關應用 7 1-4 研究方向與目的 11 第二章 文獻回顧 13 2-1 Phase rule和水合物的相圖 13 2-2 水合物形成機制 15 2-3 水合物熱力學的相關研究 16 2-3.1熱力學相平衡量測方法 16 2-3.2 熱力學添加劑之文獻回顧 18 2-4 水合物動力學方面之研究 20 2-4.1 動力學方面之研究方向 20 2-4.2 動力學方面之研究方法 22 2-5 水合物結構之預測 23 第三章 實驗方法 25 3-1 實驗設備與藥品 27 3-2 實驗步驟 28 3-2.1 熱力學實驗步驟 28 3-2.2 動力學實驗步驟 30 3-3 實驗數據分析 32 3-3.1 熱力學實驗數據分析 32 3-3.2 動力學實驗數據分析 33 第四章 結果與討論 34 A. 熱力學之水合物相平衡實驗 34 4A-1 溫度循環之流程 34 4A-2 測試實驗 35 4A-2.1 二氧化碳水合物之純水對比實驗 36 4A-2.2 添加劑篩選之測試實驗 37 4A-3 二氧化碳+環醚類水溶液之水合物相平衡實驗數據量測 39 4A-3.1 二氧化碳+純水+1,3,5-三氧六環之水合物相平衡實驗 39 4A-3.2 二氧化碳+純水+2,5-二氫呋喃之水合物相平衡實驗 41 4A-3.3 二氧化碳+純水+1,3-二氧五環之水合物相平衡實驗 42 4A-3.4 二氧化碳+鹽水+環醚類之水合物相平衡實驗 42 4A-3.5 二氧化碳+純水+環醚類系統之水合物結構預測 44 4A-4 二氧化碳+環酮類水溶液之水合物相平衡實驗數據量測 45 4A-4.1 二氧化碳+純水+環戊酮之水合物相平衡實驗 45 4A-4.2 二氧化碳+純水+環己酮之水合物相平衡實驗 47 4A-4.3 二氧化碳+純水+環酮類系統之水合物結構預測 48 4A-5 二氧化碳+純水+2-甲基-2-丙醇之水合物相平衡實驗數據量測 49 4A-5.1 二氧化碳+純水+2-甲基-2-丙醇系統之相平衡點 49 4A-5.2 二氧化碳+純水+2-甲基-2-丙醇系統之水合物結構預測 51 B. 動力學實驗數據量測 52 4B-1. 動力學升壓方式之實驗流程 52 4B-2. 動力學實驗條件之選擇 53 4B-3. 動力學實驗結果討論 54 4B-3.1 純水系統與2-甲基-2-丙醇系統之動力學實驗 54 4B-3.2 二氧化碳+純水+ 2-甲基-2-丙醇系統之過冷溫度探討 55 4B-3.3 二氧化碳+純水+ 2-甲基-2-丙醇系統之操作壓力探討 56 第五章 結論 57 參考文獻 132 | |
| dc.language.iso | zh-TW | |
| dc.subject | 5-三氧六環 | zh_TW |
| dc.subject | 5-二氫?喃 | zh_TW |
| dc.subject | 二氧化碳水合物 | zh_TW |
| dc.subject | 3-二氧五環 | zh_TW |
| dc.subject | 2-甲基-2-丙醇 | zh_TW |
| dc.subject | 等容溫度循環法 | zh_TW |
| dc.subject | 環戊酮 | zh_TW |
| dc.subject | 環己酮 | zh_TW |
| dc.subject | 動力學生成速率 | zh_TW |
| dc.subject | isochoric method | en |
| dc.subject | Cyclopentanone | en |
| dc.subject | Cyclohexanone | en |
| dc.subject | 5-Trioxane | en |
| dc.subject | 5-Dihydrofuran | en |
| dc.subject | Dioxolane | en |
| dc.subject | 2-Methyl-2-Propanol | en |
| dc.subject | induction time | en |
| dc.subject | kinetic formation rate | en |
| dc.subject | brine system | en |
| dc.subject | dissociation condition | en |
| dc.subject | Carbon dioxide hydrate | en |
| dc.title | 添加環戊酮、環己酮及2-甲基-2-丙醇對於二氧化碳水合物分解狀態與動力學之實驗量測 | zh_TW |
| dc.title | Measurements for the Dissociation Conditions and Kinetic Data of Carbon Dioxide Hydrate in the Presence of Cyclopentanone, Cyclohexanone and 2-Methyl-2-Propanol | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林祥泰,陳柏淳 | |
| dc.subject.keyword | 二氧化碳水合物,等容溫度循環法,環戊酮,環己酮,1,3,5-三氧六環,2,5-二氫?喃,1,3-二氧五環,2-甲基-2-丙醇,動力學生成速率, | zh_TW |
| dc.subject.keyword | Carbon dioxide hydrate,isochoric method,dissociation condition,brine system,kinetic formation rate,induction time,Cyclopentanone,Cyclohexanone,1,3,5-Trioxane,2,5-Dihydrofuran,Dioxolane,2-Methyl-2-Propanol, | en |
| dc.relation.page | 138 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-25 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 2.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
