請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61959完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃義侑 | |
| dc.contributor.author | Guan-Wei Chen | en |
| dc.contributor.author | 陳冠維 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:20:34Z | - |
| dc.date.available | 2015-08-06 | |
| dc.date.copyright | 2013-08-06 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-25 | |
| dc.identifier.citation | [1] Martin P. Wound Healing--Aiming for Perfect Skin Regeneration. Science 1997;276:75-81.
[2] Boateng JS, Matthews KH, Stevens HN, Eccleston GM. Wound healing dressings and drug delivery systems: a review. Journal of pharmaceutical sciences 2008;97:2892-923. [3] Murphy PS, Evans GR. Advances in wound healing: a review of current wound healing products. Plastic surgery international 2012;2012:190436. [4] Hodgkin T. Lectures on the morbib anatomy of the serous and mucous membranes: Sherwood; 1811. [5] Cox M, Gunn I, Eastman M, Hunt R, Heinz A. The operative aetiology and types of adhesions causing small bowel obstruction. Australian and New Zealand Journal of Surgery 1993;63:848-52. [6] Ouaissi, M., S. Gaujoux, N. Veyrie, E. Deneve, C. Brigand, B. Castel, J. Duron, A. Rault, K. Slim and D. Nocca. Post-operative adhesions after digestive surgery: their incidence and prevention: review of the literature. Journal of visceral surgery 2012;149:e104-e14. [7] Schnuriger B, Barmparas G, Branco BC, Lustenberger T, Inaba K, Demetriades D. Prevention of postoperative peritoneal adhesions: a review of the literature. The American Journal of Surgery 2011;201:111-21. [8] Ryan GB, Grobety J, Majno G. Postoperative peritoneal adhesions: a study of the mechanisms. The American journal of pathology 1971;65:117. [9] Brochhausen, C., V. H. Schmitt, C. N. Planck, T. K. Rajab, D. Hollemann, C. Tapprich, B. Kramer, C. Wallwiener, H. Hierlemann and R. Zehbe. Current strategies and future perspectives for intraperitoneal adhesion prevention. Journal of Gastrointestinal Surgery 2012;16:1256-74. [10] Arikan, S., G. Adas, G. Barut, A. S. Toklu, A. Kocakusak, H. Uzun, O. Kemik, Y. Daduk, S. Aydin and S. Purisa. An evaluation of low molecular weight heparin and hyperbaric oxygen treatment in the prevention of intra-abdominal adhesions and wound healing. The American journal of surgery 2005;189:155-60. [11] Doody K, Dunn R, Buttram Jr V. Recombinant tissue plasminogen activator reduces adhesion formation in a rabbit uterine horn model. Fertility and sterility 1989;51:509. [12] Peyton, C. C., T. Keys, S. Tomblyn, D. Burmeister, J. H. Beumer, J. Holleran, J. Sirintrapun, S. Washburn and S. J. Hodges. Halofuginone infused keratin hydrogel attenuates adhesions in a rodent cecal abrasion model. Journal of Surgical Research 2012. [13] Aram S, Mostajeran F, Shahraki AD, Adibi S, Shamloo S. Effect of vitamin E on decreasing post-operative adhesion in rat uterine horn. Journal of Research in Medical Sciences 2012;17:S83-S6. [14] Erdemoglu E, Seckin B, Gunyeli İ, Guney M, Seckin M, Mungan T. Reduction of postoperative adhesions by trimetazidine: an experimental study in a rat model. Archives of gynecology and obstetrics 2012;285:757-61. [15] Brown CB, Luciano AA, Martin D, Peers E, Scrimgeour A, diZerega GS. Adept (icodextrin 4% solution) reduces adhesions after laparoscopic surgery for adhesiolysis: a double-blind, randomized, controlled study. Fertility and sterility 2007;88:1413-26. [16] Carta G, Cerrone L, Iovenitti P. Postoperative adhesion prevention in gynecologic surgery with hyaluronic acid. Clinical and experimental obstetrics & gynecology 2003;31:39-41. [17] Yang J, Dai C, Liu Y. Systemic administration of naked plasmid encoding hepatocyte growth factor ameliorates chronic renal fibrosis in mice. Gene therapy 2001;8:1470-9. [18] Diamond MP, Burns EL, Accomando B, Mian S, Holmdahl L. SeprafilmR adhesion barrier:(1) a review of preclinical, animal, and human investigational studies. Gynecological surgery 2012;9:237-45. [19] DeCherney AH, diZerega GS. Clincal problem of intraperitoneal postsurgical adhesion formation following general urgery and the use of adheson prevention barriers. Surgical Clinics of North America 1997;77:671-88. [20] Sezer AD, Cevher E. Fucoidan: a versatile biopolymer for biomedical applications. Active Implants and Scaffolds for Tissue Regeneration: Springer; 2011. p. 377-406. [21] Nishino T, Yamauchi T, Horie M, Nagumo T, Suzuki H. Effects of a fucoidan on the activation of plasminogen by u-PA and t-PA. Thrombosis research 2000;99:623-34. [22] Mauray S, de Raucourt E, Talbot J-C, Dachary-Prigent J, Jozefowicz M, Fischer A-M. Mechanism of factor IXa inhibition by antithrombin in the presence of unfractionated and low molecular weight heparins and fucoidan. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1998;1387:184-94. [23] Sezer A, Akbuga J. Fucosphere-new microsphere carriers for peptide and protein delivery: Preparation and in vitro characterization. Journal of microencapsulation 2006;23:513-22. [24] Leung TC-Y, Wong CK, Xie Y. Green synthesis of silver nanoparticles using biopolymers, carboxymethylated-curdlan and fucoidan. Materials Chemistry and Physics 2010;121:402-5. [25] Ishihara, M., K. Nakanishi, K. Ono, M. Sato, M. Kikuchi, Y. Saito, H. Yura, T. Matsui, H. Hattori and M. Uenoyama. Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials 2002;23:833-40. [26] Liu, J. M., J. Bignon, F. Haroun-Bouhedja, P. Bittoun, J. Vassy, S. Fermandjian, J. Wdzieczak-Bakala and C. Boisson-Vidal. Inhibitory effect of fucoidan on the adhesion of adenocarcinoma cells to fibronectin. Anticancer research 2005;25:2129-33. [27] Cashman JD, Kennah E, Shuto A, Winternitz C, Springate CM. Fucoidan film safely inhibits surgical adhesions in a rat model. Journal of Surgical Research 2011;171:495-503. [28] Hejazi R, Amiji M. Chitosan-based gastrointestinal delivery systems. Journal of Controlled Release 2003;89:151-65. [29] Wilson B, Samanta MK, Santhi K, Kumar K, Ramasamy M, Suresh B. Chitosan nanoparticles as a new delivery system for the anti-Alzheimer drug tacrine. Nanomedicine: Nanotechnology, Biology and Medicine 2010;6:144-52. [30] Ueno H, Mori T, Fujinaga T. Topical formulations and wound healing applications of chitosan. Advanced drug delivery reviews 2001;52:105-15. [31] Sezer AD, Hatipoglu F, Cevher E, Oğurtan Z, Bas AL, Akbuğa J. Chitosan film containing fucoidan as a wound dressing for dermal burn healing: preparation and in vitro/in vivo evaluation. AAPS PharmSciTech 2007;8:E94-E101. [32] Fakhry A, Schneider GB, Zaharias R, Şenel S. Chitosan supports the initial attachment and spreading of osteoblasts preferentially over fibroblasts. Biomaterials 2004;25:2075-9. [33] Shen H, Zhang L, Liu M, Zhang Z. Biomedical applications of graphene. Theranostics 2012;2:283. [34] Liu Z, Robinson JT, Sun X, Dai H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. Journal of the American Chemical Society 2008;130:10876-7. [35] Zhang L, Xia J, Zhao Q, Liu L, Zhang Z. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 2010;6:537-44. [36] Feng L, Zhang S, Liu Z. Graphene based gene transfection. Nanoscale 2011;3:1252-7. [37] Pan D, Zhang J, Li Z, Wu M. Hydrothermal Route for Cutting Graphene Sheets into Blue‐Luminescent Graphene Quantum Dots. Advanced Materials 2010;22:734-8. [38] Hu, W., C. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang and C. Fan. Graphene-based antibacterial paper. Acs Nano 2010;4:4317-23. [39] Ruiz, O. N., K. S. Fernando, B. Wang, N. A. Brown, P. G. Luo, N. D. McNamara, M. Vangsness, Y.-P. Sun and C. E. Bunker. Graphene oxide: a nonspecific enhancer of cellular growth. ACS nano 2011;5:8100-7. [40] Lou, W., H. Zhang, J. Ma, D. Zhang, C. Liu, S. Wang, Z. Deng, H. Xu and J. Liu. In vivo evaluation of in situ polysaccharide based hydrogel for prevention of postoperative adhesion. Carbohydrate polymers 2012;90:1024-31. [41] Verma D, Previtera ML, Schloss R, Langrana N. Polyelectrolyte Complex Membranes for Prevention of Post-Surgical Adhesions in Neurosurgery. Annals of biomedical engineering 2012;40:1949-60. [42] Lo HY, Kuo HT, Huang YY. Application of Polycaprolactone as an Anti‐Adhesion Biomaterial Film. Artificial Organs 2010;34:648-53. [43] Zhao, G., T. Wen, X. Yang, S. Yang, J. Liao, J. Hu, D. Shao and X. Wang. Preconcentration of U (vi) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Transactions 2012;41:6182-8. [44] Fujio Y, Walsh K. Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner. Journal of Biological Chemistry 1999;274:16349-54. [45] Lee JH, Jung HW, Kang I-K, Lee HB. Cell behaviour on polymer surfaces with different functional groups. Biomaterials 1994;15:705-11. [46] Ryoo S-R, Kim Y-K, Kim M-H, Min D-H. Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies. ACS nano 2010;4:6587-98. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61959 | - |
| dc.description.abstract | 沾粘仍然是手術後一大隱憂,病患可能會因為手術後續處理不慎,或因個人體質關係,導致腸道阻塞、肚子痛,甚至因卵巢沾粘形成不孕症。然而抗沾粘薄膜仍然有使用限制,例如需在無血情況下使用,容易粘附在手術手套上,加上其單價高昂,因此我們選用廣泛應用在生醫上的幾丁聚醣為基材,搭配褐藻醣膠和氧化石墨烯,製成褐藻醣膠/幾丁聚醣薄膜以及氧化石墨烯/幾丁聚醣薄膜以應用在抗沾粘材料上。
幾丁聚醣可促進傷口癒合、抗菌性質,搭配褐藻醣膠的抗發炎、抗血管新生的特性,在玻尿酸薄膜中加入褐藻醣膠可降低沾粘,與氧化石墨烯的抗菌性、生物相容性互相結合,製成薄膜。因為組織來自於細胞,如果細胞不貼附在材料上,就不會有組織沾粘的問題。把基材的幾丁聚醣與褐藻醣膠以1:1的比例混合平舖在幾丁聚醣基材上,以抓住更多的褐藻醣膠;另一方面,氧化石墨烯製備後經傅立葉轉換遠紅外線光譜儀(FTIR)定性測出羰基與羥基,尺寸達10微米;褐藻醣膠可以增加硫基,這些官能基可降低NIH-3T3細胞對材料的貼附力,然而加入這些材料,表面的粗糙度經由也會上升至320nm左右,親水性增加,接觸角降低約30-400,可以幫助材料更加貼附在受傷組織表面。薄膜的生物相容性皆達90%,細胞貼附性深受官能基與粗糙度影響,透過光學顯微鏡、螢光顯微鏡、掃描式電子顯微鏡可以觀察褐藻醣膠與氧化石墨烯的減少細胞貼附的能力。動物實驗中發現盲腸附近沒有殘留的薄膜,表示在傷口修復過程中,材料已完全分解。解剖後進行抗沾粘評估,觀察到純幾丁聚醣薄膜的抗沾粘分數些微下降至2.3分,比控制組3分來得低,而褐藻醣膠與氧化石墨烯的加入更加使抗沾粘分數下降至0-0.3分,H&E染色更加看清細部的沾粘層的消失,故這兩種材料運用在術後沾粘是有幫助的。 | zh_TW |
| dc.description.abstract | Post-surgical adhesion remains such a severe problem that patients suffer complications such as bowl obstruction, chronic abdominal pain and infertility. However, the usage of the relative commercial products is limited such as the bloodless condition during surgeon. The price is high due to the value of the materials. For reducing the expenses of the anti-adhesion products, we are trying to use chitosan film, fucoidan/chitosan film and graphene oxide/chitosan film in anti-adhesion application. The standing point we are concerned about is cell anti-adhesion properties of these materials. Chitosan accelerates wound healing process and possesses anti-bacterial property. Fucoidan added in the hyaluronic acid film lower the adhesion grade with anti-inflammation, anti-angiogenesis properties. Graphene oxide owns anti-bacterial property and biocompatibility with limited content. We combine fucoidan with little chitosan content to catch more water-soluble fucoidan and let the mixture coat on chitosan film. On the other hand, graphene oxide we prepared is qualitatively proved by Fourier transform infrared spectroscopy (FTIR) to get carbonyl, carboxyl and hydroxyl group. The size of graphene oxide is 10μm observed by transmission electron microscopy (TEM). The addition of the fucoidan and graphene oxide is used to decrease the affinity of NIH-3T3 fibroblasts based on the sulfur functional group and chiefly carboxyl group respectively. Following from that, the surface roughness evaluated by atomic force microscopy (AFM) with addition of second material is approximately 320nm, which is twice as rough as the pure chitosan film. The contact angle test with 30-40 degree reduction also tells the additional materials raise the hydrophilicity of film surfaces, which assists the film adhesion to the wound area during the abdominal surgeries. Cell viability by MTT assay test are all getting up to 90%, which would not be an issue in each kind of film, even with limited graphene oxide content. NIH-3T3 fibroblasts tend to inhibit the linkage from chitosan film with fucoidan or graphene oxide rather than pure chitosan film as a result of the interaction of surface roughness and functional groups through MTS assay tests and cell image by optical microscopy (OM), fluorescence microscopy (FM) and scanning electron microscopy (SEM). Animal study evaluation shows that chitosan film lower the adhesion grade from 3 to 2.3. The fucoidan/chitosan film and graphene oxide/chitosan film are obviously decreased the tissue adhesion score to 0-0.3. Additionally, residues of films cannot be found near the cecum wound, which means the biodegradability of the film within the wound healing process. H&E stain reveals the adhesion layer disappears when adding fucoidan or graphene oxide in chitosan film. These results firmly suggested that the fucoidan/chitosan film and graphene oxide/chitosan film are favorable biomaterials in application of post-surgical adhesion. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:20:34Z (GMT). No. of bitstreams: 1 ntu-102-R00548014-1.pdf: 3240734 bytes, checksum: ff01cff3872e17d626454ae32077d662 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 摘要…………………………………………………………………………………….I
Abstract…………………………………………………………………………...…...II 目錄……………………………………………………………………………..........IV 圖目錄………………………………………………………………………….…..VIII 表目錄…………………………………………………………………………...…....X 第一章 序論 1 1.1 傷口癒合 1 1.1.1 傷口癒合機制 1 1.1.2 生醫敷材 2 1.2 組織沾粘 3 1.2.1 組織沾粘歷史 3 1.2.2 組織沾粘機制 4 1.3 腹膜 6 1.3.1 構造與功能 6 1.3.2 受損與癒合 7 1.4 常見抗沾粘方法 7 1.4.1 藥物治療 7 1.4.2 分隔物溶液 8 1.4.3 基因治療 8 1.4.4 抗沾粘薄膜 9 1.5 上市抗沾粘商品 9 1.5.1 Seprafilm 9 1.5.2 Interceed 9 1.6 褐藻醣膠 10 1.6.1 褐藻醣膠的性質與結構 10 1.6.2 褐藻醣膠在生醫材料的應用 11 1.6.3 褐藻醣膠的抗沾粘性質 12 1.7 幾丁聚醣 13 1.7.1 幾丁聚醣的性質與結構 13 1.7.2 幾丁聚醣在生醫材料的應用 13 1.7.3 幾丁聚醣與細胞間作用 14 1.8 氧化石墨烯 15 1.8.1 氧化石墨烯的性質與結構 15 1.8.2 氧化石墨烯在生醫材料的應用 16 1.8.3 氧化石墨烯與細胞間作用 16 1.9 抗沾粘研究發展現況 17 第二章 研究概述 18 2.1 研究動機與目的 18 2.2 研究方法概述 19 第三章 實驗材料與方法 21 3.1 實驗藥品 21 3.2 實驗儀器 22 3.3 NIH-3T3纖維母細胞繼代培養 23 3.4 褐藻醣膠/幾丁聚醣薄膜製備 24 3.5 氧化石墨烯製備 26 3.6 氧化石墨烯/幾丁聚醣薄膜製備 27 3.7 褐藻醣膠在幾丁聚醣薄膜上的釋放量量測 27 3.8 傅立葉轉換紅外線光譜分析 28 3.9 薄膜接觸角量測 28 3.10 原子力顯微鏡觀察材料表面粗糙度 29 3.11 穿透式電子顯微鏡觀察 29 3.12 以MTT檢測薄膜生物相容性 29 3.13 以MTS檢測NIH-3T3纖維母細胞在薄膜的貼附率 31 3.14 光學顯微鏡觀察NIH-3T3纖維母細胞貼附於材料上之型態 32 3.15 改變培養基濃度觀察NIH-3T3纖維細胞貼附型態 33 3.16 DAPI染色觀察NIH-3T3纖維母細胞的型態 34 3.17 掃描式電子顯微鏡觀察細胞貼附於薄膜上之形態 34 3.18 動物抗沾粘實驗 35 3.19 組織切片染色 36 3.20 統計分析 37 第四章 結果與討論 38 4.1 褐藻醣膠/幾丁聚醣薄膜製備 38 4.2 氧化石墨烯/幾丁聚醣薄膜製備 40 4.3 FTIR分析薄膜表面官能基 41 4.4 薄膜接觸角量測 45 4.5 AFM薄膜表面粗糙度測試 46 4.6 MTT生物相容性測試 47 4.7 MTS細胞貼附率測試 48 4.8 光學顯微鏡下NIH3T3細胞在各材料上的型態 50 4.9 DAPI螢光染色下纖維母細胞的型態 53 4.10 SEM觀察纖維母細胞在薄膜上的型態 55 4.11 動物抗沾粘實驗 56 4.12 沾粘分數評估 58 4.13 組織切片染色觀察 60 第五章 結論 62 參考文獻 63 | |
| dc.language.iso | zh-TW | |
| dc.subject | 術後沾粘 | zh_TW |
| dc.subject | 抗沾黏薄膜 | zh_TW |
| dc.subject | 幾丁聚醣 | zh_TW |
| dc.subject | 褐藻醣膠 | zh_TW |
| dc.subject | 氧化石墨烯 | zh_TW |
| dc.subject | chitosan | en |
| dc.subject | graphene oxide | en |
| dc.subject | fucoidan | en |
| dc.subject | anti-adhesion barrier | en |
| dc.subject | post-surgical adhesion | en |
| dc.title | 褐藻醣膠/幾丁聚醣薄膜與氧化石墨烯/幾丁聚醣薄膜於抗沾粘應用 | zh_TW |
| dc.title | Fucoidan/Chitosan Film and Graphene oxide/Chitosan Film in Prevention of Post-surgical Adhesion | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃意真,許馨云,江鴻生 | |
| dc.subject.keyword | 術後沾粘,抗沾黏薄膜,幾丁聚醣,褐藻醣膠,氧化石墨烯, | zh_TW |
| dc.subject.keyword | post-surgical adhesion,anti-adhesion barrier,chitosan,fucoidan,graphene oxide, | en |
| dc.relation.page | 68 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-25 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
