Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 動物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61879
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李心予(Hsinyu Lee)
dc.contributor.authorTzu-Ching Tsaien
dc.contributor.author蔡子晴zh_TW
dc.date.accessioned2021-06-16T13:16:56Z-
dc.date.available2018-08-29
dc.date.copyright2013-08-29
dc.date.issued2013
dc.date.submitted2013-07-29
dc.identifier.citation5 Reference
1. Van den Berg, M., L.S. Birnbaum, M. Denison, et al., The 2005 World Health
Organization reevaluation of human and Mammalian toxic equivalency
factors for dioxins and dioxin-like compounds. Toxicological Sciences, 2006.
93(2): p. 223-41.
2. Wang, B.J., Y.F. Liao, Y.T. Tung, et al., Establishment of a
bioluminescence-based bioassay for the detection of dioxin-like compounds.
Toxicol Mech Methods, 2013. 23(4): p. 247-54.
3. Dyke, P.H., C. Foan, M. Wenborn, et al., A review of dioxin releases to land
and water in the UK. Science of the Total Environment, 1997. 207(2-3): p.
119-31.
4. Laroo, C.A., C.R. Schenk, L.J. Sanchez, et al., Emissions of PCDD/Fs, PCBs,
and PAHs from legacy on-road heavy-duty diesel engines. Chemosphere, 2012.
89(11): p. 1287-94.
5. Liu, G., M. Zheng, B. Du, et al., Identification and characterization of the
atmospheric emission of polychlorinated naphthalenes from electric arc
furnaces. Environ Sci Pollut Res Int, 2012. 19(8): p. 3645-50.
6. Tian, H., J. Gao, L. Lu, et al., Temporal trends and spatial variation
characteristics of hazardous air pollutant emission inventory from municipal
21
solid waste incineration in China. Environmental Science & Technology, 2012.
46(18): p. 10364-71.
7. Kulkarni, P.S., J.G. Crespo and C.A. Afonso, Dioxins sources and current
remediation technologies--a review. Environment International, 2008. 34(1): p.
139-53.
8. Long, M. and E.C. Bonefeld-Jorgensen, Dioxin-like activity in environmental
and human samples from Greenland and Denmark. Chemosphere, 2012. 89(8):
p. 919-28.
9. Eskenazi, B. and G. Kimmel, Workshop on perinatal exposure to dioxin-like
compounds. II. Reproductive effects. Environmental Health Perspectives, 1995.
103 Suppl 2: p. 143-5.
10. Golub, M.S. and S.W. Jacobson, Workshop on perinatal exposure to
dioxin-like compounds. IV. Neurobehavioral effects. Environmental Health
Perspectives, 1995. 103 Suppl 2: p. 151-5.
11. Birnbaum, L.S., Workshop on perinatal exposure to dioxin-like compounds. V.
Immunologic effects. Environmental Health Perspectives, 1995. 103 Suppl 2:
p. 157-60.
12. Domingo, J.L., G. Perello, M. Nadal, et al., Dietary intake of polychlorinated
dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) by a population living in the
22
vicinity of a hazardous waste incinerator: assessment of the temporal trend.
Environment International, 2012. 50: p. 22-30.
13. Yoshioka, W., R.E. Peterson and C. Tohyama, Molecular targets that link
dioxin exposure to toxicity phenotypes. Journal of Steroid Biochemistry and
Molecular Biology, 2011. 127(1-2): p. 96-101.
14. La Rocca, C., S. Alivernini, M. Badiali, et al., TEQ(S) and body burden for
PCDDs, PCDFs, and dioxin-like PCBs in human adipose tissue. Chemosphere,
2008. 73(1): p. 92-6.
15. Arisawa, K., H. Takeda and H. Mikasa, Background exposure to
PCDDs/PCDFs/PCBs and its potential health effects: a review of
epidemiologic studies. Journal of Medical Investigation, 2005. 52(1-2): p.
10-21.
16. Uemura, H., K. Arisawa, M. Hiyoshi, et al., Associations of environmental
exposure to dioxins with prevalent diabetes among general inhabitants in
Japan. Environmental Research, 2008. 108(1): p. 63-8.
17. Lindstrom, G., K. Hooper, M. Petreas, et al., Workshop on perinatal exposure
to dioxin-like compounds. I. Summary. Environmental Health Perspectives,
1995. 103 Suppl 2: p. 135-42.
18. Hankinson, O., The aryl hydrocarbon receptor complex. Annual Review of
23
Pharmacology and Toxicology, 1995. 35: p. 307-40.
19. Gu, Y.Z., J.B. Hogenesch and C.A. Bradfield, The PAS superfamily: sensors of
environmental and developmental signals. Annual Review of Pharmacology
and Toxicology, 2000. 40: p. 519-61.
20. Poland, A., E. Glover and A.S. Kende, Stereospecific, high affinity binding of
2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the
binding species is receptor for induction of aryl hydrocarbon hydroxylase.
Journal of Biological Chemistry, 1976. 251(16): p. 4936-46.
21. Burbach, K.M., A. Poland and C.A. Bradfield, Cloning of the Ah-receptor
cDNA reveals a distinctive ligand-activated transcription factor. Proceedings
of the National Academy of Sciences of the United States of America, 1992.
89(17): p. 8185-9.
22. Perdew, G.H., Chemical cross-linking of the cytosolic and nuclear forms of the
Ah receptor in hepatoma cell line 1c1c7. Biochemical and Biophysical
Research Communications, 1992. 182(1): p. 55-62.
23. Whitelaw, M.L., M. Gottlicher, J.A. Gustafsson, et al., Definition of a novel
ligand binding domain of a nuclear bHLH receptor: co-localization of ligand
and hsp90 binding activities within the regulable inactivation domain of the
dioxin receptor. EMBO Journal, 1993. 12(11): p. 4169-79.
24
24. Pongratz, I., G.G. Mason and L. Poellinger, Dual roles of the 90-kDa heat
shock protein hsp90 in modulating functional activities of the dioxin receptor.
Evidence that the dioxin receptor functionally belongs to a subclass of nuclear
receptors which require hsp90 both for ligand binding activity and repression
of intrinsic DNA binding activity. Journal of Biological Chemistry, 1992.
267(19): p. 13728-34.
25. Wilhelmsson, A., S. Cuthill, M. Denis, et al., The specific DNA binding
activity of the dioxin receptor is modulated by the 90 kd heat shock protein.
EMBO Journal, 1990. 9(1): p. 69-76.
26. Kawajiri, K. and Y. Fujii-Kuriyama, Cytochrome P450 gene regulation and
physiological functions mediated by the aryl hydrocarbon receptor. Archives
of Biochemistry and Biophysics, 2007. 464(2): p. 207-12.
27. Zhang, Z.Y., R.D. Pelletier, Y.N. Wong, et al., Preferential inducibility of
CYP1A1 and CYP1A2 by TCDD: differential regulation in primary human
hepatocytes versus transformed human cells. Biochemical and Biophysical
Research Communications, 2006. 341(2): p. 399-407.
28. Zhang, L., U. Savas, D.L. Alexander, et al., Characterization of the mouse
Cyp1B1 gene. Identification of an enhancer region that directs aryl
hydrocarbon receptor-mediated constitutive and induced expression. Journal
25
of Biological Chemistry, 1998. 273(9): p. 5174-83.
29. Buan, E., C. Lo, W. Zhang, et al., Correction of discrepancies in dioxin
quantification between immunoassay and gas chromatography-high-resolution
mass spectrometry. Anal Bioanal Chem, 2010. 398(5): p. 2233-41.
30. Alaee, M., D.B. Sergeant, M.G. Ikonomou, et al., A gas
chromatography/high-resolution mass spectrometry (GC/HRMS) method for
determination of polybrominated diphenyl ethers in fish. Chemosphere, 2001.
44(6): p. 1489-95.
31. Woudneh, M.B. and D.R. Oros, Quantitative determination of pyrethroids,
pyrethrins, and piperonyl butoxide in surface water by high-resolution gas
chromatography/high-resolution mass spectrometry. Journal of Agricultural
and Food Chemis ry, 2006. 54(19): p. 6957-62.
32. Brown, D.J., J. Orelien, J.D. Gordon, et al., Mathematical model developed for
environmental samples: prediction of GC/MS dioxin TEQ from XDS-CALUX
bioassay data. Environmental Science & Technology, 2007. 41(12): p.
4354-60.
33. Hoogenboom, R., The combined use of the CALUX bioassay and the
HRGC/HRMS method for the detection of novel dioxin sources and new
dioxin-like compounds. Environ Sci Pollut Res Int, 2002. 9(5): p. 304-6.
26
34. Okuyama, M., N. Kobayashi, W. Takeda, et al., Enzyme-linked immunosorbent
assay for monitoring toxic dioxin congeners in milk based on a newly
generated monoclonal anti-dioxin antibody. Analytical Chemistry, 2004. 76(7):
p. 1948-56.
35. Petrulis, J.R., G. Chen, S. Benn, et al., Application of the
ethoxyresorufin-O-deethylase (EROD) assay to mixtures of halogenated
aromatic compounds. Environmental Toxicology, 2001. 16(2): p. 177-84.
36. Bovee, T.F., L.A. Hoogenboom, A.R. Hamers, et al., Validation and use of the
CALUX-bioassay for the determination of dioxins and PCBs in bovine milk.
Food Additives and Contaminants, 1998. 15(8): p. 863-75.
37. Gizzi, G., L.A. Hoogenboom, C. Von Holst, et al., Determination of dioxins
(PCDDs/PCDFs) and PCBs in food and feed using the DR CALUX bioassay:
results of an international validation study. Food Additives and Contaminants,
2005. 22(5): p. 472-81.
38. Murk, A.J., J. Legler, M.S. Denison, et al., Chemical-activated luciferase gene
expression (CALUX): a novel in vitro bioassay for Ah receptor active
compounds in sediments and pore water. Fundamental and Applied Toxicology,
1996. 33(1): p. 149-60.
39. Van Wouwe, N., I. Windal, H. Vanderperren, et al., Validation of the CALUX
27
bioassay for PCDD/F analyses in human blood plasma and comparison with
GC-HRMS. Talanta, 2004. 63(5): p. 1157-67.
40. Sanctorum, H., M. Elskens and W. Baeyens, Bioassay (CALUX) measurements
of 2,3,7,8-TCDD and PCB 126: interference effects. Talanta, 2007. 73(1): p.
185-8.
41. Ng, G.H. and Z. Gong, GFP Transgenic Medaka (Oryzias latipes) under the
Inducible cyp1a Promoter Provide a Sensitive and Convenient Biological
Indicator for the Presence of TCDD and Other Persistent Organic Chemicals.
PLoS ONE, 2013. 8(5): p. e64334.
42. Lin, C.I., C.H. Hsieh, S.S. Lee, et al., Establishment of a fluorescence
resonance energy transfer-based bioassay for detecting dioxin-like compounds.
Journal of Biomedical Science, 2008. 15(6): p. 833-40.
43. Xu, Y., D.W. Piston and C.H. Johnson, A bioluminescence resonance energy
transfer (BRET) system: application to interacting circadian clock proteins.
Proceedings of the National Academy of Sciences of the United States of
America, 1999. 96(1): p. 151-6.
44. Boute, N., R. Jockers and T. Issad, The use of resonance energy transfer in
high-throughput screening: BRET versus FRET. Trends in Pharmacological
Sciences, 2002. 23(8): p. 351-4.
28
45. Dragulescu-Andrasi, A., C.T. Chan, A. De, et al., Bioluminescence resonance
energy transfer (BRET) imaging of protein-protein interactions within deep
tissues of living subjects. Proceedings of the National Academy of Sciences of
the United States of America, 2011. 108(29): p. 12060-5.
46. Wang, B.J., P.Y. Wu, Y.C. Lu, et al., Establishment of a cell-free bioassay for
detecting dioxin-like compounds. Toxicol Mech Methods, 2013.
47. Hall, M.P., J. Unch, B.F. Binkowski, et al., Engineered luciferase reporter
from a deep sea shrimp utilizing a novel imidazopyrazinone substrate, in ACS
Chem Biol2012. p. 1848-57.
48. Akahoshi, E., S. Yoshimura and M. Ishihara-Sugano, Over-expression of AhR
(aryl hydrocarbon receptor) induces neural differentiation of Neuro2a cells:
neurotoxicology study. Environ Health, 2006. 5: p. 24.
49. Rodriguez, M. and D.A. Potter, Cytochrome P450 1A1 Regulates Breast
Cancer Cell Proliferation and Survival. Mol Cancer Res, 2013.
50. Andreu, N., A. Zelmer, T. Fletcher, et al., Optimisation of bioluminescent
reporters for use with mycobacteria. PLoS ONE, 2010. 5(5): p. e10777.
51. Soshilov, A. and M.S. Denison, Ligand displaces heat shock protein 90 from
overlapping binding sites within the aryl hydrocarbon receptor ligand-binding
domain. Journal of Biological Chemistry, 2011. 286(40): p. 35275-82.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61879-
dc.description.abstract戴奧辛是一種已知的環境毒性化合物,對人體會造成傷害,其作用於芳香烴受體上時,使原本與芳香烴受體結合的熱蛋白脫離,而與戴奧辛結合的芳香烴受體會從細胞質進入細胞核內,和核內的芳香烴核轉位蛋白結合形成複合體,此複合體會啟動下游基因如 CYP1A1 等等表現,產生毒性影響細胞的生理作用。因此,我們以芳香烴受體的訊息傳遞路徑為基礎,建構出同時大量表現冷光的芳香烴受體以及組胺酸標定的熱蛋白的細胞,並且收集細胞裂解液,與含有抗組胺酸的抗
體的瓊脂凝膠體珠混和,最後,得到帶有芳香烴受體與熱蛋白的複合體。當戴奧辛作用時,帶有冷光的芳香烴受體會與戴奧辛結合,並且離開熱蛋白,造成芳香烴受體被降解,進而使冷光訊號減少。相較於以往的化學檢測和其他的生物性檢測,我們利用穩定的冷光訊號,建立了一個更有效且具有專一性的戴奧辛檢測系統。
zh_TW
dc.description.abstractDioxin is a chemical compound that persists in the environment for a long time and is toxic to humans. In the cytoplasm, it binds to the aryl hydrocarbon receptor (AhR)
and causes the receptor to dissociate from the heat shock protein 90 (Hsp90). Furthermore, dioxin-bound AhR translocates into the nucleus and binds to the aryl
hydrocarbon receptor nuclear translocator (Arnt), triggering downstream signaling and affecting the physical behavior of cells. Here we propose a dioxin detection system based on the AhR pathway. We generated a cell line that overexpressed nano-luciferase-tagged AhR and His-tagged Hsp90 for the preparation of cell-free extracts. The AhR-Hsp90 complex was pulled down by anti-His beads. On treatment with dioxin, the luminescence signal generated by AhR nano-luciferase decreased. This study outlines a new cell-free system to detect dioxin-like compounds by observing the stability of bioluminescence signals. This efficient system is more sensitive and less time consuming than chemical methods and other cell-based bioassays.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:16:56Z (GMT). No. of bitstreams: 1
ntu-102-R00b41023-1.pdf: 1976361 bytes, checksum: c082717f854bbcfedb7a4b8b0c8f1ffe (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents目錄
口試委員會審定書 ................................................... i
致謝............................................................... ii
中文摘要.......................................................... iii
Abstract........................................................................................................................ iv
1 Introduction............................................................................................................... 1
1.1 Dioxins and dioxin-like compounds.....................................................................1
1.2 Aryl hydrocarbon receptor (AhR) pathway ........................................................ 1
1.3 Dioxin detection assay ....................................................................................... 2
1.4 Nanoluciferase ...................................................................................................4
2 Materials and Methods............................................................................................. 5
2.1 Plasmid construction............................................................................................ 5
2.2 Production of lentiviral stocks ...........................................................................6
2.3 Generation of stably transfected cell lines ......................................................... 6
2.4 Cell culture .........................................................................................................7
2.5 Preparation of cell-free extracts ........................................................................7
2.6 Western blotting.................................................................................................8
2.7 Pull-down assay .................................................................................................9
2.8 Chemical preparation ........................................................................................ 9
2.9 Detection of dioxin-like compounds by luminescence plate reader ................. 10
2.10 RNA isolation and reverse-transcription (RT) ...............................................10
2.11 Quantitative real-time PCR ............................................................................10
2.12 Statistical analysis ............................................................................................ 11
3 Results...................................................................................................................... 12
3.1 Establishment of a new ANH cell system........................................................... 12
3.2 The construction of plasmids within ANH cells ...............................................12
3.3 Expression levels of Hsp90................................................................................13
3.4 Compare the strength and stability of luciferase signals of AhR-Rluc and
AhR-NL in the cell lysate ........................................................................................ 13
3.5 Dioxin detection by ANH degradation ............................................................. 14
3.6 Dioxin detection by ANH pull-down system ..................................................... 15
4 Discussion................................................................................................................. 17
5 Reference................................................................................................................. 20
6 Figures .................................................................................................................... 29
7 Table ....................................................................................................................... 51
dc.language.isozh-TW
dc.title建立芳香烴受體和熱反應蛋白複合體之戴奧辛檢測系統zh_TW
dc.titleEstablishment of an Aryl Hydrocarbon Receptor-Heat
Shock Protein 90 (AhR-Hsp90) Pull-down System to Detect
Dioxin and Dioxin-like Compounds
en
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳俊宏(Chen, Jiun-Hong),黃元勵(Yuan-Li Huang),廖永豐(Yung-Feng Liao)
dc.subject.keyword戴奧辛,芳香烴受體,生物性檢測,冷光,zh_TW
dc.subject.keywordDioxin,AhR,Hsp90,bioassay,nanoluciferase,beads,en
dc.relation.page51
dc.rights.note有償授權
dc.date.accepted2013-07-29
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept動物學研究所zh_TW
顯示於系所單位:動物學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
1.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved