請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61879
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李心予(Hsinyu Lee) | |
dc.contributor.author | Tzu-Ching Tsai | en |
dc.contributor.author | 蔡子晴 | zh_TW |
dc.date.accessioned | 2021-06-16T13:16:56Z | - |
dc.date.available | 2018-08-29 | |
dc.date.copyright | 2013-08-29 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-07-29 | |
dc.identifier.citation | 5 Reference
1. Van den Berg, M., L.S. Birnbaum, M. Denison, et al., The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicological Sciences, 2006. 93(2): p. 223-41. 2. Wang, B.J., Y.F. Liao, Y.T. Tung, et al., Establishment of a bioluminescence-based bioassay for the detection of dioxin-like compounds. Toxicol Mech Methods, 2013. 23(4): p. 247-54. 3. Dyke, P.H., C. Foan, M. Wenborn, et al., A review of dioxin releases to land and water in the UK. Science of the Total Environment, 1997. 207(2-3): p. 119-31. 4. Laroo, C.A., C.R. Schenk, L.J. Sanchez, et al., Emissions of PCDD/Fs, PCBs, and PAHs from legacy on-road heavy-duty diesel engines. Chemosphere, 2012. 89(11): p. 1287-94. 5. Liu, G., M. Zheng, B. Du, et al., Identification and characterization of the atmospheric emission of polychlorinated naphthalenes from electric arc furnaces. Environ Sci Pollut Res Int, 2012. 19(8): p. 3645-50. 6. Tian, H., J. Gao, L. Lu, et al., Temporal trends and spatial variation characteristics of hazardous air pollutant emission inventory from municipal 21 solid waste incineration in China. Environmental Science & Technology, 2012. 46(18): p. 10364-71. 7. Kulkarni, P.S., J.G. Crespo and C.A. Afonso, Dioxins sources and current remediation technologies--a review. Environment International, 2008. 34(1): p. 139-53. 8. Long, M. and E.C. Bonefeld-Jorgensen, Dioxin-like activity in environmental and human samples from Greenland and Denmark. Chemosphere, 2012. 89(8): p. 919-28. 9. Eskenazi, B. and G. Kimmel, Workshop on perinatal exposure to dioxin-like compounds. II. Reproductive effects. Environmental Health Perspectives, 1995. 103 Suppl 2: p. 143-5. 10. Golub, M.S. and S.W. Jacobson, Workshop on perinatal exposure to dioxin-like compounds. IV. Neurobehavioral effects. Environmental Health Perspectives, 1995. 103 Suppl 2: p. 151-5. 11. Birnbaum, L.S., Workshop on perinatal exposure to dioxin-like compounds. V. Immunologic effects. Environmental Health Perspectives, 1995. 103 Suppl 2: p. 157-60. 12. Domingo, J.L., G. Perello, M. Nadal, et al., Dietary intake of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) by a population living in the 22 vicinity of a hazardous waste incinerator: assessment of the temporal trend. Environment International, 2012. 50: p. 22-30. 13. Yoshioka, W., R.E. Peterson and C. Tohyama, Molecular targets that link dioxin exposure to toxicity phenotypes. Journal of Steroid Biochemistry and Molecular Biology, 2011. 127(1-2): p. 96-101. 14. La Rocca, C., S. Alivernini, M. Badiali, et al., TEQ(S) and body burden for PCDDs, PCDFs, and dioxin-like PCBs in human adipose tissue. Chemosphere, 2008. 73(1): p. 92-6. 15. Arisawa, K., H. Takeda and H. Mikasa, Background exposure to PCDDs/PCDFs/PCBs and its potential health effects: a review of epidemiologic studies. Journal of Medical Investigation, 2005. 52(1-2): p. 10-21. 16. Uemura, H., K. Arisawa, M. Hiyoshi, et al., Associations of environmental exposure to dioxins with prevalent diabetes among general inhabitants in Japan. Environmental Research, 2008. 108(1): p. 63-8. 17. Lindstrom, G., K. Hooper, M. Petreas, et al., Workshop on perinatal exposure to dioxin-like compounds. I. Summary. Environmental Health Perspectives, 1995. 103 Suppl 2: p. 135-42. 18. Hankinson, O., The aryl hydrocarbon receptor complex. Annual Review of 23 Pharmacology and Toxicology, 1995. 35: p. 307-40. 19. Gu, Y.Z., J.B. Hogenesch and C.A. Bradfield, The PAS superfamily: sensors of environmental and developmental signals. Annual Review of Pharmacology and Toxicology, 2000. 40: p. 519-61. 20. Poland, A., E. Glover and A.S. Kende, Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. Journal of Biological Chemistry, 1976. 251(16): p. 4936-46. 21. Burbach, K.M., A. Poland and C.A. Bradfield, Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 1992. 89(17): p. 8185-9. 22. Perdew, G.H., Chemical cross-linking of the cytosolic and nuclear forms of the Ah receptor in hepatoma cell line 1c1c7. Biochemical and Biophysical Research Communications, 1992. 182(1): p. 55-62. 23. Whitelaw, M.L., M. Gottlicher, J.A. Gustafsson, et al., Definition of a novel ligand binding domain of a nuclear bHLH receptor: co-localization of ligand and hsp90 binding activities within the regulable inactivation domain of the dioxin receptor. EMBO Journal, 1993. 12(11): p. 4169-79. 24 24. Pongratz, I., G.G. Mason and L. Poellinger, Dual roles of the 90-kDa heat shock protein hsp90 in modulating functional activities of the dioxin receptor. Evidence that the dioxin receptor functionally belongs to a subclass of nuclear receptors which require hsp90 both for ligand binding activity and repression of intrinsic DNA binding activity. Journal of Biological Chemistry, 1992. 267(19): p. 13728-34. 25. Wilhelmsson, A., S. Cuthill, M. Denis, et al., The specific DNA binding activity of the dioxin receptor is modulated by the 90 kd heat shock protein. EMBO Journal, 1990. 9(1): p. 69-76. 26. Kawajiri, K. and Y. Fujii-Kuriyama, Cytochrome P450 gene regulation and physiological functions mediated by the aryl hydrocarbon receptor. Archives of Biochemistry and Biophysics, 2007. 464(2): p. 207-12. 27. Zhang, Z.Y., R.D. Pelletier, Y.N. Wong, et al., Preferential inducibility of CYP1A1 and CYP1A2 by TCDD: differential regulation in primary human hepatocytes versus transformed human cells. Biochemical and Biophysical Research Communications, 2006. 341(2): p. 399-407. 28. Zhang, L., U. Savas, D.L. Alexander, et al., Characterization of the mouse Cyp1B1 gene. Identification of an enhancer region that directs aryl hydrocarbon receptor-mediated constitutive and induced expression. Journal 25 of Biological Chemistry, 1998. 273(9): p. 5174-83. 29. Buan, E., C. Lo, W. Zhang, et al., Correction of discrepancies in dioxin quantification between immunoassay and gas chromatography-high-resolution mass spectrometry. Anal Bioanal Chem, 2010. 398(5): p. 2233-41. 30. Alaee, M., D.B. Sergeant, M.G. Ikonomou, et al., A gas chromatography/high-resolution mass spectrometry (GC/HRMS) method for determination of polybrominated diphenyl ethers in fish. Chemosphere, 2001. 44(6): p. 1489-95. 31. Woudneh, M.B. and D.R. Oros, Quantitative determination of pyrethroids, pyrethrins, and piperonyl butoxide in surface water by high-resolution gas chromatography/high-resolution mass spectrometry. Journal of Agricultural and Food Chemis ry, 2006. 54(19): p. 6957-62. 32. Brown, D.J., J. Orelien, J.D. Gordon, et al., Mathematical model developed for environmental samples: prediction of GC/MS dioxin TEQ from XDS-CALUX bioassay data. Environmental Science & Technology, 2007. 41(12): p. 4354-60. 33. Hoogenboom, R., The combined use of the CALUX bioassay and the HRGC/HRMS method for the detection of novel dioxin sources and new dioxin-like compounds. Environ Sci Pollut Res Int, 2002. 9(5): p. 304-6. 26 34. Okuyama, M., N. Kobayashi, W. Takeda, et al., Enzyme-linked immunosorbent assay for monitoring toxic dioxin congeners in milk based on a newly generated monoclonal anti-dioxin antibody. Analytical Chemistry, 2004. 76(7): p. 1948-56. 35. Petrulis, J.R., G. Chen, S. Benn, et al., Application of the ethoxyresorufin-O-deethylase (EROD) assay to mixtures of halogenated aromatic compounds. Environmental Toxicology, 2001. 16(2): p. 177-84. 36. Bovee, T.F., L.A. Hoogenboom, A.R. Hamers, et al., Validation and use of the CALUX-bioassay for the determination of dioxins and PCBs in bovine milk. Food Additives and Contaminants, 1998. 15(8): p. 863-75. 37. Gizzi, G., L.A. Hoogenboom, C. Von Holst, et al., Determination of dioxins (PCDDs/PCDFs) and PCBs in food and feed using the DR CALUX bioassay: results of an international validation study. Food Additives and Contaminants, 2005. 22(5): p. 472-81. 38. Murk, A.J., J. Legler, M.S. Denison, et al., Chemical-activated luciferase gene expression (CALUX): a novel in vitro bioassay for Ah receptor active compounds in sediments and pore water. Fundamental and Applied Toxicology, 1996. 33(1): p. 149-60. 39. Van Wouwe, N., I. Windal, H. Vanderperren, et al., Validation of the CALUX 27 bioassay for PCDD/F analyses in human blood plasma and comparison with GC-HRMS. Talanta, 2004. 63(5): p. 1157-67. 40. Sanctorum, H., M. Elskens and W. Baeyens, Bioassay (CALUX) measurements of 2,3,7,8-TCDD and PCB 126: interference effects. Talanta, 2007. 73(1): p. 185-8. 41. Ng, G.H. and Z. Gong, GFP Transgenic Medaka (Oryzias latipes) under the Inducible cyp1a Promoter Provide a Sensitive and Convenient Biological Indicator for the Presence of TCDD and Other Persistent Organic Chemicals. PLoS ONE, 2013. 8(5): p. e64334. 42. Lin, C.I., C.H. Hsieh, S.S. Lee, et al., Establishment of a fluorescence resonance energy transfer-based bioassay for detecting dioxin-like compounds. Journal of Biomedical Science, 2008. 15(6): p. 833-40. 43. Xu, Y., D.W. Piston and C.H. Johnson, A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proceedings of the National Academy of Sciences of the United States of America, 1999. 96(1): p. 151-6. 44. Boute, N., R. Jockers and T. Issad, The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends in Pharmacological Sciences, 2002. 23(8): p. 351-4. 28 45. Dragulescu-Andrasi, A., C.T. Chan, A. De, et al., Bioluminescence resonance energy transfer (BRET) imaging of protein-protein interactions within deep tissues of living subjects. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(29): p. 12060-5. 46. Wang, B.J., P.Y. Wu, Y.C. Lu, et al., Establishment of a cell-free bioassay for detecting dioxin-like compounds. Toxicol Mech Methods, 2013. 47. Hall, M.P., J. Unch, B.F. Binkowski, et al., Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate, in ACS Chem Biol2012. p. 1848-57. 48. Akahoshi, E., S. Yoshimura and M. Ishihara-Sugano, Over-expression of AhR (aryl hydrocarbon receptor) induces neural differentiation of Neuro2a cells: neurotoxicology study. Environ Health, 2006. 5: p. 24. 49. Rodriguez, M. and D.A. Potter, Cytochrome P450 1A1 Regulates Breast Cancer Cell Proliferation and Survival. Mol Cancer Res, 2013. 50. Andreu, N., A. Zelmer, T. Fletcher, et al., Optimisation of bioluminescent reporters for use with mycobacteria. PLoS ONE, 2010. 5(5): p. e10777. 51. Soshilov, A. and M.S. Denison, Ligand displaces heat shock protein 90 from overlapping binding sites within the aryl hydrocarbon receptor ligand-binding domain. Journal of Biological Chemistry, 2011. 286(40): p. 35275-82. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61879 | - |
dc.description.abstract | 戴奧辛是一種已知的環境毒性化合物,對人體會造成傷害,其作用於芳香烴受體上時,使原本與芳香烴受體結合的熱蛋白脫離,而與戴奧辛結合的芳香烴受體會從細胞質進入細胞核內,和核內的芳香烴核轉位蛋白結合形成複合體,此複合體會啟動下游基因如 CYP1A1 等等表現,產生毒性影響細胞的生理作用。因此,我們以芳香烴受體的訊息傳遞路徑為基礎,建構出同時大量表現冷光的芳香烴受體以及組胺酸標定的熱蛋白的細胞,並且收集細胞裂解液,與含有抗組胺酸的抗
體的瓊脂凝膠體珠混和,最後,得到帶有芳香烴受體與熱蛋白的複合體。當戴奧辛作用時,帶有冷光的芳香烴受體會與戴奧辛結合,並且離開熱蛋白,造成芳香烴受體被降解,進而使冷光訊號減少。相較於以往的化學檢測和其他的生物性檢測,我們利用穩定的冷光訊號,建立了一個更有效且具有專一性的戴奧辛檢測系統。 | zh_TW |
dc.description.abstract | Dioxin is a chemical compound that persists in the environment for a long time and is toxic to humans. In the cytoplasm, it binds to the aryl hydrocarbon receptor (AhR)
and causes the receptor to dissociate from the heat shock protein 90 (Hsp90). Furthermore, dioxin-bound AhR translocates into the nucleus and binds to the aryl hydrocarbon receptor nuclear translocator (Arnt), triggering downstream signaling and affecting the physical behavior of cells. Here we propose a dioxin detection system based on the AhR pathway. We generated a cell line that overexpressed nano-luciferase-tagged AhR and His-tagged Hsp90 for the preparation of cell-free extracts. The AhR-Hsp90 complex was pulled down by anti-His beads. On treatment with dioxin, the luminescence signal generated by AhR nano-luciferase decreased. This study outlines a new cell-free system to detect dioxin-like compounds by observing the stability of bioluminescence signals. This efficient system is more sensitive and less time consuming than chemical methods and other cell-based bioassays. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T13:16:56Z (GMT). No. of bitstreams: 1 ntu-102-R00b41023-1.pdf: 1976361 bytes, checksum: c082717f854bbcfedb7a4b8b0c8f1ffe (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 目錄
口試委員會審定書 ................................................... i 致謝............................................................... ii 中文摘要.......................................................... iii Abstract........................................................................................................................ iv 1 Introduction............................................................................................................... 1 1.1 Dioxins and dioxin-like compounds.....................................................................1 1.2 Aryl hydrocarbon receptor (AhR) pathway ........................................................ 1 1.3 Dioxin detection assay ....................................................................................... 2 1.4 Nanoluciferase ...................................................................................................4 2 Materials and Methods............................................................................................. 5 2.1 Plasmid construction............................................................................................ 5 2.2 Production of lentiviral stocks ...........................................................................6 2.3 Generation of stably transfected cell lines ......................................................... 6 2.4 Cell culture .........................................................................................................7 2.5 Preparation of cell-free extracts ........................................................................7 2.6 Western blotting.................................................................................................8 2.7 Pull-down assay .................................................................................................9 2.8 Chemical preparation ........................................................................................ 9 2.9 Detection of dioxin-like compounds by luminescence plate reader ................. 10 2.10 RNA isolation and reverse-transcription (RT) ...............................................10 2.11 Quantitative real-time PCR ............................................................................10 2.12 Statistical analysis ............................................................................................ 11 3 Results...................................................................................................................... 12 3.1 Establishment of a new ANH cell system........................................................... 12 3.2 The construction of plasmids within ANH cells ...............................................12 3.3 Expression levels of Hsp90................................................................................13 3.4 Compare the strength and stability of luciferase signals of AhR-Rluc and AhR-NL in the cell lysate ........................................................................................ 13 3.5 Dioxin detection by ANH degradation ............................................................. 14 3.6 Dioxin detection by ANH pull-down system ..................................................... 15 4 Discussion................................................................................................................. 17 5 Reference................................................................................................................. 20 6 Figures .................................................................................................................... 29 7 Table ....................................................................................................................... 51 | |
dc.language.iso | zh-TW | |
dc.title | 建立芳香烴受體和熱反應蛋白複合體之戴奧辛檢測系統 | zh_TW |
dc.title | Establishment of an Aryl Hydrocarbon Receptor-Heat
Shock Protein 90 (AhR-Hsp90) Pull-down System to Detect Dioxin and Dioxin-like Compounds | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳俊宏(Chen, Jiun-Hong),黃元勵(Yuan-Li Huang),廖永豐(Yung-Feng Liao) | |
dc.subject.keyword | 戴奧辛,芳香烴受體,生物性檢測,冷光, | zh_TW |
dc.subject.keyword | Dioxin,AhR,Hsp90,bioassay,nanoluciferase,beads, | en |
dc.relation.page | 51 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-07-29 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 動物學研究所 | zh_TW |
顯示於系所單位: | 動物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 1.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。