請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61853完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱繼輝(Kay-Hooi Khoo) | |
| dc.contributor.author | Sz-Wei Wu | en |
| dc.contributor.author | 吳思緯 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:15:49Z | - |
| dc.date.available | 2015-08-06 | |
| dc.date.copyright | 2013-08-06 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-29 | |
| dc.identifier.citation | [1] Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol. 2012;13:448-62.
[2] Sola RJ, Griebenow K. Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy. BioDrugs. 2010;24:9-21. [3] FDA Guidance Concerning Demonstration of Comparability of Human Biological Products, Including Therapeutic Biotechnology-derived Products. 2005. [4] Baudys M, Uchio T, Mix D, Wilson D, Kim SW. Physical stabilization of insulin by glycosylation. J Pharm Sci. 1995;84:28-33. [5] Spivak JL, Hogans BB. The in vivo metabolism of recombinant human erythropoietin in the rat. Blood. 1989;73:90-9. [6] Elliott S, Egrie J, Browne J, Lorenzini T, Busse L, Rogers N, Ponting I. Control of rHuEPO biological activity: the role of carbohydrate. Exp Hematol. 2004;32:1146-55. [7] Pan S, Chen R, Aebersold R, Brentnall TA. Mass spectrometry based glycoproteomics--from a proteomics perspective. Mol Cell Proteomics. 2011;10:R110 003251. [8] Tian Y, Zhang H. Glycoproteomics and clinical applications. Proteomics Clin Appl. 2010;4:124-32. [9] Taketa K, Endo Y, Sekiya C, Tanikawa K, Koji T, Taga H, Satomura S, Matsuura S, Kawai T, Hirai H. A collaborative study for the evaluation of lectin-reactive alpha-fetoproteins in early detection of hepatocellular carcinoma. Cancer Res. 1993;53:5419-23. [10] Kuromatsu R, Tanaka M, Tanikawa K. Serum alpha-fetoprotein and lens culinaris agglutinin-reactive fraction of alpha-fetoprotein in patients with hepatocellular carcinoma. Liver. 1993;13:177-82. [11] Fukushima K, Satoh T, Baba S, Yamashita K. alpha1,2-Fucosylated and beta-N-acetylgalactosaminylated prostate-specific antigen as an efficient marker of prostatic cancer. Glycobiology. 2010;20:452-60. [12] Meany DL, Zhang Z, Sokoll LJ, Zhang H, Chan DW. Glycoproteomics for prostate cancer detection: changes in serum PSA glycosylation patterns. J Proteome Res. 2009;8:613-9. [13] Ohyama C, Hosono M, Nitta K, Oh-eda M, Yoshikawa K, Habuchi T, Arai Y, Fukuda M. Carbohydrate structure and differential binding of prostate specific antigen to Maackia amurensis lectin between prostate cancer and benign prostate hypertrophy. Glycobiology. 2004;14:671-9. [14] Peracaula R, Tabares G, Royle L, Harvey DJ, Dwek RA, Rudd PM, de Llorens R. Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumor origins. Glycobiology. 2003;13:457-70. [15] Hanash SM, Baik CS, Kallioniemi O. Emerging molecular biomarkers--blood-based strategies to detect and monitor cancer. Nat Rev Clin Oncol. 2011;8:142-50. [16] Baron AT, Lafky JM, Boardman CH, Cora EM, Buenafe MC, Liu D, Rademaker A, Fishman DA, Podratz KC, Reiter JL, Maihle NJ. Soluble epidermal growth factor receptor: a biomarker of epithelial ovarian cancer. Cancer Treat Res. 2009;149:189-202. [17] Yoshida Y, Sasaki H, Kurokawa T, Kawahara K, Shukunami K, Katayama K, Yamaguchi A, Kotsuji F. Efficacy of intraperitoneal continuous hyperthermic chemotherapy as consolidation therapy in patients with advanced epithelial ovarian cancer: a long-term follow-up. Oncol Rep. 2005;13:121-5. [18] Baron AT, Cora EM, Lafky JM, Boardman CH, Buenafe MC, Rademaker A, Liu D, Fishman DA, Podratz KC, Maihle NJ. Soluble epidermal growth factor receptor (sEGFR/sErbB1) as a potential risk, screening, and diagnostic serum biomarker of epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev. 2003;12:103-13. [19] Liu YC, Yen HY, Chen CY, Chen CH, Cheng PF, Juan YH, Chen CH, Khoo KH, Yu CJ, Yang PC, Hsu TL, Wong CH. Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. Proc Natl Acad Sci U S A. 2011;108:11332-7. [20] Matsumoto K, Yokote H, Arao T, Maegawa M, Tanaka K, Fujita Y, Shimizu C, Hanafusa T, Fujiwara Y, Nishio K. N-Glycan fucosylation of epidermal growth factor receptor modulates receptor activity and sensitivity to epidermal growth factor receptor tyrosine kinase inhibitor. Cancer Sci. 2008;99:1611-7. [21] Wang X, Gu J, Ihara H, Miyoshi E, Honke K, Taniguchi N. Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling. J Biol Chem. 2006;281:2572-7. [22] Takahashi M, Tsuda T, Ikeda Y, Honke K, Taniguchi N. Role of N-glycans in growth factor signaling. Glycoconj J. 2004;20:207-12. [23] Whitson KB, Whitson SR, Red-Brewer ML, McCoy AJ, Vitali AA, Walker F, Johns TG, Beth AH, Staros JV. Functional effects of glycosylation at Asn-579 of the epidermal growth factor receptor. Biochemistry. 2005;44:14920-31. [24] Tsuda T, Ikeda Y, Taniguchi N. The Asn-420-linked sugar chain in human epidermal growth factor receptor suppresses ligand-independent spontaneous oligomerization. Possible role of a specific sugar chain in controllable receptor activation. J Biol Chem. 2000;275:21988-94. [25] Zielinska DF, Gnad F, Wisniewski JR, Mann M. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell. 2010;141:897-907. [26] Zhang H, Li XJ, Martin DB, Aebersold R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol. 2003;21:660-6. [27] Wright HT. Nonenzymatic deamidation of asparaginyl and glutaminyl residues in proteins. Crit Rev Biochem Mol Biol. 1991;26:1-52. [28] Kitzinger C, Hems R. Enthalpies of hydrolysis of glutamine and asparagine and of ionization of glutamic and aspartic acids. Biochem J. 1959;71:395-400. [29] Drake PM, Schilling B, Niles RK, Prakobphol A, Li B, Jung K, Cho W, Braten M, Inerowicz HD, Williams K, Albertolle M, Held JM, Iacovides D, Sorensen DJ, Griffith OL, Johansen E, Zawadzka AM, Cusack MP, Allen S, Gormley M, Hall SC, Witkowska HE, Gray JW, Regnier FE, Gibson BW, Fisher SJ. A lectin chromatography/mass spectrometry discovery workflow identifies putative biomarkers of aggressive breast cancers. J Proteome Res. 2012;11:2508-20. [30] Abbott KL, Pierce JM. Lectin-based glycoproteomic techniques for the enrichment and identification of potential biomarkers. Methods Enzymol. 2010;480:461-76. [31] Mechref Y, Madera M, Novotny MV. Glycoprotein enrichment through lectin affinity techniques. Methods Mol Biol. 2008;424:373-96. [32] Plavina T, Wakshull E, Hancock WS, Hincapie M. Combination of abundant protein depletion and multi-lectin affinity chromatography (M-LAC) for plasma protein biomarker discovery. J Proteome Res. 2007;6:662-71. [33] Qiu R, Regnier FE. Use of multidimensional lectin affinity chromatography in differential glycoproteomics. Anal Chem. 2005;77:2802-9. [34] Kaji H, Saito H, Yamauchi Y, Shinkawa T, Taoka M, Hirabayashi J, Kasai K, Takahashi N, Isobe T. Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat Biotechnol. 2003;21:667-72. [35] Lee A, Nakano M, Hincapie M, Kolarich D, Baker MS, Hancock WS, Packer NH. The lectin riddle: glycoproteins fractionated from complex mixtures have similar glycomic profiles. OMICS. 2010;14:487-99. [36] Ongay S, Boichenko A, Govorukhina N, Bischoff R. Glycopeptide enrichment and separation for protein glycosylation analysis. J Sep Sci. 2012;35:2341-72. [37] Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Graham Cooks R. The Orbitrap: a new mass spectrometer. J Mass Spectrom. 2005;40:430-43. [38] Wuhrer M, Catalina MI, Deelder AM, Hokke CH. Glycoproteomics based on tandem mass spectrometry of glycopeptides. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;849:115-28. [39] Morelle W, Canis K, Chirat F, Faid V, Michalski JC. The use of mass spectrometry for the proteomic analysis of glycosylation. Proteomics. 2006;6:3993-4015. [40] Mechref Y. Use of CID/ETD mass spectrometry to analyze glycopeptides. Curr Protoc Protein Sci. 2012;Chapter 12:Unit 12 1 1-1. [41] Mayampurath AM, Wu Y, Segu ZM, Mechref Y, Tang H. Improving confidence in detection and characterization of protein N-glycosylation sites and microheterogeneity. Rapid Commun Mass Spectrom. 2011;25:2007-19. [42] Shan B, Ma B, Zhang K, Lajoie G. Complexities and algorithms for glycan sequencing using tandem mass spectrometry. J Bioinform Comput Biol. 2008;6:77-91. [43] Ozohanics O, Krenyacz J, Ludanyi K, Pollreisz F, Vekey K, Drahos L. GlycoMiner: a new software tool to elucidate glycopeptide composition. Rapid Commun Mass Spectrom. 2008;22:3245-54. [44] Joenvaara S, Ritamo I, Peltoniemi H, Renkonen R. N-glycoproteomics - an automated workflow approach. Glycobiology. 2008;18:339-49. [45] Ren JM, Rejtar T, Li L, Karger BL. N-Glycan structure annotation of glycopeptides using a linearized glycan structure database (GlyDB). J Proteome Res. 2007;6:3162-73. [46] Goldberg D, Bern M, Parry S, Sutton-Smith M, Panico M, Morris HR, Dell A. Automated N-glycopeptide identification using a combination of single- and tandem-MS. J Proteome Res. 2007;6:3995-4005. [47] Olsen JV, Macek B, Lange O, Makarov A, Horning S, Mann M. Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods. 2007;4:709-12. [48] Yin X, Bern M, Xing Q, Ho J, Viner R, Mayr M. Glycoproteomic analysis of the secretome of human endothelial cells. Mol Cell Proteomics. 2013;12:956-78. [49] Chen YY, Lin SY, Yeh YY, Hsiao HH, Wu CY, Chen ST, Wang AH. A modified protein precipitation procedure for efficient removal of albumin from serum. Electrophoresis. 2005;26:2117-27. [50] Kuo CW, Wu IL, Hsiao HH, Khoo KH. Rapid glycopeptide enrichment and N-glycosylation site mapping strategies based on amine-functionalized magnetic nanoparticles. Anal Bioanal Chem. 2012;402:2765-76. [51] Mayampurath AM, Jaitly N, Purvine SO, Monroe ME, Auberry KJ, Adkins JN, Smith RD. DeconMSn: a software tool for accurate parent ion monoisotopic mass determination for tandem mass spectra. Bioinformatics. 2008;24:1021-3. [52] Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data mining software: an update. SIGKDD Explor Newsl. 2009;11:10-8. [53] Chang C-C, Lin C-J. LIBSVM: A library for support vector machines. ACM Trans Intell Syst Technol. 2011;2:1-27. [54] Cortes C, Vapnik V. Support-vector networks. Machine Learning. 1995;20:273-97. [55] Breiman L. Random Forests. Machine Learning. 2001;45:5-32. [56] Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997;18:2714-23. [57] Peterman SM, Mulholland JJ. A novel approach for identification and characterization of glycoproteins using a hybrid linear ion trap/FT-ICR mass spectrometer. J Am Soc Mass Spectrom. 2006;17:168-79. [58] Medzihradszky KF, Maltby DA, Hall SC, Settineri CA, Burlingame AL. Characterization of protein N-glycosylation by reversed-phase microbore liquid chromatography/electrospray mass spectrometry, complementary mobile phases, and sequential exoglycosidase digestion. J Am Soc Mass Spectrom. 1994;5:350-8. [59] Nebbioso A, Piccolo A, Spiteller M. Limitations of electrospray ionization in the analysis of a heterogeneous mixture of naturally occurring hydrophilic and hydrophobic compounds. Rapid Commun Mass Spectrom. 2010;24:3163-70. [60] Zhang Z, Shah B. Prediction of collision-induced dissociation spectra of common N-glycopeptides for glycoform identification. Anal Chem. 2010;82:10194-202. [61] Seipert RR, Dodds ED, Clowers BH, Beecroft SM, German JB, Lebrilla CB. Factors that influence fragmentation behavior of N-linked glycopeptide ions. Anal Chem. 2008;80:3684-92. [62] Lu C, Mi LZ, Grey MJ, Zhu J, Graef E, Yokoyama S, Springer TA. Structural evidence for loose linkage between ligand binding and kinase activation in the epidermal growth factor receptor. Mol Cell Biol. 2010;30:5432-43. [63] Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J, Kosaka T, Holmes AJ, Rogers AM, Cappuzzo F, Mok T, Lee C, Johnson BE, Cantley LC, Janne PA. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316:1039-43. [64] Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M, Johnson BE, Eck MJ, Tenen DG, Halmos B. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005;352:786-92. [65] Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990;61:203-12. [66] Lax I, Bellot F, Howk R, Ullrich A, Givol D, Schlessinger J. Functional analysis of the ligand binding site of EGF-receptor utilizing chimeric chicken/human receptor molecules. EMBO J. 1989;8:421-7. [67] Abe Y, Odaka M, Inagaki F, Lax I, Schlessinger J, Kohda D. Disulfide bond structure of human epidermal growth factor receptor. J Biol Chem. 1998;273:11150-7. [68] Sun B, Ranish JA, Utleg AG, White JT, Yan X, Lin B, Hood L. Shotgun glycopeptide capture approach coupled with mass spectrometry for comprehensive glycoproteomics. Mol Cell Proteomics. 2007;6:141-9. [69] Tangvoranuntakul P, Gagneux P, Diaz S, Bardor M, Varki N, Varki A, Muchmore E. Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid. Proc Natl Acad Sci U S A. 2003;100:12045-50. [70] Malykh YN, Schauer R, Shaw L. N-Glycolylneuraminic acid in human tumours. Biochimie. 2001;83:623-34. [71] Scott NE, Parker BL, Connolly AM, Paulech J, Edwards AV, Crossett B, Falconer L, Kolarich D, Djordjevic SP, Hojrup P, Packer NH, Larsen MR, Cordwell SJ. Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the N-linked glycoproteome of Campylobacter jejuni. Mol Cell Proteomics. 2011;10:M000031-MCP201. [72] Alley WR, Jr., Mechref Y, Novotny MV. Characterization of glycopeptides by combining collision-induced dissociation and electron-transfer dissociation mass spectrometry data. Rapid Commun Mass Spectrom. 2009;23:161-70. [73] Hogan JM, Pitteri SJ, Chrisman PA, McLuckey SA. Complementary structural information from a tryptic N-linked glycopeptide via electron transfer ion/ion reactions and collision-induced dissociation. J Proteome Res. 2005;4:628-32. [74] Fukuda Y, Aguilar-Bryan L, Vaxillaire M, Dechaume A, Wang Y, Dean M, Moitra K, Bryan J, Schuetz JD. Conserved intramolecular disulfide bond is critical to trafficking and fate of ATP-binding cassette (ABC) transporters ABCB6 and sulfonylurea receptor 1 (SUR1)/ABCC8. J Biol Chem. 2011;286:8481-92. [75] Satomi Y, Shimonishi Y, Takao T. N-glycosylation at Asn(491) in the Asn-Xaa-Cys motif of human transferrin. FEBS Lett. 2004;576:51-6. [76] Vance BA, Wu W, Ribaudo RK, Segal DM, Kearse KP. Multiple dimeric forms of human CD69 result from differential addition of N-glycans to typical (Asn-X-Ser/Thr) and atypical (Asn-X-cys) glycosylation motifs. J Biol Chem. 1997;272:23117-22. [77] Krogh TN, Bachmann E, Teisner B, Skjodt K, Hojrup P. Glycosylation analysis and protein structure determination of murine fetal antigen 1 (mFA1)--the circulating gene product of the delta-like protein (dlk), preadipocyte factor 1 (Pref-1) and stromal-cell-derived protein 1 (SCP-1) cDNAs. Eur J Biochem. 1997;244:334-42. [78] Grinnell BW, Walls JD, Gerlitz B. Glycosylation of human protein C affects its secretion, processing, functional activities, and activation by thrombin. J Biol Chem. 1991;266:9778-85. [79] Titani K, Kumar S, Takio K, Ericsson LH, Wade RD, Ashida K, Walsh KA, Chopek MW, Sadler JE, Fujikawa K. Amino acid sequence of human von Willebrand factor. Biochemistry. 1986;25:3171-84. [80] Bause E, Legler G. The role of the hydroxy amino acid in the triplet sequence Asn-Xaa-Thr(Ser) for the N-glycosylation step during glycoprotein biosynthesis. Biochem J. 1981;195:639-44. [81] Palmisano G, Melo-Braga MN, Engholm-Keller K, Parker BL, Larsen MR. Chemical deamidation: a common pitfall in large-scale N-linked glycoproteomic mass spectrometry-based analyses. J Proteome Res. 2012;11:1949-57. [82] Ogiso H, Ishitani R, Nureki O, Fukai S, Yamanaka M, Kim JH, Saito K, Sakamoto A, Inoue M, Shirouzu M, Yokoyama S. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell. 2002;110:775-87. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61853 | - |
| dc.description.abstract | 蛋白質的醣基化修飾經常影響其本身的結構、分子穩定度與功能性。因此,能有效率地解析與描繪標的蛋白上特定醣化位點的醣基結構(site-specific glycosylation)之全貌,對於基礎研究上或是生化工業而言都是引頸期盼的目標。然而這方面的需求,並不能藉由普遍使用的質譜分析去醣基化胜肽方法所滿足,其產生的資訊不但隱藏著假陽性(false positive)的風險,也僅能回答蛋白質的被醣化位點的分布。利用質譜直接分析完整醣化胜肽,仍然是目前鑑定特定醣化位點上錯雜的醣基化唯一的方式。然而有效率地從液相層析串聯式質譜儀所產生的龐大數據中萃取並鑑定隱含的醣基化胜肽依舊是個技術上的挑戰,特別是缺乏實用性的電腦軟體更是阻礙這個目標被達成的主因。因此理解到實務上的迫切需求,本論文嘗試開發Sweet-Heart這個電腦軟體,期望能解決在利用串聯式質譜定序醣基化胜肽時所需面對的核心問題。此軟體特別針對低解析與低精確度的二次質譜數據所設計,因此能有效利用離子阱式質譜儀本身的高靈敏度與速度。在策略上,Sweet-Heart能有效的擷取出醣化胜肽圖譜,以結合知識導向之含醣基碎裂離子重新註解(de novo interpretation)與蛋白質資料庫搜尋的方式,進一步以機器學習(machine learning)的策略來權重與排序所有可能的醣基與胜肽組合。此軟體可以自動產生高排名候選標的名單,使方便進行三次串聯質譜(MS3)數據收集,以確定醣基化胜肽上的胜肽序列。並能藉由現有資訊進一步撈出運算過程中可能遺漏的相關醣基化胜肽,呈現於最終的資訊整合報告中。藉此達成一個能有效提供足夠靈敏度與選擇性的平台,以利於挖掘新醣基化的存在,並足以鑑別像N-羥乙酰神經氨酸(N-glycolyl neuraminic acid)和岩藻(Fucose)的組合與N-乙酰神經氨酸(N-acetyl neuraminic acid)和六碳糖(Hexose)的組合之間的質量模糊性。對其計算性能的評估,無論是針對純化的單一醣蛋白或者複雜的醣蛋白質體數據,Sweet-Heart於鑑定個別醣化位點上的醣基結構上皆展現了高度的靈敏度。在此論文中,四種不同含量與複雜度的樣品被拿來應用,包括了人類分泌性表皮生長因子受器、原發性肝癌細胞純化的表皮生長因子受器、老鼠血清蛋白以及分化前後BCL1細胞的膜蛋白樣品。值得一提的是藉由Sweet-Heart軟體的協助,一個新的醣基化位點被肯定的鑑定其存在於原發性肝癌細胞的表皮生長因子受器上,而由蛋白質結構上的探討,此處的醣基化修飾存在著影響此受器活性的可能。此外,本篇論文一併點出了現有醣基化胜肽純化策略的不足,已顯著影響到由此軟體驅動於定性或定量上的鑑定結果。 | zh_TW |
| dc.description.abstract | Protein glycosylation often affects the conformation, stability, and functioning of its carrier protein. The need to efficiently map site-specific glycosylation pattern for both basic research and bio-industry is thus well appreciated. In this respect, the prevalent mode of identifying the de-N-glycosylated peptides by mass spectrometry (MS) is littered with false positives and addresses only the issue of site occupancy. MS analysis of intact glycopeptide remains the only solution to define the diversity of site-specific glycosylation. However, high efficiency identification of intact glycopeptides from a shotgun glycoproteomic LC-MS2 dataset is technically challenging, and particularly handicapped by the lack of enabling computational tools. Realizing these requirements, this thesis aims to develop Sweet-Heart, a computational tool set that attempts to tackle the heart of the problems in MS2 sequencing of glycopeptide. It is specifically designed to accept low resolution and low accuracy MS2 data, so as to capitalize on the high sensitivity and scan speed of ion trap instrument. Sweet-Heart efficiently filters for glycopeptides, couples knowledge-based de novo interpretation of glycosylation-dependent fragmentation pattern with protein database search, and uses machine-learning algorithm to score the computed glyco and peptide combinations. Higher ranking candidates are then compiled into a list of MS2/MS3 entries to drive subsequent rounds of targeted MS3 sequencing of putative peptide backbone, allowing its validation by database search in a fully automated fashion. With additional fishing out of all related glycoforms and final data integration, the platform proves to be sufficiently sensitive and selective, conducive to novel glycosylation discovery, and robust enough to discriminate the mass ambiguity among others, N-glycolyl neuraminic acid/Fucose from N-acetyl neuraminic acid/Hexose. A critical appraisal of its computing performance shows that Sweet-Heart allows high sensitivity comprehensive mapping of site-specific glycosylation for isolated glycoproteins and facilitates analysis of glycoproteomic data. Samples representing different amount and complexity were tested, including human sEGFR, affinity-purified human EGFR from primary lung cancer cells, mouse serum as a secreted proteome and membrane proteome of BCL1 cells during differentiation. A notable discovery was the unambiguous identification of a novel N-glycosylation site on EGFR from some primary lung cells, which may influence its receptor functional activity. Moreover, this work demonstrated the inadequacy of current glycopeptide enrichment approaches, which significantly affected Sweet-Heart-driven glycopeptide identification and in quantification. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:15:49Z (GMT). No. of bitstreams: 1 ntu-102-D99b46002-1.pdf: 9948636 bytes, checksum: a0c228358584d4345eca497cb2976604 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 序言 I
Abbreviation II 摘要 IV 關鍵字 V Abstract VI Keywords VII Chapter I Introduction 1 1.1 Protein glycosylation 1 1.2 The need for protein glycosylation analysis 1 1.3 Current approaches and limitation in MS-based glycoproteomics 3 1.3.1 Intact glycopeptide analysis 4 1.3.2 Enrichment approaches for intact glycopeptide analysis 4 1.3.3 Limitation and available approach in current mass spectrometry 5 1.3.4 Software development for shotgun glycoproteomics 8 1.4 Specific aims 9 Chapter II Materials and Methods 11 2.1 Samples 11 2.2 Sample preparation of mouse serum proteome 11 2.3 Protein digestion 12 2.4 Glycopeptide enrichment for mouse serum 12 2.5 de-N-glycosylation of EGFR 13 2.6 LC-MS2/MS3 data acquisition 13 2.7 Peptide database search 14 2.8 Software description and availability of Sweet-Heart 16 2.9 Performance Evaluation 16 2.10 Label-free quantification 17 2.11 Structural modeling of EGFR 17 Chapter III Results 19 3.1 An automated N-glycopeptide identification approach 19 3.1.1 In silico N-glycopeptide prediction module 20 3.1.1.1 Glycopeptide Filter tool 20 3.1.1.2 Semi-de novo tool 20 3.1.1.3 N-GP Combination, 2GPfasta and Scoring tools 22 3.1.1.4 Glycopeptide features extracted 24 3.1.2 Prediction-driven MS3 module 25 3.1.2.1 PD-MS3 List tool 25 3.1.2.2 IndexMS2/3 and MGF Correction tools 25 3.1.3 Information integration module 26 3.1.4 Glycopeptide Fishing module 26 3.2 Preliminary test with standard glycoproteins 27 3.3 Performance Evaluation of the Sweet-Heart Platform 28 3.4 A concern in prediction bias 29 3.5 Improvement of prediction performance 30 3.6 Case study of human secreted epidermal growth factor receptor 31 3.6.1 Discovery of Novel N-glycosylation Sites on sEGFR 32 3.7 Case study of EGFR form human cancer cells 33 3.7.1 Discovery of Native Novel N-glycosylation site 34 3.7.2 Detection of glyco-epitopes associated with cancer 35 3.8 Case study: glycoproteomic samples with NeuGc Substitution 35 3.9 Case study: membrane glycoproteomics of mouse BCL cells 37 3.10 Challenge in sample complexity and amount of glycopeptides 38 Chapter IV Summary and Discussion 40 References 47 Figures 56 Tables 93 Appendixes 109 | |
| dc.language.iso | en | |
| dc.subject | 新N-醣基化位點 | zh_TW |
| dc.subject | 表皮生長因子受體 | zh_TW |
| dc.subject | 機器學習演算法 | zh_TW |
| dc.subject | 三次串聯質譜 | zh_TW |
| dc.subject | 鑒定自動化 | zh_TW |
| dc.subject | 醣基化胜肽 | zh_TW |
| dc.subject | 醣蛋白質體學 | zh_TW |
| dc.subject | 特定位點之醣基化 | zh_TW |
| dc.subject | Novel N-glycosylation site | en |
| dc.subject | Glycoproteomics | en |
| dc.subject | Automated glycopeptide identification | en |
| dc.subject | MS3 | en |
| dc.subject | Machine-learning algorithm | en |
| dc.subject | EGFR | en |
| dc.subject | Site-specific glycosylation | en |
| dc.title | 醣化胜肽分析自動化與鑑定軟體之設計與應用 | zh_TW |
| dc.title | Computational Tools for Automated Glycopeptide Sequencing and Identification in LC-MSn Based Glycoproteomic Applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳玉如,陳倩瑜,潘思樺,蕭鶴軒 | |
| dc.subject.keyword | 特定位點之醣基化,醣蛋白質體學,醣基化胜肽,鑒定自動化,三次串聯質譜,機器學習演算法,表皮生長因子受體,新N-醣基化位點, | zh_TW |
| dc.subject.keyword | Site-specific glycosylation,Glycoproteomics,Automated glycopeptide identification,MS3,Machine-learning algorithm,EGFR,Novel N-glycosylation site, | en |
| dc.relation.page | 134 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-29 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 9.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
