Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61843
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊雅倩
dc.contributor.authorSheng-Tai Tzengen
dc.contributor.author曾晟泰zh_TW
dc.date.accessioned2021-06-16T13:15:25Z-
dc.date.available2016-09-24
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-07-29
dc.identifier.citation1. Leslie A, Carey FA, Pratt NR, Steele RJ. The colorectal adenoma-carcinoma sequence. The British journal of surgery. Jul 2002;89(7):845-860.
2. Jemal A, Tiwari RC, Murray T, et al. Cancer statistics, 2004. CA: a cancer journal for clinicians. Jan-Feb 2004;54(1):8-29.
3. Stipa S, Nicolanti V, Botti C, et al. Local recurrence after curative resection for colorectal cancer: frequency, risk factors and treatment. Journal of surgical oncology. 1991;2:155-160.
4. Carlsson U, Lasson A, Ekelund G. Recurrence rates after curative surgery for rectal carcinoma, with special reference to their accuracy. Diseases of the colon and rectum. Jun 1987;30(6):431-434.
5. Galandiuk S, Wieand HS, Moertel CG, et al. Patterns of recurrence after curative resection of carcinoma of the colon and rectum. Surgery, gynecology & obstetrics. Jan 1992;174(1):27-32.
6. Sobin L.H. WC. TNM: classification of malignant tumours. Wiley-Liss, New York: International Union Against Cancer; 2002.
7. Obrand DI, Gordon PH. Incidence and patterns of recurrence following curative resection for colorectal carcinoma. Diseases of the colon and rectum. Jan 1997;40(1):15-24.
8. Bouvet M, Milas M, Giacco GG, Cleary KR, Janjan NA, Skibber JM. Predictors of recurrence after local excision and postoperative chemoradiation therapy of adenocarcinoma of the rectum. Annals of surgical oncology. Jan-Feb 1999;6(1):26-32.
9. Abdel-Rahman WM, Mecklin JP, Peltomaki P. The genetics of HNPCC: application to diagnosis and screening. Crit Rev Oncol Hematol. Jun 2006;58(3):208-220.
10. Nishisho I, Nakamura Y, Miyoshi Y, et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science (New York, N.Y. Aug 9 1991;253(5020):665-669.
11. Kinzler KW, Nilbert MC, Su LK, et al. Identification of FAP locus genes from chromosome 5q21. Science (New York, N.Y. Aug 9 1991;253(5020):661-665.
12. Peltomaki P, Aaltonen LA, Sistonen P, et al. Genetic mapping of a locus predisposing to human colorectal cancer. Science (New York, N.Y. May 7 1993;260(5109):810-812.
13. Fishel R, Lescoe MK, Rao MR, et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell. Dec 3 1993;75(5):1027-1038.
14. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. Jun 1 1990;61(5):759-767.
15. Kinzler KW, Nilbert MC, Vogelstein B, et al. Identification of a gene located at chromosome 5q21 that is mutated in colorectal cancers. Science (New York, N.Y. Mar 15 1991;251(4999):1366-1370.
16. Hao X, Frayling IM, Willcocks TC, et al. Beta-catenin expression and allelic loss at APC in sporadic colorectal carcinogenesis. Virchows Arch. Apr 2002;440(4):362-366.
17. Bright-Thomas RM, Hargest R. APC, beta-Catenin and hTCF-4; an unholy trinity in the genesis of colorectal cancer. Eur J Surg Oncol. Mar 2003;29(2):107-117.
18. Nastase A, Paslaru L, Niculescu AM, et al. Prognostic and predictive potential molecular biomarkers in colon cancer. Chirurgia (Bucur). Mar-Apr 2011;106(2):177-185.
19. Popescu NC, Amsbaugh SC, DiPaolo JA, Tronick SR, Aaronson SA, Swan DC. Chromosomal localization of three human ras genes by in situ molecular hybridization. Somat Cell Mol Genet. Mar 1985;11(2):149-155.
20. Lamlum H, Papadopoulou A, Ilyas M, et al. APC mutations are sufficient for the growth of early colorectal adenomas. Proc Natl Acad Sci U S A. Feb 29 2000;97(5):2225-2228.
21. Vogelstein B, Fearon ER, Hamilton SR, et al. Genetic alterations during colorectal-tumor development. N Engl J Med. Sep 1 1988;319(9):525-532.
22. Popat S, Houlston RS. A systematic review and meta-analysis of the relationship between chromosome 18q genotype, DCC status and colorectal cancer prognosis. Eur J Cancer. Sep 2005;41(14):2060-2070.
23. Carethers JM, Hawn MT, Greenson JK, Hitchcock CL, Boland CR. Prognostic significance of allelic lost at chromosome 18q21 for stage II colorectal cancer. Gastroenterology. Jun 1998;114(6):1188-1195.
24. Alhopuro P, Alazzouzi H, Sammalkorpi H, et al. SMAD4 levels and response to 5-fluorouracil in colorectal cancer. Clin Cancer Res. Sep 1 2005;11(17):6311-6316.
25. Grady WM, Rajput A, Myeroff L, et al. Mutation of the type II transforming growth factor-beta receptor is coincident with the transformation of human colon adenomas to malignant carcinomas. Cancer Res. Jul 15 1998;58(14):3101-3104.
26. Grady WM, Markowitz SD. Genetic and epigenetic alterations in colon cancer. Annu Rev Genomics Hum Genet. 2002;3:101-128.
27. Baker SJ, Fearon ER, Nigro JM, et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science. Apr 14 1989;244(4901):217-221.
28. Baker SJ, Markowitz S, Fearon ER, Willson JK, Vogelstein B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science. Aug 24 1990;249(4971):912-915.
29. Markowitz SD, Bertagnolli MM. Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med. Dec 17 2009;361(25):2449-2460.
30. Bolocan A, Ion D, Ciocan DN, Paduraru DN. Prognostic and predictive factors in colorectal cancer. Chirurgia (Bucur). Sep-Oct 2012;107(5):555-563.
31. Benchimol S, Fuks A, Jothy S, Beauchemin N, Shirota K, Stanners CP. Carcinoembryonic antigen, a human tumor marker, functions as an intercellular adhesion molecule. Cell. Apr 21 1989;57(2):327-334.
32. Ilantzis C, DeMarte L, Screaton RA, Stanners CP. Deregulated expression of the human tumor marker CEA and CEA family member CEACAM6 disrupts tissue architecture and blocks colonocyte differentiation. Neoplasia. Mar-Apr 2002;4(2):151-163.
33. Iemura K, Moriya Y. A comparative analysis of the serum levels of NCC-ST-439, CEA and CA19-9 in patients with colorectal carcinoma. Eur J Surg Oncol. Oct 1993;19(5):439-442.
34. Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol. Jul 2011;3(7).
35. Mertens G, Van der Schueren B, van den Berghe H, David G. Heparan sulfate expression in polarized epithelial cells: the apical sorting of glypican (GPI-anchored proteoglycan) is inversely related to its heparan sulfate content. J Cell Biol. Feb 1996;132(3):487-497.
36. Carlsson P, Kjellen L. Heparin biosynthesis. Handb Exp Pharmacol. 2012(207):23-41.
37. Kato M, Wang H, Bernfield M, Gallagher JT, Turnbull JE. Cell surface syndecan-1 on distinct cell types differs in fine structure and ligand binding of its heparan sulfate chains. J Biol Chem. Jul 22 1994;269(29):18881-18890.
38. Bishop JR, Schuksz M, Esko JD. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature. Apr 26 2007;446(7139):1030-1037.
39. Ribatti D, Marimpietri D, Pastorino F, et al. Angiogenesis in neuroblastoma. Ann N Y Acad Sci. Dec 2004;1028:133-142.
40. Turk V, Kos J, Turk B. Cysteine cathepsins (proteases)--on the main stage of cancer? Cancer Cell. May 2004;5(5):409-410.
41. Ravanko K, Jarvinen K, Helin J, Kalkkinen N, Holtta E. Cysteine cathepsins are central contributors of invasion by cultured adenosylmethionine decarboxylase-transformed rodent fibroblasts. Cancer Res. Dec 15 2004;64(24):8831-8838.
42. Matrisian LM, Wright J, Newell K, Witty JP. Matrix-degrading metalloproteinases in tumor progression. Princess Takamatsu Symp. 1994;24:152-161.
43. Aikawa J, Grobe K, Tsujimoto M, Esko JD. Multiple isozymes of heparan sulfate/heparin GlcNAc N-deacetylase/GlcN N-sulfotransferase. Structure and activity of the fourth member, NDST4. J Biol Chem. Feb 23 2001;276(8):5876-5882.
44. Pinhal MA, Smith B, Olson S, Aikawa J, Kimata K, Esko JD. Enzyme interactions in heparan sulfate biosynthesis: uronosyl 5-epimerase and 2-O-sulfotransferase interact in vivo. Proc Natl Acad Sci U S A. Nov 6 2001;98(23):12984-12989.
45. Humphries DE, Sullivan BM, Aleixo MD, Stow JL. Localization of human heparan glucosaminyl N-deacetylase/N-sulphotransferase to the trans-Golgi network. Biochem J. Jul 15 1997;325 ( Pt 2):351-357.
46. Pallerla SR, Lawrence R, Lewejohann L, et al. Altered heparan sulfate structure in mice with deleted NDST3 gene function. J Biol Chem. Jun 13 2008;283(24):16885-16894.
47. Grobe K, Esko JD. Regulated translation of heparan sulfate N-acetylglucosamine N-deacetylase/n-sulfotransferase isozymes by structured 5'-untranslated regions and internal ribosome entry sites. J Biol Chem. Aug 23 2002;277(34):30699-30706.
48. Grobe K, Ledin J, Ringvall M, et al. Heparan sulfate and development: differential roles of the N-acetylglucosamine N-deacetylase/N-sulfotransferase isozymes. Biochim Biophys Acta. Dec 19 2002;1573(3):209-215.
49. Lin X, Buff EM, Perrimon N, Michelson AM. Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development. Sep 1999;126(17):3715-3723.
50. Lin X, Perrimon N. Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. Nature. Jul 15 1999;400(6741):281-284.
51. Toyoda H, Kinoshita-Toyoda A, Fox B, Selleck SB. Structural analysis of glycosaminoglycans in animals bearing mutations in sugarless, sulfateless, and tout-velu. Drosophila homologues of vertebrate genes encoding glycosaminoglycan biosynthetic enzymes. J Biol Chem. Jul 21 2000;275(29):21856-21861.
52. Fan G, Xiao L, Cheng L, Wang X, Sun B, Hu G. Targeted disruption of NDST-1 gene leads to pulmonary hypoplasia and neonatal respiratory distress in mice. FEBS Lett. Feb 4 2000;467(1):7-11.
53. Ringvall M, Ledin J, Holmborn K, et al. Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N-deacetylase/N-sulfotransferase-1. J Biol Chem. Aug 25 2000;275(34):25926-25930.
54. Wang L, Fuster M, Sriramarao P, Esko JD. Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat Immunol. Sep 2005;6(9):902-910.
55. Zuberi RI, Ge XN, Jiang S, et al. Deficiency of endothelial heparan sulfates attenuates allergic airway inflammation. J Immunol. Sep 15 2009;183(6):3971-3979.
56. Fuster MM, Wang L, Castagnola J, et al. Genetic alteration of endothelial heparan sulfate selectively inhibits tumor angiogenesis. J Cell Biol. May 7 2007;177(3):539-549.
57. Xu D, Fuster MM, Lawrence R, Esko JD. Heparan sulfate regulates VEGF165- and VEGF121-mediated vascular hyperpermeability. J Biol Chem. Jan 7 2011;286(1):737-745.
58. Adhikari N, Basi DL, Townsend D, et al. Heparan sulfate Ndst1 regulates vascular smooth muscle cell proliferation, vessel size and vascular remodeling. J Mol Cell Cardiol. Aug 2010;49(2):287-293.
59. Pan Y, Carbe C, Powers A, et al. Bud specific N-sulfation of heparan sulfate regulates Shp2-dependent FGF signaling during lacrimal gland induction. Development. Jan 2008;135(2):301-310.
60. Crawford BE, Garner OB, Bishop JR, et al. Loss of the heparan sulfate sulfotransferase, Ndst1, in mammary epithelial cells selectively blocks lobuloalveolar development in mice. PLoS One. 2010;5(5):e10691.
61. Forsberg E, Pejler G, Ringvall M, et al. Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature. Aug 19 1999;400(6746):773-776.
62. Humphries DE, Wong GW, Friend DS, et al. Heparin is essential for the storage of specific granule proteases in mast cells. Nature. Aug 19 1999;400(6746):769-772.
63. Arribas R, Ribas M, Risques RA, et al. Prospective assessment of allelic losses at 4p14-16 in colorectal cancer: two mutational patterns and a locus associated with poorer survival. Clin Cancer Res. Nov 1999;5(11):3454-3459.
64. Shivapurkar N, Maitra A, Milchgrub S, Gazdar AF. Deletions of chromosome 4 occur early during the pathogenesis of colorectal carcinoma. Hum Pathol. Feb 2001;32(2):169-177.
65. Jones AM, Thirlwell C, Howarth KM, et al. Analysis of copy number changes suggests chromosomal instability in a minority of large colorectal adenomas. J Pathol. Nov 2007;213(3):249-256.
66. Singh RK, Indra D, Mitra S, et al. Deletions in chromosome 4 differentially associated with the development of cervical cancer: evidence of slit2 as a candidate tumor suppressor gene. Hum Genet. Aug 2007;122(1):71-81.
67. Wrage M, Ruosaari S, Eijk PP, et al. Genomic profiles associated with early micrometastasis in lung cancer: relevance of 4q deletion. Clin Cancer Res. Mar 1 2009;15(5):1566-1574.
68. Arai Y, Honda S, Haruta M, et al. Genome-wide analysis of allelic imbalances reveals 4q deletions as a poor prognostic factor and MDM4 amplification at 1q32.1 in hepatoblastoma. Genes Chromosomes Cancer. Jul 2010;49(7):596-609.
69. Tsai MH, Yang YC, Chen KH, et al. RER and LOH association with sporadic colorectal cancer in Taiwanese patients. Hepatogastroenterology. May-Jun 2002;49(45):672-677.
70. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. Dec 2001;25(4):402-408.
71. Liu P, Jenkins NA, Copeland NG. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res. Mar 2003;13(3):476-484.
72. Knudson AG, Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. Apr 1971;68(4):820-823.
73. Martins WS, Soares Lucas DC, de Souza Neves KF, Bertioli DJ. WebSat - A web software for microsatellite marker development. Bioinformation. 2009;3(6):282-283.
74. Perea J, Lomas M, Hidalgo M. Molecular basis of colorrectal cancer: towards an individualized management? Rev Esp Enferm Dig. Jan 2011;103(1):29-35.
75. Lasko D, Cavenee W, Nordenskjold M. Loss of constitutional heterozygosity in human cancer. Annu Rev Genet. 1991;25:281-314.
76. Kim SH, Turnbull J, Guimond S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol. May 2011;209(2):139-151.
77. Fuster MM, Esko JD. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer. Jul 2005;5(7):526-542.
78. Sanderson RD. Heparan sulfate proteoglycans in invasion and metastasis. Semin Cell Dev Biol. Apr 2001;12(2):89-98.
79. Beauvais DM, Rapraeger AC. Syndecans in tumor cell adhesion and signaling. Reprod Biol Endocrinol. Jan 7 2004;2:3.
80. Gilat D, Hershkoviz R, Goldkorn I, et al. Molecular behavior adapts to context: heparanase functions as an extracellular matrix-degrading enzyme or as a T cell adhesion molecule, depending on the local pH. J Exp Med. May 1 1995;181(5):1929-1934.
81. Negrini D, Tenstad O, Passi A, Wiig H. Differential degradation of matrix proteoglycans and edema development in rabbit lung. Am J Physiol Lung Cell Mol Physiol. Mar 2006;290(3):L470-477.
82. Pelosi P, Rocco PR, Negrini D, Passi A. The extracellular matrix of the lung and its role in edema formation. An Acad Bras Cienc. Jun 2007;79(2):285-297.
83. Sheng J, Liu R, Xu Y, Liu J. The dominating role of N-deacetylase/N-sulfotransferase 1 in forming domain structures in heparan sulfate. J Biol Chem. Jun 3 2011;286(22):19768-19776.
84. Raman K, Kuberan B. Chemical Tumor Biology of Heparan Sulfate Proteoglycans. Curr Chem Biol. Jan 1 2010;4(1):20-31.
85. Brownstein MJ, Carpten JD, Smith JR. Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. Biotechniques. Jun 1996;20(6):1004-1006, 1008-1010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61843-
dc.description.abstract大腸直腸癌近年為世界最常見的癌症死因之一,而此癌症的發生乃因多步驟的染色體變異逐漸累積、發展而成。許多人類的惡性腫瘤常發生第四號染色體長臂的基因缺失,但目前被鑑定出的抑癌基因卻很稀少。為了探索此區域的抑癌基因,本研究針對114 例大腸直腸癌腫瘤組織,於染色體4q25-4q28.2區域進行刪除圖譜分析。我們定義出一個介於D4S2297及D4S2303位點之間的最小刪除區域,並進一步分析座落其中的NDST4基因(N-deacetylase/ N-sulfotransferase (heparan glucosaminyl) 4)。利用雷射微切除技術,證實NDST4 基因表現於正常大腸黏膜上皮細胞,而此基因於所測試之腫瘤細胞並不表現。為進一步確認NDST4基因缺失是否常見於大腸直腸癌,我們以52例大腸直腸癌檢體進行表現量分析,其中30例 (57.7%) 腫瘤組織的NDST4表現乃明顯下降。此外我們更以174例大腸直腸癌分析NDST4之染色體缺失,發現其與較差的病理分期 (P=0.039) 、存活率 (P=0.036) 有顯著相關。若在人類大腸直腸癌細胞株過度表現NDST4則可顯著抑制其細胞生長、腫瘤形成和肝轉移能力。此外,重新表現NDST4於異種移植腫瘤模式可抑制小鼠皮下及肝轉移之腫瘤生成。為進一步探討NDST4 抑癌的分子機制,我們建立Ndst4 基因剔除小鼠。初步觀察此基因剔除鼠,其發育和生育能力正常,然而於大腸黏膜、胃以及肺臟則發現有輕微病理異常。綜合以上所述,我們發現染色體4q26位點於大腸直腸癌有高頻率缺失現象,而座落於其中的NDST4基因於本研究為首次被提出具腫瘤抑制功能。NDST4缺失與病人預後密切相關,且此基因重新表現於癌細胞亦可抑制其腫瘤特性,顯示其於大腸直腸癌具有重要的抑癌功能。此外,本研究首度發表Ndst4基因剔除小鼠並針對其表現型進行初步分析,對於日後NDST4基因相關的研究將可提供重要的動物模型。zh_TW
dc.description.abstractColorectal cancer (CRC) is one of the most common causes of cancer deaths in the world, and most of CRC arise sporadically by the emergence of multiple chromosomal aberrations. Allelic losses in the long arm of chromosome 4 are commonly encountered in many human malignancies, but few tumor suppressor genes (TSGs) are identified. To explore novel TSGs deleted in CRC, deletion mapping of chromosome 4q25-q28.2 was conducted in 114 sporadic CRC by loss of heterozygosity (LOH) study. One minimal deletion region was delineated between D4S2297 and D4S2303 loci at 4q26. In the region a candidate novel TSG, N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 4 (NDST4), was further investigated. By laser capture microdissection, NDST4 RNA expression was confirmed in colonic epithelial cells, but was undetectable in tumor cells. Gene expression of NDST4 was further investigated in 52 pairs of primary CRC tissues. In total, 30 (57.7%) of 52 colorectal carcinomas showed a dramatic reduction in NDST4 gene expression compared with matched normal mucosae. Allelic loss of NDST4 gene was determined in 174 colorectal carcinomas by LOH analysis. The genetic loss of NDST4 was significantly associated with advanced pathological stage (P = 0.039) and poorer overall survival of patients (P = 0.036). Overexpression of NDST4 in the human CRC cells induced a significant suppression in cell proliferation, anchorage independent growth and invasion. Moreover, re-expression of NDST4 also suppressed subcutaneous and metastatic tumor growth in the mouse xenograft tumor models. To investigate the molecular mechanisms in vivo, we have also generated an Ndst4 knockout (KO) mouse strain, which develops and reproduces normally, but shows minor abnormality in colon, stomach and lung. In conclusion, we identified a novel tumor suppressor region located at 4q26 that is lost in CRC at high frequency. Genetic loss of NDST4 is closely related to prognosis, and NDST4 re-expression inhibits tumor behaviors, suggesting a key suppressor role in colorectal tumorigenesis. In addition, this is the first study to generate Ndst4 KO mice with phenotype characterization. The genetic mouse model would provide a valuable tool for functional study of NDST4.en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:15:25Z (GMT). No. of bitstreams: 1
ntu-102-D95424001-1.pdf: 7923930 bytes, checksum: 7420a49b24554b91bd1f8fbb5d3ec038 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
ABSTRACT v
LIST OF FIGURES x
LIST OF TABLES xii
Chapter 1 Introduction 1
1.1 Colorectal cancer and tumor staging 1
1.2 Genetic alterations and biomarkers in colorectal cancer 3
1.3 Heparan sulfate proteoglycans 7
1.4 NDST (N-deacetylase/N-sulfotransferase) family and NDST4 9
1.5 Research motive and strategy 10
Chapter 2 Materials and Methods 12
2.1 Patients and tissue specimens 12
2.2 LOH analysis 12
2.3 RNA extraction 13
2.4 Reverse transcription-polymerase chain reaction (RT-PCR) 14
2.5 Quantitative RT-PCR (qRT-PCR) 14
2.6 microRNA 577 expression analysis 15
2.7 Laser capture microdissection 16
2.8 Cloning and stable clone selection 16
2.9 Immunofluorescence staining 17
2.10 Western blot analysis 17
2.11 Cell proliferation assay 18
2.12 Soft agar assay 18
2.13 Wound-healing assay 19
2.14 Cell invasion assay 19
2.15 Subcutaneous xenograft tumor model 20
2.16 Intrasplenic xenograft tumor model 20
2.17 Immunohistochemistry 21
2.18 Targeted recombination of the Ndst4 gene 21
2.19 Southern blotting analysis 22
2.20 Breeding of Ndst4 KO mice 22
2.21 Histological examination of Ndst4 KO mice 23
2.22 Statistical analysis 23
Chapter 3 Results 24
3.1 NDST4 gene is a candidate tumor suppressor gene at chromosome 4q26 24
3.2 NDST4 gene is expressed in normal colonic mucosae and polyps, but is downregulated in colorectal carcinomas 25
3.3 Allelic loss of NDST4 gene is significantly associated with advanced pathological stage and poor survival in CRC 26
3.4 Cloning and re-expression of NDST4 in CRC cell line HCT116 27
3.5 NDST4 suppresses cell growth and invasion in vitro 27
3.6 NDST4 suppresses xenograft tumor growth in vivo 28
3.7 Targeted mutation of Ndst4 in mice 29
3.8 Histological phenotyping of Ndst4 KO mice 30
Chapter 4 Discussion 32
FIGURE 38
TABLE 59
REFERENCE 65
Appendix 75
dc.language.isoen
dc.subject大腸直腸癌zh_TW
dc.subject4q26zh_TW
dc.subjectNDST4zh_TW
dc.subject抑癌基因zh_TW
dc.subjectNdst4基因剔除鼠zh_TW
dc.subjectNdst4 knockout miceen
dc.subjectColorectal canceren
dc.subject4q26en
dc.subjectNDST4en
dc.subjectTumor suppressor geneen
dc.title鑑定NDST4為大腸直腸癌之抑癌基因並製作Ndst4基因剔除小鼠zh_TW
dc.titleIdentification of NDST4 as a tumor suppressor gene in colorectal cancer and generation of Ndst4 knockout miceen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.oralexamcommittee俞松良,許金玉,蔡明宏,陳志榮,林淑華
dc.subject.keyword大腸直腸癌,4q26,NDST4,抑癌基因,Ndst4基因剔除鼠,zh_TW
dc.subject.keywordColorectal cancer,4q26,NDST4,Tumor suppressor gene,Ndst4 knockout mice,en
dc.relation.page83
dc.rights.note有償授權
dc.date.accepted2013-07-29
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
7.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved