Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61836
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor馮哲川(Zhe-Chuan Feng)
dc.contributor.authorChun-Hsu Yangen
dc.contributor.author楊鈞旭zh_TW
dc.date.accessioned2021-06-16T13:15:08Z-
dc.date.available2016-08-14
dc.date.copyright2013-08-14
dc.date.issued2013
dc.date.submitted2013-07-29
dc.identifier.citation[1] Bohunicky, B. and Mousa, S. A., 'Biosensors: the new wave in cancer diagnosis,' Nanotechnology, Science and Applications, vol. 4, pp. 1-10, 2011.
[2] Tothill, I. E., 'Biosensors for cancer markers diagnosis,' in Semin. Cell Dev. Biol., pp. 55-62, 2009.
[3] Schoning, M. J. and Poghossian, A., 'Recent advances in biologically sensitive field-effect transistors (BioFETs),' Analyst, vol. 127, pp. 1137-1151, 2002.
[4] Chaniotakis, N. and Sofikiti, N., 'Novel semiconductor materials for the development of chemical sensors and biosensors: A review,' Anal. Chim. Acta, vol. 615, pp. 1-9, 2008.
[5] Yakimova, R., Steinhoff, G., Petoral Jr, R., et al., 'Novel material concepts of transducers for chemical and biosensors,' Biosens. Bioelectron., vol. 22, pp. 2780-2785, 2007.
[6] Lin, J.-C., Huang, B.-R., and Yang, Y.-K., 'IGZO nanoparticle-modified silicon nanowires as extended-gate field-effect transistor< i> p</i> H sensors,' Sensors Actuators B: Chem., 2013.
[7] Maehashi, K., Katsura, T., Kerman, K., et al., 'Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors,' Anal. Chem., vol. 79, pp. 782-787, 2007.
[8] Cui, Y., Wei, Q., Park, H., et al., 'Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,' Science, vol. 293, pp. 1289-1292, 2001.
[9] Kim, J. S., Park, W. I., Lee, C.-H., et al., 'ZnO nanorod biosensor for highly sensitive detection of specific protein binding,' 2006.
[10] He, B., Morrow, T. J., and Keating, C. D., 'Nanowire sensors for multiplexed detection of biomolecules,' Curr. Opin. Chem. Biol., vol. 12, pp. 522-528, 2008.
[11] Zheng, G., Patolsky, F., Cui, Y., et al., 'Multiplexed electrical detection of cancer markers with nanowire sensor arrays,' Nat. Biotechnol., vol. 23, pp. 1294-1301, 2005.
[12] Mohanty, S. P. and Kougianos, E., 'Biosensors: a tutorial review,' Potentials, IEEE, vol. 25, pp. 35-40, 2006.
[13] Farre, M., Pasini, O., Carmen Alonso, M., et al., 'Toxicity assessment of organic pollution in wastewaters using a bacterial biosensor,' Anal. Chim. Acta, vol. 426, pp. 155-165, 2001.
[14] Pernaut, J.-M. and Reynolds, J. R., 'Use of conducting electroactive polymers for drug delivery and sensing of bioactive molecules. A redox chemistry approach,' The Journal of Physical Chemistry B, vol. 104, pp. 4080-4090, 2000.
[15] Uslu, F., Ingebrandt, S., Mayer, D., et al., 'Labelfree fully electronic nucleic acid detection system based on a field-effect transistor device,' Biosens. Bioelectron., vol. 19, pp. 1723-1731, 2004.
[16] Star, A., Gabriel, J.-C. P., Bradley, K., et al., 'Electronic detection of specific protein binding using nanotube FET devices,' Nano Lett., vol. 3, pp. 459-463, 2003.
[17] Allen, B. L., Kichambare, P. D., and Star, A., 'Carbon Nanotube Field‐Effect‐Transistor‐Based Biosensors,' Adv. Mater., vol. 19, pp. 1439-1451, 2007.
[18] Bergveld, P., 'Development, Operation, and Application of the Ion-Sensitive Field-Effect Transistor as a Tool for Electrophysiology,' Biomedical Engineering, IEEE Transactions on, vol. BME-19, pp. 342-351, 1972.
[19] Song, S., Qin, Y., He, Y., et al., 'Functional nanoprobes for ultrasensitive detection of biomolecules,' Chem. Soc. Rev., vol. 39, pp. 4234-4243, 2010.
[20] Byon, H. R., Kim, S., and Choi, H. C., 'Label-free biomolecular detection using carbon nanotube field effect transistors,' Nano, vol. 3, pp. 415-431, 2008.
[21] Roy, S. and Gao, Z., 'Nanostructure-based electrical biosensors,' Nano Today, vol. 4, pp. 318-334, 2009.
[22] Yuqing, M., Jianguo, G., and Jianrong, C., 'Ion sensitive field effect transducer-based biosensors,' Biotechnol. Adv., vol. 21, pp. 527-534, 2003.
[23] Bao, Z., Dodabalapur, A., and Lovinger, A. J., 'Soluble and processable regioregular poly (3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility,' Appl. Phys. Lett., vol. 69, p. 4108, 1996.
[24] Sakata, T., Matsumoto, S., Nakajima, Y., et al., 'Potential behavior of biochemically modified gold electrode for extended-gate field-effect transistor,' Jpn. J. Appl. Phys., vol. 44, pp. 2860-2863, 2005.
[25] Fan, Z., Wang, D., Chang, P.-C., et al., 'ZnO nanowire field-effect transistor and oxygen sensing property,' Appl. Phys. Lett., vol. 85, p. 5923, 2004.
[26] Hu, X.-L., Zhu, Y.-J., and Wang, S.-W., 'Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods,' Mater. Chem. Phys., vol. 88, pp. 421-426, 2004.
[27] Spiegelbert, H. L., 'Biological activities of Igs of different classes and subclasses,' Adv Immunol, vol. 19, p. 259, 1974.
[28] Robbins, J. B., Schneerson, R., and Szu, S. C., 'Perspective: hypothesis: serum IgG antibody is sufficient to confer protection against infectious diseases by inactivating the inoculum,' J Infect Dis, vol. 171, pp. 1387-1398, 1995.
[29] Janeway, C. J., Travers, P., and Walport, M., 'The structure of a typical antibody molecule,' in Immunobiology: The Immune System in Health and Disease., 5th edition ed. New York: Garland Science, 2001.
[30] Chen, X., Cheng, G., and Dong, S., 'Amperometric tyrosinase biosensor based on a sol–gel-derived titanium oxide–copolymer composite matrix for detection of phenolic compounds,' Analyst, vol. 126, pp. 1728-1732, 2001.
[31] Majone, F., Tonetto, S., Soligo, C., et al., 'Identification of kinetochores and DNA synthesis in micronuclei induced by mitomycin C and colchicine in Chinese hamster ovary cells,' Teratog. Carcinog. Mutagen., vol. 12, pp. 155-166, 1992.
[32] West, J. L. and Halas, N. J., 'Applications of nanotechnology to biotechnology: Commentary,' Curr. Opin. Biotechnol., vol. 11, pp. 215-217, 2000.
[33] Sokolov, K., Follen, M., Aaron, J., et al., 'Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,' Cancer Res., vol. 63, pp. 1999-2004, 2003.
[34] Processing Guidelines for SU-8 2100 and 2150. MicroChem Corp. Newton, MA. Available: http://microchem.com/
[35] Buchanan, M. V. and Hettich, R. L., 'Fourier transform mass spectrometry of high-mass biomolecules,' Anal. Chem., vol. 65, pp. 245A-259A, 1993.
[36] Kim, D.-S., Park, J.-E., Shin, J.-K., et al., 'An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes,' Sensors Actuators B: Chem., vol. 117, pp. 488-494, 10/12/ 2006.
[37] Wang, D. G., Fan, J.-B., Siao, C.-J., et al., 'Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome,' Science, vol. 280, pp. 1077-1082, 1998.
[38] Skehan, P., Storeng, R., Scudiero, D., et al., 'New colorimetric cytotoxicity assay for anticancer-drug screening,' J Natl Cancer Inst, vol. 82, pp. 1107-1112, 1990.
[39] Spector, T., 'Refinement of the Coomassie blue method of protein quantitation: A simple and linear spectrophotometric assay for≤ 0.5 to 50 μg of protein,' Anal Biochem, vol. 86, pp. 142-146, 1978.
[40] Ghaemmaghami, S., Huh, W.-K., Bower, K., et al., 'Global analysis of protein expression in yeast,' Nature, vol. 425, pp. 737-741, 2003.
[41] Stenberg, E., Persson, B., Roos, H., et al., 'Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins,' J. Colloid Interface Sci., vol. 143, pp. 513-526, 1991.
[42] Zhong, Z., Li, M., Xiang, D., et al., 'Signal amplification of electrochemical immunosensor for the detection of human serum IgG using double-codified nanosilica particles as labels,' Biosens. Bioelectron., vol. 24, pp. 2246-2249, 2009.
[43] Bradford, M. M., 'A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding,' Anal Biochem, vol. 72, pp. 248-254, 1976.
[44] Bio-Rad Protein Assay For Technical Service. Bio-Rad Laboratories Richmond, CA. Available: http://labs.fhcrc.org/fero/Protocols/BioRad_Bradford.pdf
[45] Western blotting - a detailed guide.
Available: http://www.abcam.com/index.html?pageconfig=resource&rid=11375
[46] Overview of Western Blotting.
Available: http://www.piercenet.com/browse.cfm?fldID=8259A7B6-7DA6-41CF-9D55-AA6C14F31193
[47] Kurien, B. T. and Scofield, R. H., 'Western blotting,' Methods, vol. 38, pp. 283-293, 2006.
[48] Homola, J., Yee, S. S., and Gauglitz, G., 'Surface plasmon resonance sensors: review,' Sensors Actuators B: Chem., vol. 54, pp. 3-15, 1999.
[49] Homola, J., 'Present and future of surface plasmon resonance biosensors,' Anal. Bioanal. Chem., vol. 377, pp. 528-539, 2003.
[50] Chang, C.-C., Chiu, N.-F., Lin, D. S., et al., 'High-sensitivity detection of carbohydrate antigen 15-3 using a gold/zinc oxide thin film surface plasmon resonance-based biosensor,' Anal. Chem., vol. 82, pp. 1207-1212, 2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61836-
dc.description.abstract在這篇論文中,我們設計了一種以氧化銦鎵鋅薄膜電晶體並附有延伸金感測板構成的生物感測器。電晶體扮演著感應與訊號輸出的角色,而金感測板具有增加感測器的感測區域並可將待測的生化溶液與薄膜電晶體通道分隔開來的功能。我們的生物感測器利用氧化鋅奈米柱來增加感測面積,使得吸引抗體自身帶有的電荷的能力增強,來達成使感應器功能化的目的。此外,功能化後的感應器與蛋白質的鍵結時間能夠減少到十分鐘以下,顯示此感測器有良好的即時感測能力。我們測試了兩種蛋白質,一種是由培養的扁平上皮癌細胞萃取出的上皮生長因子,另一種則是小鼠血清裡的免疫球蛋白G。我們比較了生物感測器以及目前現有的蛋白質檢測方法的敏感度。利用這種全新、省時並且高敏感度的蛋白質檢測器,我們可以在0.1ng/ml的癌細胞溶液中專一性地量測到濃度為36.2 fM的上皮生長因子。更進一步的,我們可以在10pg/ml離體的小鼠血清溶液中專一性地量測到濃度為8.98fM的小鼠免疫球蛋白G。zh_TW
dc.description.abstractWe demonstrate a biosensor structure consisting of an IGZO (Indium-Gallium-Zinc-Oxide) TFT (thin film transistor) and a gold extended sensing pad. The TFT acts as the sensing and readout device, while the sensing pad ensures the isolation between biological solution and the transistor channel layer, and meanwhile increases the sensing area. The biosensor is functionalized by first applying ZnO nanorods to increase the surface area for attracting electrical charges of antibodies. Furthermore, the conjugation duration of the functionalized device with protein can be limited to less than 10 minutes, implying that the biosensor has the advantage for real-time detection. We detect two kinds of protein, one is EGFR (epidermal growth factor receptor) exacted from SCC cell line, another is mouse IgG in the mouse serum. We investigate the sensitivity with the conventional protein detection methods. By this novel structure, a time-saving and highly sensitive protein detecting process is developed. The bio-TFT is able to selectively detecting 36.2fM of EGFR in the total protein solution of 0.1ng/ml and, and selectively detecting 8.98fM of mouse IgG in the serum solution of 10pg/ml in vitro.en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:15:08Z (GMT). No. of bitstreams: 1
ntu-102-R00941109-1.pdf: 4066341 bytes, checksum: d7eaf59b5cbd44c22857d2e87a5a99f3 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents摘要 I
Abstract II
Contents III
List of Figure V
List of Table VIII
Chapter 1 Introduction 1
1-1 Preface 1
1-2 Motivation 3
1-3 Thesis structure 7
Chapter 2 The fabrication of the TFT-biosensors 8
2-1 Introduction 8
2-2 Fabrication of ZnO nanorods and the solution 10
2-3 Binding test of ZnO nanorods to antibody 15
2-4 Structure and mechanism of the TFT-biosensors 19
2-5 Fabrication of the TFT-biosensors 22
Chapter 3 Protein detection in the cell line stage 25
3-1 Introduction 25
3-2 EGFR detection by TFT-biosensors 26
3-3 Sensitivity and specificity of the sensors 34
3-4 Summary 39
Chapter 4 Protein detection in vitro in the animal stage 40
4-1 Introduction 40
4-2 Quantification and analysis of the ZnO nanorods 41
4-3 Detection IgG in mouse serum by TFT-biosensors 44
4-4 Comparison of conventional methods by mouse-IgG detection 53
4-5 Summary 67
Chapter 5 Conclusion 68
Reference 70
dc.language.isoen
dc.title以奈米柱及薄膜電晶體製作高敏感度蛋白質感測器zh_TW
dc.titleIGZO-TFT Protein sensor with nanorods for the High Sensitivityen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.coadvisor黃建璋(JianJang Huang)
dc.contributor.oralexamcommittee楊宗霖(Tsung-Lin Yang),宋孔彬(Kung-Bin Sung)
dc.subject.keyword癌症,上皮生長因子,小鼠免疫球蛋白G,氧化鋅奈米柱高敏感度生物感測器,蛋白質檢測,zh_TW
dc.subject.keywordcancer,EGFR,mouse IgG,ZnO nanorods,high sensitivity biosensor,protein detection,en
dc.relation.page73
dc.rights.note有償授權
dc.date.accepted2013-07-30
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
3.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved