請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61829完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳逸民(Yih-Min Wu) | |
| dc.contributor.author | Hsin-Hua Huang | en |
| dc.contributor.author | 黃信樺 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:14:52Z | - |
| dc.date.available | 2014-08-06 | |
| dc.date.copyright | 2013-08-06 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-29 | |
| dc.identifier.citation | Aki, K., Husebye, E. S., Christoffersson, A., Powell, C., 1974. Three-dimensional seismic velocity anomalies in the crust and upper mantle under the USGS California seismic array. EOS Trans. Am. Geophys. Un., 56, 1145.
Aki, K., Christoffersson, A., Husebye, E. S., 1976. Three-dimensional seismic structure of the lithosphere under Montana Lasa. Bull. Seismol. Soc. Am., 66, 2, 501-524. Aki, K., Christoffersson, A., Husebye, E. S., 1977. Determination of the three-dimensional seismic structure of the lithosphere. J. Geophys. Res., 82, 277-296. Allen, C.R., Gillespie, A.R., Han, Y., Sieh, K.E., Zhang, B., Zhu, C., 1984. Red River and associated faults, Yunnan Province, China: Quaternary geology slip rates and seismic hazard. Geol. Soc. Am. Bull. 95, 686–700. Backus, G., Gilbert, J. F., 1967. Numerical applications of a formalism for geophysical inverse problems. Geophys. J. Roy. astr. Soc., 13, 247–276. Backus, G., Gilbert, J. F., 1968. The resolving power of gross Earth data. Geophys. J. Roy. astr. Soc., 16, 169–205. Bai, L., Tian, X., and Ritsema, J., 2010. Crustal structure beneath the Indochina peninsula from teleseismic receiver functions. Geophys. Res, Lett. 37, L24308, doi: 10.1029/2010GL044874. Bassin, C., Laske, G., Masters, G., 2000. The Current Limits of Resolution for Surface Wave Tomography in North America. EOS Trans. AGU, 81, F897. Bijwaard, H., Spakman, W., Engdahl, E. R., 1998. Closing the gap between regional and global travel time tomography. J. Geophys. Res., 103, 30,055– 30,078. Black, P.R., Braile, L.W., 1982. Pn velocity and cooling of the continental lithosphere. J. Geophys. Res. 87 (B13), 10557–10568. Brocher, T. M., 2005. Empirical Relations between Elastic Wavespeeds and Density in the Earth’s Crust. Bull. Seism. Soc. Am., 95, 6, 2081-2092. Carter, A., Roques, D., Bristow, C., Kinny, P., 2001. Understanding Mesozoic accretion in Southeast Asia: Significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam. Geology 29, 211–214. Chang, H. C., Wu, Y. M., Chen, D. Y., Shin, T. C., Chin, T. L., Chang, W. Y., 2012. An Examination of Telemetry Delay in the Central Weather Bureau Seismic Network. Terr. Atmos. Ocean. Sci., 23(3), 261-268. Chemenda, A. I., Tang, R. K., Stephan, J. F., Konstantinovskaya, E. A., Ivanov, G. M., 2001. New results from physical modeling of arc-continent collision in Taiwan: evolutionary model. Tectonophysics, 333, 159-178. Chen, P., Zhao, L., Jordan, T. H., 2007. Full 3D Tomography for the Crustal Structure of the Los Angeles Region. Bull. Seism. Soc. Am., 97 (4), 1,094-1,120, doi:10.1785/0120060222. Chen, P. F., Huang, B. S., Liang, W. T., 2004. Evidence of a slab of subducted lithosphere beneath central Taiwan from seismic waveforms and travel times. Earth Planet. Sci. Lett., 229, 61-71. Cheng, W. B., 2009. Tomographic imaging of the convergent zone in Eastern Taiwan — A subducting forearc sliver revealed? Tectonophysics, 466, 170-183. Christensen, N.I., Mooney, W.D., 1995. Seismic velocity structure and composition of the continental crust: A global view. J. Geophys Res. 100 (B7), 9761–9788. Christensen, N.I., 1996. Poisson’s ratio and crustal seismology. J. Geophys. Res. 101 (B2), 3139–3156. Chung, S.L., et al., 1997. Intraplate extension prior to continental extrusion along the Ailao Shan–Red River shear zone. Geology 25, 311–314. Chung, S.L., et al., 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth Sci. Rev. 68. 173–196. Cloos, M., Shreve, R. L., 1988. Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: Part I, background and description. Pure Appl. Geoph. ,128(3/4), 455–500. Conder, J. A., Wiens, D. A., 2006. Seismic structure beneath the Tonga arc and Lau back-arc basin determined from joint Vp, Vp/Vs tomography. Geochem. Geophys. Geosys., 7, 3, Q03018, doi:10.1029/2005GC001113. Cong, D.C., Feigl, L.L., 1999. Geodetic measurement of horizontal strain across the Red River fault near Thac Ba, Vietnam, 1963–1994. J. Geodesy 73, 298–310. Crotwell, H. P., Owens, T. J., Ritsema, J., 1999. The TauP toolkit: flexible seismic travel-time and ray-path utilities, Seism. Res. Lett., 70(2), 154-160. Dahlen, F. A., Hung, S. H., Nolet, G., 2000. Frechet kernels for finite-frequency travel times–I. Theory. Geophys. J. Int., 141, 157-174. Dziewonski, A. M., Hager, B. H., O’Connell, R. J., 1977. Large-scale heterogeneities in the lower mantle. J. Geophys. Res., 82, 239–255. Dziewonski, A. M., 1984. Mapping the lower mantle: Determination of lateral heterogeneity in P velocity up to degree and order 6. J. Geophys. Res., 89, 5,929–5,952. Earle, P. S., Shearer, P. M., 1994. Characterization of global seismograms using an automatic-picking algorithm. Bull. Seism. Soc. Am., 84(2), 366-376. Eddy, D. R., Van Avendonk, H. J. A., Shillington, D. J., 2013. Compressional and shear-wave velocity structure of the continent-ocean transition zone at the eastern Grand Banks, Newfoundland. Geophys. Res. Lett., 40, 1-7, doi:10.1002/grl.50511. Ellsworth, W. L., Koyagani, R. Y., 1977. Three-dimension crust and upper mantle structure of the Kilauea volcano, Hawaii. J. Geophys. Res., 82, 5,379–5,394. Gubbins, D., 1990. Seismology and plate tectonics. Cambridge University Press, Cambridge. Hacker, B. R., Abers, G. A., Peacock, S. M., 2003. Subduction factory: 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. J. Geophys. Res., 108(B1), 2029, doi:10.1029/2001JB001127. Harrison, T.M., Chen, W., Leloup, P.H., 1992. An Early Miocene Transition in Deformation Regime within the Red River Fault Zone, Yunnan, And Its Significance for Indo-Asian Tectonics. J. Geophys. Res. 97, 7159–7182. Harrison, T.M., Leloup, P.H., Ryerson, F.J., Tapponnier, P., Lacassin, R., Chen, Wenji, 1996. Diachronous initiation of transtension along the Ailao Shan–Red River shear zone, Yunnan and Vietnam. In: Yin, A. & Harrison, T.M. (eds) The Tectonic Evolution of Asia. Cambridge University Press, Cambridge, 208–225. Hearn, T.M., 1984. Pn Travel Times in Southern California. J. Geophys. Res. 89 (B3), 1843–1855. Hearn, T.M., 1996. Anisotropic Pn tomography in the western United States. J. Geophys. Res. 101 (B4), 8403–8414. Hsu, S. K., Sibuet, J. C., 1995. Is Taiwan the result of arc-continent or arc-arc collision? Earth Planet. Sci. Lett., 136, 315-234. Huang, B.S., Le, T.S., Liu, C.C., Toan, D.V., Huang, W.G., Wu, Y.M., Chen, Y.G., Chang, W.Y., 2009. Portable broadband seismic network in Vietnam for investigating tectonic deformation, the Earth’s interior, and early-warning systems for earthquakes and tsunamis. J. Asian Earth Sci. 36, 110–118. Huang, J., Zhao, D., Zheng, S., 2002. Lithospheric structure and its relationship to seismic and volcanic activity in southwest China. J. Geophys. Res. 107 (B10), 2255, doi:10.1029/2000JB000137. Huang, H. H., Wu, Y. M., Lin, T. L., Chao, W. A., Shyu, J. B. H., Chan, C. H., Chang, C. H., 2011. The Preliminary Study of the 4 March 2010 Mw6.3 Jiasian, Taiwan, Earthquake Sequence. Terre. Atmos. Oceanic Sci., 22, 3, 283-290. Huang, H. H., Xu, Z. J., Wu, Y. M., Song, X., Huang, B. S., Minh, N. L., 2013a. First Local Seismic Tomography for Red River Shear Zone, northern Vietnam: Stepwise inversion employing crustal P and Pn waves, Tectonophysics, special issue: Active Tectonic Deformation of the Tibetan Plateau and Great Earthquakes, 584, 230-239. Huang, H. H., Wu, Y. M., Song, X., Chang, C. H., Lee, S. J., Chang, T. M., Hsieh, H. H., 2013b. Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. (to be submitted). Hung, S. H., Shen, Y., Chiao, L. Y., 2004. Imaging seismic velocity structure beneath the Iceland hot spot: A finite frequency approach. J. Geophys. Res., 109, B08305, doi:10.1029/2003JB00289. Jacob, K.H., 1970. Three-Dimensional Seismic Ray Tracing in a Laterally Heterogeneous Spherical Earth. J. Geophys. Res., 75, 32, 6675-6689. Kao, H., Jian, P. R., Ma, K. F., Huang, B. S., and Liu, C. C., 1998. Moment-tensor inversion for offshore earthquakes east of Taiwan and their implications to regional collision. Geophys. Res. Lett., 25(19), 3619-3622. Kennett, B. L. N. Engdahl, E. R., Buland, R., 1995. Constraints on seismic velocities in the Earth from travel times. Geophys. J. Int., 122, 108-12. Kennett, B. L. N. and Widiyantoro, S., 1998. Joint seismic tomography for bulk sound and shear wave speed in the Earth’s mantle. J. Geophys. Res., 103, B6, 12469-12493. Kim, K. H., Chiu, J. M., Pujol, J., Chen, K. C., Huang, B. S., Yeh, Y. H., Shen, P., 2005. Three-dimensional VP and VS structural models associated with the active subduction and collision tectonics in the Taiwan region. Ceophys. J. Int., 162, 204-220. Kim, K. H., Chiu, J. M., Pujol, J., Chen, K. C., 2006. Polarity reversal of active plate boundary and elevated oceanic upper mantle beneath the collision suture in central eastern Taiwan. Bull. Seism. Soc. Am., 96(3), 796-806, doi:10.1785/0120050106. Koketsu, K., Sekine, S., 1998. Pseudo-bending method for three-dimensional seismic ray tracing in a spherical earth with discontinuities. Ceophys. J. Int., 132, 339-346. Komatitsch, D., Vilotte, J. P., 1998. The Spectral Element Method: An Efficient Tool to Simulate the Seismic Response of 2D and 3D Geological Structures. Bull. Seis. Soc. Am., 88, 2, 368-392. Komatitsch, D., Tromp, J., 1999. Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys. J. Int., 139, 806-822. Koulakov, I., 2009. LOTOS Code for Local Earthquake Tomographic Inversion: Benchmarks for Testing Tomographic Algorithms. Bull. Seism. Soc. Am., 99(1), 194-214. Kuo, B. Y., Wang, C. C., Lin, S. C., Lin, C. R., Chen, P. C., Jang, J. P., Chang, H. K., 2012. Shear-wave splitting at the edge of the Ryukyu subduction zone. Earth Planet. Sci. Lett., 355-356, 262-270. Kuo, C. H., Wen, K. L., Hsieh, H. H., Lin, C. M., Chang, T. M., Kuo, K. W., 2012. Site classification and Vs30 estimation of free-field TSMIP stations using the logging data of EGDT. Eng. Geol., 129-130, 68-75. Kuo-Chen, H., Wu, F. T., Roecker, S. W., 2012a. Three-dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. J. Geophys. Res., 117, B06306, doi:10.1029/2011JB009108. Kuo-Chen, H., Wu, F. T., Jenkins, D. M., Mechie, J., Roecker, S. W., Wang, C. Y., Huang, B. S., 2012b. Seismic evidence for the a-b quartz transition beneath Taiwan from Vp/Vs tomography. Geophys. Res. Lett., 39, L22302, doi:10.1029/2012GL053649. Lallemand, S., Font, Y., Bijwaard, H., Kao, H., 2001. New insights on 3-D plates interaction near Taiwan from tomography and tectonic implications. Tectonophysics, 335, 229-253. Lan, C.Y., et al., 2000. Geochemical and Sr–Nd isotopic characteristics of granitic rocks from northern Vietnam. J. Asian Earth Sci. 18, 267–280. Lan, C.Y., Chung, S.L., Lo, C.H., Lee, T.Y., Wang, P.L., Li, H., Toan, D.V., 2001. First evidence for Archean continental crust in northern Vietnam and its implications for crustal and tectonic evolution in Southeast Asia. Geology 29, 219–222. Lee, S. J., Ma, K. F., Chen, H. W., 2006. Three Dimensional Dense Strong Motion Waveform Inversion for the Rupture Process of the 1999 Chi-Chi, Taiwan, Earthquake. J. Geophys. Res., 111, B11308, doi:10.1029/2005JB004097. Lee, S. J., Chen, H. W., Liu, Q., Komatitsch, D., Huang, B. S., Tromp, J., 2008. Three-dimensional simulations of seismic wave propagation in the Taipei basin with realistic topography based upon the spectral-element method. Bull. Seism. Soc. Am., 98, 253-264, doi: 10.1785/0120070033. Lees, J.M., Crosson, R.S., 1989. Tomographic inversion for three-dimensional velocity structure at Mount St. Helens using earthquake data. J. Geophys. Res. 94, 5716–5728. Lei, J., Zhao, D., 2006a. Global P-wave tomography: On the effect of various mantle and core phases. Phys. Earth Planet. Inter., 154, 44-69. Lei, J., Zhao, D., 2006b. A new insight into the Hawaiian plume. Earth Planet. Sci. Lett., 241, 438-453. Lei, J., Zhao, D., Su, Y., 2009. Insight into the origin of the Tengchong intraplate volcano and seismotectonics in southwest China from local and teleseismic data. J. Geophys. Res. 114, B05302, doi: 10.1029/2008JB005881. Leloup, P.H., et al., 1995. The Ailao Shan–Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics 251, 3–84. Leloup, P. H., Ricard, Y., Battaglia, J., and Lacassin, R., 1999. Shear heating in continental strike-slip shear zones: model and field examples. Geophys. J. Int. 136, 19–40. Lepvrier, C. Maluski, H., Tich, V.V., Leyreloup, A., Thi, P.T., Vuong, N.V., 2004. The Early Triassic Indosinian orogeny in Vietnam (Truong Son Belt and Kontum Massif); implications for the geodynamic evolution of Indochina. Tectonophysics 393, 87–118. Leveque, J.J., Rivera, L., Wittlinger, G., 1993. On the use of the checker-board test to assess the resolution of tomographic inversions. Geophys. J. Int. 115, 313–318. Li, C., van der Hilst, R. D., Toksoz, M. N., 2006. Constraining P-wave velocity variations in the upper mantle beneath Southeast Asia. Phys. Earth Planet. Inter., 154, 180-195. Li, C., van der Hilst, R. D., Engdahl, E. R., and Burdick, S., 2008. A new global model for P wave speed variations in Earth’s mantle. Geochem. Geophys. Geosyst. 9, Q05018, doi: 10.1029/2007GC001806. Li, S. and Mooney, W. D., 1998. Crustal structure of China from deep seismic sounding profiles. Tectonophysics 288, 105–113. Li, S., Mooney, W. D., and Fan, J., 2006. Crustal structure of mainland China from deep seismic sounding data. Tectonophysics 420, 239–252. Liang, C.T., Song, X.D., Huang, J.L., 2004. Tomographic inversion of Pn travel times in China. J. Geophys. Res. 109, B11304, doi:10.1029/2003JB002789. Liao, Y. C., Hsu, S. K., Chang, C. H., Doo, W. B., Ho, M. Y., Lo, C. L., Lee, C. S., 2008. Seismic Tomography off SW Taiwan: A Joint Inversion from OBS and Onshore Data of 2006 Pingtung Aftershocks. Terr. Atmos. Ocean. Sci., 19(6), 729-741. Lin, A. T., Watts, A. B., Hesselbo, S. P., 2003. Cenozoic stratigraphy and subsidence history of the South China Seamargin in the Taiwan region. Basin Res., doi:10.1046/j.1365-2117.2003.00215.x Lin, C. H., 2002. Active continental subduction and crustal exhumation: the Taiwan orogeny. Terra Nova, 14, 281-287. Lin, C. H., 2009. Compelling evidence of an aseismic slab beneath central Taiwan from a dense linear seismic array. Tectonophysics, 466,205-212. Lin, J. Y., Hsu, S. K. Hsu, Sibuet, J. C., 2004. Melting features along the western Ryukyu slab edge (northeast Taiwan): tomographic evidence. J. Geophys. Res., 109, B12402, doi:10.1029/2004JB003260. Liu, T. K., Hsieh, S., Chen, Y. G., Chen, W. S., 2001. Thermo-Kinematic evolution of the Taiwan oblique-collision mountain belt as revealed by zircon fission track dating. Earth Planet. Sci. Lett., 186, 45-56. Lu, C. Y., Hsu, K. J., 1992. Tectonic evolution of the Taiwan mountain belt. Pet. Geol. Taiwan, 27, 21– 46. Ma, K. F., Wang, J. H., Zhao, D., 1996. Three-dimensional seismic velocity structure of the crust and uppermost mantle beneath Taiwan. J. Phys. Earth, 44, 85–105. Magistrale, H., Day, S., Clayton, R. W., Graves, R., 2000. The SCEC Southern California Reference Three-Dimensional Seismic Velocity Model Version 2. Bull. Seis. Soc. Am., 90, 6B, S65-S76. Malavieille, J., Lallemand, S. E., Dominguez, S., Deschamps, A., 2002. Arc-Continent collision in Taiwan: New marine observations and tectonic evolution. Geol. Soc. Am., Spec. Pap., 358, 187-211. McIntosh, K., van Avendonk, H., Lavier, L., Lester, W. R., Eakin, D., Wu, F., Liu, C. S., Lee, C. S., 2013. Inversion of a hyper-extended rifted margin in the southern Central Range of Taiwan. Geology, doi:10.1130/G34402.1. Moorkamp, M., Jones, A. G., Eaton, D. W., 2007. Joint inversion of teleseismic receiver functions and magnetotelluric data using a genetic algorithm: Are seismic velocities and electrical conductivities compatible? Geophys. Res. Lett., 24, L16311, doi:10.1029/2007GL030519. Moorkamp, M., Heincke, B., Jegen, M., Roberts, A. R., Hobbs, R. W., 2011. A framework for 3-D joint inversion of MT, gravity and seismic refraction data. Geophys. J. Int., 184, 477-493. Nolet, G., 1985. Solving or resolving inadequate and noisy tomographic systems. J. Comp. Phys., 61, 463–482. Obrebski, M., Allen, R. M., Politz, F., Hung, S. H., 2011. Lithosphere–asthenosphere interaction beneath the western United States from the joint inversion of body-wave traveltimes and surface-wave phase velocities. Geophys. J. Int., 185, 1,003-1,021. Paige, C.C., Saunders, M.A., 1982a. Algorithm 583 – Lsqr: sparse linear equations and least squares problems. ACM Trans. Math. Softw. 8 (2), 195–209. Paige, C.C., Saunders, M.A., 1982b. LSQR: an algorithm for sparse linear-equations and sparse least-squares. ACM Trans. Math. Softw. 8 (1), 43–71. Pesicek, J. D., Thurberm C. H., Zhang, H., DeShon, H. E., Engdahl, E. R., Widiyantoro, S., 2010. Teleseismic double-difference relocation of earthquakes along the Sumatra-Andaman subduction zone using a 3-D model. J. Geophys. Res., 115, B10303. Rangin, C., Klein, M., Roques, D., Le Pichon, X., Trong, L.V., 1995. The Red River Fault system in the Tonkin Gulf, Vietnam. Tectonophysics 243, 209–222. Rau, R. J., Wu, F. T., 1995. Tomographic imaging of lithospheric structures under Taiwan. Earth planet. Sci. Lett., 133, 517–532. Roecker, S. W., Yeh, Y. H., Tsai, Y. B., 1987. Three-dimensional P and S wave velocity structures beneath Taiwan: Deep structure beneath an arc-continent collision. J. Geophys. Res., 92, 10547–10570. Roecker, S., Thurber, C., Roberts, K., Powell, L., 2006. Refining the image of the San Andreas Fault near Parkfield, California using a finite difference travel time computation technique. Tectonophysics, 426, 189-205. Romanowicz, B., 1979. Seismic structure of the upper mantle beneath the United States by three dimensional inversion of body wave arrival times. Geophys. J. Roy. astr. Soc., 57, 479–506. Schutt, D. L., Humphreys, E. D., 2004. P and S wave velocity and VP/VS in the wake of the Yellowstone hot spot. J. Geophys. Res., 109, B01305, doi:10.1029/2003JB002442. Searle, M.P., 2006. Role of the Red River shear zone, Yunnan and Vietnam, in the continental extrusion of SE Asia. J. Geol. Soc. London 163, 1025–1036. Shin, T. C., 1992. Some implications of Taiwan tectonic features from the data collected by the Central Weather Bureau Seismic Network. Meteorol. Bull., 38, 23-48 (in Chinese). Shin, T. C., 1993. Progress summary of the Taiwan strong motion instrumentation program. In: Proceeding of Symposium on Taiwan Strong Motion Instrumentation Program, Central Weather Bureau, Taipei, Taiwan, 1-10 (in Chinese). Shin, T. C., Teng, T. L., 2001. An Overview of the 1999 Chi-Chi, Taiwan, Earthquake. Bull. Seismol. Soc. Am., 91(5), 895-913. Shin, T. C., Tsai, Y. B., Yeh, Y. T., Liu, C. C., Wu, Y. M., 2003. Strong motion instrumentation programs in Taiwan, in Handbook of Earthquake and Engineering Seismology, W. H. K. Lee, H. Kanamori and P. C. Jennings (Editors), Academic Press, New York, 1057–1602. Shyu, J. B. H., Sieh, K., Chen, Y. G., 2005. Tandem suturing and disarticulation of the Taiwan orogen revealed by its neotectonic elements. Earth Planet. Sci. Lett., 233, 167-177. Shyu, J. B. H., Wu, Y. M., Chang, C. H., Huang, H. H., 2011. Tectonic erosion and the removal of forearc lithosphere during arc-continent collision: Evidence from recent earthquake sequences and tomography results in eastern Taiwan. J. Asian Earth Sci., 42, 415-422. Sieminski, A., Leveque, J. J., Debayle, E., 2004. Can finite-frequency effects be accounted for in ray theory surface wave tomography? Geophys. Res. Lett., 31, L24614, doi:10.1029/2004GL021402. Suppe, J., 1981. Mechanics of mountain building and metamorphism in Taiwan. Mem. Geol. Soc. China, 4, 67-89. Suppe, J., 1984. Kinematics of arc–continent collision, flipping of subduction, and back-arc spreading near Taiwan. Mem. Geol. Soc. China, 6, 21–33. Takemoto, K., Halim, N., Otofuji, Y.I., Tri, T.V., De, L.V., Hada, S., 2005. New paleomagnetic constraints on the extrusion of Indochina: Late Cretaceoous results from the Song Da terrane, northern Vietnam. Earth Planet. Sci. Lett. 229, 273–285. Tape, C., Liu, Q., Maggi, A., Tromp, J., 2010. Seismic tomography of the southern California crust based on spectral-element and adjoint methods. Geophys. J. Int., 180, 433-462 Tapponnier, P., Peltzer, G., Le Dain, A.Y., Armijo, R., Cobbold, P., 1982. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology 10, 611–616. Tapponnier, P., Peltzer, G., Armijo, R., 1986. On the mechanics of the collision between India and Asia. Geol. Soc. London 19, 113–157. Tapponnier, P., et al., 1990. The Ailao Shan/Red River metamorphic belt; Tertiary left lateral shear between Indochina and South China. Nature 343, 431–437. Tellez, J., Cordoba, D., 1998. Crustal shear-wave velocity and poisson’s ratio distribution in northwest Spain. J. Geodynamics, 25, 1, 35-45. Teng, L. S., 1990. Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183, 57-76. Teng, L. S., Lee, C. T., Tsai, Y. B., Hsiao, L. Y., 2000. Slab breakoff as a mechanism for flipping of subduction polarity in Taiwan. Geology, 28, 155-158. Thurber, C. H., 1992. Hypocenter-velocity structure coupling in local earthquake tomography. Phys. Earth Planet. Inter., 75, 55-62. Thurber, C. H., Eberhart-Phillips, D., 1999. Local earthquake tomography with flexible gridding. Comput. Geosci., 25, 809-818. Trung, N.M., Tsujimori, T., Itaya, T., 2006. Honvang serpentinite body of the Song Ma fault zone, Northern Vietnam: A remnant of oceanic lithosphere within the Indochina–South China suture. Gondwanan Res. 9, 225–230. Um, J., Thurber, C., 1987. A fast algorithm for two-point seismic ray tracing. Bull. Seis. Soc. Am., 77, 3, 972-986. Ustaszewski, K., Wu, Y. M., Suppe, J., Huang, H. H., Chang, C. H., Carena, S., 2012. Crust-mantle boundaries in the Taiwan - Luzon arc-continent collision system determined from local earthquake tomography and 1D models: Implications for the mode of subduction polarity reversal. Tectonophysics, special issue: Geodynamics and Environment in East Asia, 578, 31-49. Van der Hilst, R.D., Engdahl, E.R., 1992. Step-wise relocation of ISC earthquake hypocenters for linearized tomographic imaging of slab structure. Phys. Earth Planet. Inter. 75, 39–53. VanDecar, J. C., Crosson, R. S., 1990. Determination of teleseismic relative phase arrival times using multi-channel cross-correlation and least squares. Bull. Seism. Soc. Am., 80(1), 150-169. Vidale, J., 1988. Finite-difference calculation of travel times, Bull. Seis. Soc. Am., 78, 6, 2062-2076. Walck, M. C., 1988. Three-Dimensiona VP/VS Variations for the Coso Region, California. J. Geophys. Res., 93, B3, 2047-2052. Wang, Z., Zhao, D., Wang, J., Kao, H., 2006. Tomographic evidence for the Eurasian lithosphere subducting beneath south Taiwan. Geophys. Res. Lett., 33, L18306, doi:10.1029/2006GL027166. Wang, Z., Fukao, Y., Zhao, D., Kodaira, S., Mishra, O. P., Yamada, A., 2009. Structural heterogeneities in the crust and upper mantle beneath Taiwan. Tectonophysics, 476, 460–477, doi:10.1016/j.tecto.2009.07.018. Wang, C.Y., Chan, W.W., Mooney, W.D., 2003. Three-dimensional velocity structure of crust and upper mantle in southwestern China and its tectonic implications. J. Geophys. Res. 108 (B9), 2442, 176–193, doi:10.1029/2002JB001973. Wang, P.L., Lo, C.H., Lee, T.Y., Chung, S.L., Lan C.Y., Yem, N.T., 1998. Thermochronological evidence for the movement of the Ailao Shan–Red River shear zone: A perspective from Vietnam. Geology 26, 887–890. Wang, P.L., Lo, C.H., Chung, S.L., Lee, T.Y., Lan, C.Y., Thang, T.V., 2000. Onset timing of left-lateral movement along the Ailao Shan–Red River Shaer Zone: Ar/39Ar dating constraint from the Nam Dinh Area, northeastern Vietnam. J. Asian Earth Sci. 18, 281–292. Wesson, R. L., 1971. Travel-time inversion for laterally inhomogeneous crustal velocity models. Bull. Seis. Soc. Am., 61, 3, 729-746. West, M., Gao, W., Grand, S., 2004. A simple approach to the joint inversion of seismic body and surface waves applied to the southwest U.S.. Geophys. Res. Lett., 31, L15615, doi:10.1029/2004GL020373. Wu, F. T., Rau, R. J., Salzberg, D., 1997. Taiwan orogeny: thin-skinned or lithospheric collision? Tectonophysics, 274, 191-220. Wu, H.H., Tsai, Y.B., Lee, T.Y., Lo, C.H., Hsieh, C.H., Toan, D.V., 2004. 3-D shear wave velocity structure of the crust and upper mantle in South China Sea and its surrounding regions by surface wave dispersion analysis. Marine Geophys. Res. 25, 5–27, doi: 10.1007/s11001–005–0730–9. Wu, Y. M., Chang, C. H., Zhao, L., Shyu, J. B. H., Chen, Y. G., Sieh, K., and Avouac, J. P., 2007. Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations. J. Geophys. Res., 112, B08312, doi:10.1029/2007JB004983. Wu, Y. M., Chang, C. H., Zhao, L., Teng, T. L., Nakamura, M., 2008. A Comprehensive Relocation of Earthquakes in Taiwan from 1991 to 2005. Bull. Seism. Soc. Am., 98, 1471–1481, doi: 10.1785/0120070166. Wu, Y. M., Shyu, J. B. H., Chang, C. H., Zhao, L., Nakamura, M., Hsu, S. K., 2009a. Improved seismic tomography offshore northeastern Taiwan: implications for subduction and collision processes between Taiwan and the southernmost Ryukyu. Geophys. J. Int., 178, 1042-1054. Wu, Y. M., Chang, C. H., Zhao, L., Hsiao, N. C., Chen, Y. G., Hsu, S. K., 2009b. Relocation of the 2006 Pingtung earthquake sequence and seismotectonics in Southern Taiwan. Tectonophysics, 479, 19-27, doi:10.1016/j.tecto.2008.12.001. Xu, M., Wang, L., Liu, J., Zhong, K., Li, H., Hu, D., Xu, Z., 2006. Crust and uppermost mantle structure of the Ailaoshan-Red River fault from receiver function analysis. Sci. China Ser. D. 49, 10, 1043–1053. Xu, Y., Liu, J., Liu, F., Song, H., Hao, T., Jiang, W., 2005. Crust and upper mantle structure of the Aila Shan-Red River fault zone and adjacent regions. Sci. China Ser. D. 48, 2, 156–164. Xu, Z.J., Song, X., 2010. Joint inversion for crustal and Pn velocities and Moho depth in Eastern Margin of the Tibetan Plateau. Tectonophysics 491, 185–193. Yeh, M.W., Lee, T.Y., Lo, C.H., Chung, S.L., Lan, C.Y., Anh, T.T., 2008. Structural evolution of the Day Nui Con Voi metamorphic complex: Implications on the development of the Red River Shear Zone, Northern Vietnam. J. Struct. Geol. 30, 1540–1553. Yu, S. B., Chen, H. Y., Kuo, L. C., 1997. Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274, 41-59. Zelt, C.A., 1998. Lateral velocity resolution from three-dimensional seismic refraction data. Geophys. J. Int. 135, 1101–1112. Zhang, L.S., Scharer, U., 1999. Age and origin of magmatism along the Cenozoic Red River shear belt, China. Contrib. Mineral Perol. 134, 67–85. Zhang, H., Thurber, C., 2006. Development and Applications of Double-difference Seismic Tomography. Pure Appl. Ceophys. 163, 373–403. Zhu, M., Graham, S., McHargue, T., 2009. The Red River Fault zone in the Yinggehai Basin, South China Sea. Tectonophysics 476, 397–417. Zhang, X., Brown, D., Deng, Y., 2011. Crustal composition model across the Bangong–Nujiang suture belt derived from INDEPTH III velocity data. J. Geophys. Eng., 8, 549-559. Zhao, D., Hasegawa, A., Horiuchi, S., 1992. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan. J. Geophys. Res., 97(B13), 19,909-19,928. Zhao, D., Hasegawa, A., Kanamori, H., 1994. Deep structure of Japan subduction zone as derived from local, regional, and teleseismic events. J. Geophys. Res., 99(B11), 22,313-22,329. Zhao, D., Wang, Z., Umino, N., Hasegawa, A., 2007. Tomographic Imaging outside a Seismic Network: Application to the Northeast Japan Arc. Bull. Seism. Soc. Am., 97(4), 1,121-1,132, doi:10.1785/0120050256. Zhuchiewicz, W., Cuong, N.Q., Bluszcz, A., Michalik, M., 2004. Quaternary sediments in the Dien Bien Phu fault zone, NW Vietnam: a record of young tectonic processes in the light of OSL-SAR dating results. Geomorphology 60, 269–302. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61829 | - |
| dc.description.abstract | 地震層析成像技術已被廣泛應用於各地不同的構造環境並實證為一能有效擷取地球內部訊息之工具。我們對複雜活動構造的了解往往取決於我們能夠解析出多寬廣、精確的構造成像。因此,擴展並提升地震層析成像的解析力一直是很重要的一項工作。本論文即試圖利用聯合反演多重資料(包括多種地震波波相與地質工程資料)來提升對地殼-上部地函速度構造之成像能力,進而幫助越南與台灣地區做更精細的構造判讀與解釋。
論文通篇主要由三個研究計畫所組成。在第一個計畫中,利用近期在北越所佈置的寬頻測站陣列與越南當地測站網所接收到之地殼Pg與上部地函Pn波資料,我們求得該區從過去以來的第一個三維P波速度模型,及其莫荷面深度變化。反演之速度模型大致與地質岩性和主要斷層構造相吻合,綜合P波速度與莫荷面形貌之結果也顯示紅河剪切帶可能為一岩石圈尺度的斷層至少切穿地殼至上部地函,上部地函沿著剪切帶分布的低速異常亦暗示著相關的熱活動異常。整體而言,北越地區因為長期的熱構造活動歷史有著相對弱的地殼與熱地函的特徵,可能有過下地殼剝離作用(Delamination)的發生。 第二個計畫是利用高密度測站網與地震和地質資料的聯合演算來解析台灣造山帶之速度結構。雖然台灣過去許多的地震層析成像研究已有相當豐碩的成果,但這些研究大多以反演P波速度(Vp)模型,或同時解算P波與S波之速度比值(Vp/Vs)為主,對於S波速度(Vs)模型則較少著墨。然而,為更加了解複雜的造山構造,在推論時同時交相驗證比對三種模型是至關重要的。但是不同研究中的模型因反演參數、模型建置、及資料多寡分布都不盡相同的情形下,難以做細部的參考對照。因此,我們期望藉由特別設計的聯合反演方法來求取彼此在解析度與一致性上都相匹配地Vp、Vs與Vp/Vs模型。在此方法中,我們也利用了遍佈全台的445處井測資料來加以約束一般傳統上地震資料所無法解析地近地表的速度構造。反演之模型能夠表現出近地表平原區真實的極低速值;透過同時參照Vp、Vs與Vp/Vs的模型也提供了豐富的構造資訊。藉此,我們能夠清楚的描繪出歐亞大陸岩石圈與隱沒的菲律賓海板塊西緣間接觸面的西傾形貌,以及南向演育的海岸山脈與弧前陸塊之進程。為了更進一步向下擴展我們模型的解析力來探討隱沒板塊間的幾何形貌,在第三個計畫裡我們接著量測並結合了遠震的資料。並且採取兩階段式的反演:先利用近震求取精確的三維本土模型(藉此修正複雜地殼構造對遠震走時的影響),再以此三維模型為初始模型來進行非線性的近、遠震聯合反演(疊代進行波線追跡且不固定模型底層入射點)。結果顯示位於台灣中北部向東隱沒的歐亞大陸板塊能向下追溯至深度約200公里,並呈現複雜的形貌,在約北緯23.2度處有一西北東南走向的撓曲現像。根據層析影像我們亦對台灣地區的板塊幾何進行了三維的描繪。 我們最後彙整與討論了各個計劃的成果,以及其未來工作的展望。另外,也將兩個在博士期間完成的子計畫一併簡介及附錄於後:其一是對甲仙地震之主餘震序列進行分析與構造探討,二是利用地震與應力之空間分析來建立北台灣地區之構造運動模型。 | zh_TW |
| dc.description.abstract | Seismic tomography technique has been widely applied to different tectonic environments around the world and proved as a powerful tool to retrieving the information of Earth’s interior. The understanding of complex tectonic processes largely relies on how extensive and accurate structural imaging we can resolve, and is therefore of primary importance to proceed. In this dissertation, we attempted to improve our imaging ability in a scale of crust-to-upper mantle by the joint inversion with multiple datasets, including various phases of seismic waves and geotechnical data, to better clarify the tectonic interpretations for the Vietnam and the Taiwan region.
The dissertation mainly consists of three projects. In the first, with a newly deployed portable broadband array and the local seismic network in northern Vietnam, we used the crustal P-wave (Pg) and uppermost-mantle head-wave (Pn) data to obtain the first local 3-D P-wave velocity model and the related Moho depth variation. Our results show a good correlation with the surface geology and major structures, and reveal that the RRSZ is likely a lithospheric-scale structure penetrating to the uppermost mantle with mantle thermal anomalies. The northern Vietnam in general appears to possess a weak crust and hot upper mantle with a long and complex thermo-tectonic history probably induced by the past delamination. In the second project, we studied the velocity structures of Taiwan orogen by jointly using the seismological and geotechnical data with a highly dense seismic network. Although the previous tomographic achievements in Taiwan region have been fruitful, most of them were P-wave velocities (Vp), or with Vp/Vs ratio jointly, but few for S-wave velocities (Vs). However, to better unravel the tectonic complexity of Taiwan, interpreting with all three indicators could be crucial. But models from different studies are hard to compare and verify to each other due to different datasets and inversion settings. Therefore, we attempted to provide a new set of Vp, Vs, and Vp/Vs models in comparable resolution and internal consistency by an elaborate joint-inversion scheme; in which a special constraint by the borehole logging data was also imposed on the near-surface part of model where is usually poor-resolved by ordinary inversion. Derived models show tremendous changes of shallow velocities than previous studies and copious information with mutual verifications of Vp, Vs, and Vp/Vs, rendering us to clearly delineate the west-dipping interaction between the Eurasian lithosphere and the subducting Philippine Sea plate, and the southward evolution of the Coastal Range and forearc basement. To further expand the model resolution to the deeper depth to explore the slab geometry beneath Taiwan region (especially for north of 23°N latitude), in the third project we measured and combined the teleseismic data into tomographic inversion. Rather than the direct joint inversion, we adopted a two-step strategy to invert an accurate local model first by local data only, and then implement a nonlinear joint inversion with the teleseismic data together (without fixing the ray-incident points at the model bottom). Results show that the deep extension of the eastward subducting Eurasian plate can be retrieved readily to ca. 200 km deep with a plausible slab deflection around the latitude 23.2°N. We then constructed a 3-D schematic model accordingly for Taiwan region. We ultimately summarized the achievements for respective projects, and their prospections for future works. In addition, two side projects done in my Ph.D period are also briefly introduced and supplemented: One is studying the out-of-ordinary Jiasian, Taiwan earthquake (Mw=6.3) for its tectonic implications, and the other is using the spatial seismicity and stress pattern to explore and construct the northern-Taiwan kinematic model. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:14:52Z (GMT). No. of bitstreams: 1 ntu-102-D98224004-1.pdf: 30680109 bytes, checksum: 4bf4a68145dc4d388f15ed79535a609d (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 論文口試委員會審定書 i
Acknowledgment ii 中文摘要 iii Abstract vi List of Figures xii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Seismic tomography 2 1.3 On the use of multiple datasets 9 1.4 Outline of dissertation 13 Chapter 2 First Local Seismic Tomography for Red River Shear Zone, northern Vietnam: Stepwise inversion employing crustal P and Pn waves 15 2.0 Abstract 15 2.1 Introduction 17 2.2 Tectonic setting 19 2.2.1 Igneous rocks in northern Vietnam 19 2.2.2 Seismic activities and featured faults 21 2.3 Data and basic data processing procedure 23 2.3.1 Data descriptions 23 2.3.2 Stepwise procedure of this study 24 2.4 Methodology 28 2.4.1 Tomographic inversion method 28 2.4.2 Earthquake relocation method 31 2.4.3 Model parameterization and 1D velocity model 33 2.5 Model resolution assessment 35 2.5.1 Ray coverage 35 2.5.2 Resolution tests and performance 36 2.6 Results and discussion 38 2.6.1 Correlations with surface geology 38 2.6.2 Velocity structures of crust 40 2.6.3 Pn velocities 42 2.6.4 Moho depth variation 43 2.6.5 Continental rheology 44 2.7 Conclusions 46 Chapter 3 Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny 49 3.0 Abstract 49 3.1 Introduction 51 3.2 Data collection and process 56 3.3 Methodology 60 3.3.1 Tomographic inversion 60 3.3.2 Near-surface correction 61 3.3.3 Regularization and preconditioning 63 3.4 Model setup and assessment 64 3.4.1 Initial 1-D velocity model and model parameterization 64 3.4.2 Model assessment 66 3.5 Results and discussion 67 3.5.1 Averaged 1-D models and near-surface effects 68 3.5.2 3-D models and sharpened slab imaging 71 3.5.3 Missing forearc-basement and reversal-faulting shortening 77 3.5.4 Subduction-collision complex: a skateboarding edge 78 3.6 Conclusions 80 Chapter 4 Retrieving the lithospheric velocity structures beneath Taiwan region by nonlinear joint inversion of local and teleseismic P-wave data: Slab continuity and deflection 82 4.0 Abstract 82 4.1 Introduction 84 4.2 Data reinforcement and inversion strategy 87 4.3 Tomographic images and implications 91 Chapter 5 Summary and miscellanea 97 5.1 Summary and prospection 97 5.2 Side projects 98 References 100 Appendices 114 A. Supplementary to Chapter 2 114 A.1 Tests on the trade-off between the crustal velocities and the Moho depth 114 B. Supplementary to Chapter 3 116 B.1 Trade-off tests on damping and smoothing 116 B.2 Synthetic tests on the velocity and source parameters 118 C. Supplementary to Chapter 4 124 C.1 Nonlinear effect of joint inversion 124 C.2 Robustness test on slab imaging 126 D. Supplementary to Chapter 5 129 D.1 Journal paper entitled “The Preliminary Study of the 4 March 2010 Mw6.3 Jiasian, Taiwan, Earthquake Sequence” 129 D.2 Journal paper entitled “Seismotectonics of northeastern Taiwan: Structural characteristics of a transitional area from wanning collision to subduction and post-collisional extension” 130 E. Publication status of works 131 Biography 132 | |
| dc.language.iso | en | |
| dc.subject | 地震層析成像 | zh_TW |
| dc.subject | 聯合反演 | zh_TW |
| dc.subject | 地震構造 | zh_TW |
| dc.subject | 井測資料 | zh_TW |
| dc.subject | 台灣造山帶 | zh_TW |
| dc.subject | 紅河剪切帶 | zh_TW |
| dc.subject | 三維板塊形貌 | zh_TW |
| dc.subject | 甲仙地震 | zh_TW |
| dc.subject | Red River shear zone | en |
| dc.subject | 3-D slab model | en |
| dc.subject | borehole logging data | en |
| dc.subject | Taiwan orogen | en |
| dc.subject | Seismic tomography | en |
| dc.subject | joint inversion | en |
| dc.subject | Jiasian earthquake | en |
| dc.subject | seismotectonics | en |
| dc.title | 聯合多重資料反演地殼-上部地函地震速度構造之成像:以越南及台灣為例 | zh_TW |
| dc.title | Imaging Crust-to-Upper Mantle Seismic Velocity Structures by Joint Inversion of Multiple Datasets: Cases of Vietnam and Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 徐澔德(J. Bruce H. Shyu),曾泰琳(Tai-Lin Tseng),黃柏壽(Bor-Shouh Huang),趙里(Li Zhao),李憲忠(Shiann-Jong Lee) | |
| dc.subject.keyword | 地震層析成像,聯合反演,地震構造,井測資料,台灣造山帶,紅河剪切帶,三維板塊形貌,甲仙地震, | zh_TW |
| dc.subject.keyword | Seismic tomography,joint inversion,seismotectonics,borehole logging data,Taiwan orogen,Red River shear zone,3-D slab model,Jiasian earthquake, | en |
| dc.relation.page | 134 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-30 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 29.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
