Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61827
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡宜洵(I-Hsun Tsai)
dc.contributor.authorYue-Hong Lien
dc.contributor.author李岳鴻zh_TW
dc.date.accessioned2021-06-16T13:14:46Z-
dc.date.available2020-06-24
dc.date.copyright2020-06-24
dc.date.issued2020
dc.date.submitted2020-06-23
dc.identifier.citation[1] S. MINAKSHISUNDARAM AND Å. PLEIJEL, Some Properties of The Eigenfunctions of The Laplace operator
on Riemannian Manifolds, Canadian J.Math (1949), 242-256.
[2] JOCHEN BRÜNING AND ERNST HEINTZE, The Asymptotic Expansion of MinakshisundaramPleijel
in Tne Equivariant Case, Duke Mathematical Journal (1984)
[3] JOCHEN BRÜNING, On The Asymptotic Expansion of Some Integrals, Arch. Math (1984)253-259
[4] PETER B. GILKEY, Invariance Theory, The Heat Equation. and The AtiyahSinger Index Theorem. (1996)
[5] IVAN G.AVRAMIDI, Heat Kernel Asympcs on Symmetric Spaces.(2006)
[6] HANS R.FISCHER, JERRY J.JUNGSTER, AND FLOYD L.WILLIAMS, The Heat Kernel on
the Two Sphere, Journal of Mathematical analysis and applications (1985), 328-334
[7] MASAYOSHI NAGASE, Expressions of the Heat Kernels on spheres by elementary functions and their recurrence relations, Saitama Math.J. (2010) 25-34
[8] KEN. RICHARDSON, The Asymptotics of Heat Kernels on Riemannian foliations, GAFA, Geom. funct. anal. (1998), 356-401
[9] KEN. RICHARDSON, The Transverse geometry of Gmanifolds and Riemannian Foliations, Illinois J.Math(2001), 517-535
[10] KEN. RICHARDSON, Traces of Heat Operators on Riemannian Foliations, AMS(2009)
[11] R. WONG, Asymptotic Approximations of integrals, SIAM(2001)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61827-
dc.description.abstract在這篇論文中,我們啟發自Jochen Brüning 及Ernst Heintze 的論文[2],延伸他們對於式子1.1 的討論,研究在特定例子下該漸進展開的係數。我們透過拉普拉思算子、熱核與群作用的基本性質,將原式轉變成以幾何性質定義的量,並且不斷透過泰勒展開式將積分化簡以求得目標係數。最後我們會發現積分內的函數如何影響係數。zh_TW
dc.description.abstractIn this thesis, we are inspired by Jochen Brüning and Ernst Heintze’s work [2] and
extend their result to achieve the coefficients of the asymptotic expansion of equation 1.1 in [2] in a specific condition. Our result will be based on their work. We will reduce the ordinary formula into an integration defined by some geometric objects via Laplacian, heat kernel and group action. Therefore, we use Taylor expansion to deal with the integration. We will find the relation between the functions in integration and the coefficients as our result.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:14:46Z (GMT). No. of bitstreams: 1
U0001-2106202014381900.pdf: 1386244 bytes, checksum: d7532ba59f9da609dc817ab0142a2925 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Heat Kernel on Riemannian Manifold and Sphere . . . . . . . . . . . 4
2.2 Group Action and Representation . . . . . . . . . . . . . . . . . . . 5
3 Computation for the coefficients . . . . . . . . . . . . . . . . . . . . . . 8
3.1 distance in the spherecoordinate
. . . . . . . . . . . . . . . . . . . . 8
3.2 1variable
integration . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.1 Study of 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.2 error function . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.3 Study of 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.4 Further Results . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 2variables
integration . . . . . . . . . . . . . . . . . . . . . . . . . 19
4 Reduction of the integration . . . . . . . . . . . . . . . . . . . . . . . . . 22
5 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
dc.language.isoen
dc.subject群作用zh_TW
dc.subject熱方程式zh_TW
dc.subject漸進展開zh_TW
dc.subject球zh_TW
dc.subjectasymptotic expansionen
dc.subjectgroup actionen
dc.subjectsphereen
dc.subjectheat equationen
dc.title球面熱核跡數在圓作用下之漸進展開zh_TW
dc.titleThe Asymptotic Expansion of The Trace of Heat Kernel on S2 under S1-Actionen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王藹農(Ai-Nung Wang),鄭日新(Jih-Hsin Cheng)
dc.subject.keyword漸進展開,熱方程式,球,群作用,zh_TW
dc.subject.keywordasymptotic expansion,heat equation,sphere,group action,en
dc.relation.page26
dc.identifier.doi10.6342/NTU202001084
dc.rights.note有償授權
dc.date.accepted2020-06-23
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
U0001-2106202014381900.pdf
  未授權公開取用
1.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved