請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61815
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 薛人愷 | |
dc.contributor.author | Wen-Shiang Chen | en |
dc.contributor.author | 陳文祥 | zh_TW |
dc.date.accessioned | 2021-06-16T13:14:17Z | - |
dc.date.available | 2018-09-02 | |
dc.date.copyright | 2013-09-02 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2013-07-30 | |
dc.identifier.citation | 1. 機械工程手冊.電機工程手冊編輯委員會, 機械工程手冊2鋼材料. 2008: 五南圖書出版股份有限公司.
2. 黃振賢, 機械材料. 2 ed. 2004: 新文京開發出版股份有限公司. 513. 3. W.F. Smith, Structure and Properties of Engineering Alloys 1993: McGraw-Hill Science/Engineering/Math. 4. M. Zhong, et al., Boundary liquation and interface cracking characterization in laser deposition of Inconel 738 on directionally solidified Ni-based superalloy. Scripta Materialia, 2005. 53(2): p. 159-164. 5. M. Montazeri and F.M. Ghaini, The liquation cracking behavior of IN738LC superalloy during low power Nd:YAG pulsed laser welding. Materials Characterization, 2012. 67(0): p. 65-73. 6. T. Baldridge, et al., Laser cladding of Inconel 690 on Inconel 600 superalloy for corrosion protection in nuclear applications. Optics and Lasers in Engineering, 2013. 51(2): p. 180-184. 7. J.M. Pereira and B.A. Lerch, Effects of heat treatment on the ballistic impact properties of Inconel 718 for jet engine fan containment applications. International Journal of Impact Engineering, 2001. 25(8): p. 715-733. 8. E. Poursaeidi, M. Aieneravaie, and M.R. Mohammadi, Failure analysis of a second stage blade in a gas turbine engine. Engineering Failure Analysis, 2008. 15(8): p. 1111-1129. 9. L. Li, et al., CO2 laser welding–brazing characteristics of dissimilar metals AZ31B Mg alloy to Zn coated dual phase steel with Mg based filler. Journal of Materials Processing Technology, 2013. 213(3): p. 361-375. 10. A.M. Saeed, et al., The effects of welding parameters on the weldability of different materials using brazing alloy fillers. Materials & Design, 2010. 31(7): p. 3339-3345. 11. S. Chen, et al., Improving interfacial reaction nonhomogeneity during laser welding–brazing aluminum to titanium. Materials & Design, 2011. 32(8–9): p. 4408-4416. 12. H. Zhang and J. Liu, Microstructure characteristics and mechanical property of aluminum alloy/stainless steel lap joints fabricated by MIG welding–brazing process. Materials Science and Engineering: A, 2011. 528(19–20): p. 6179-6185. 13. H. Klaasen, et al., Reliability of dual compounds “carbide composite+steel” produced by diffusion welding. International Journal of Refractory Metals and Hard Materials, 2010. 28(5): p. 580-586. 14. N. Wu, et al., Vacuum brazing of super-Ni/NiCr laminated composite to Cr18–Ni8 steel with NiCrP filler metal. Journal of Materials Processing Technology, 2012. 212(4): p. 794-800. 15. C.S. Wu, H.L. Wang, and Y.M. Zhang, Numerical analysis of the temperature profiles and weld dimension in high power direct-diode laser welding. Computational Materials Science, 2009. 46(1): p. 49-56. 16. C.-H. Lee and K.-H. Chang, Three-dimensional finite element simulation of residual stresses in circumferential welds of steel pipe including pipe diameter effects. Materials Science and Engineering: A, 2008. 487(1–2): p. 210-218. 17. C.D. Elcoate, et al., Three dimensional multi-pass repair weld simulations. International Journal of Pressure Vessels and Piping, 2005. 82(4): p. 244-257. 18. D. Deng and H. Murakawa, Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements. Computational Materials Science, 2006. 37(3): p. 269-277. 19. T. Wang, et al., Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with copper interlayer sheet. Transactions of Nonferrous Metals Society of China, 2010. 20(10): p. 1829-1834. 20. S. Wang and X. Wu, Investigation on the microstructure and mechanical properties of Ti–6Al–4V alloy joints with electron beam welding. Materials & Design, 2012. 36(0): p. 663-670. 21. Y. Peng, et al., Beam quality test technology and devices of electron beam welding. Vacuum, 2011. 86(3): p. 261-266. 22. S. Yan, et al., CW/PW dual-beam YAG laser welding of steel/aluminum alloy sheets. Optics and Lasers in Engineering, 2010. 48(7–8): p. 732-736. 23. G. Padmanaban and V. Balasubramanian, Effects of laser beam welding parameters on mechanical properties and microstructure of AZ31B magnesium alloy. Transactions of Nonferrous Metals Society of China, 2011. 21(9): p. 1917-1924. 24. R. Li, et al., A comparative study of laser beam welding and laser–MIG hybrid welding of Ti–Al–Zr–Fe titanium alloy. Materials Science and Engineering: A, 2011. 528(3): p. 1138-1142. 25. R.K. Shiue, S.K. Wu, and C.M. Hung, Infrared repair brazing of 403 stainless steel with a nickel-based braze alloy. Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2002. 33A: p. 1765-1773. 26. C. Sharma, D.K. Dwivedi, and P. Kumar, Effect of post weld heat treatments on microstructure and mechanical properties of friction stir welded joints of Al–Zn–Mg alloy AA7039. Materials & Design, 2013. 43(0): p. 134-143. 27. S.J. Yuan, Z.L. Hu, and X.S. Wang, Formability and microstructural stability of friction stir welded Al alloy tube during subsequent spinning and post weld heat treatment. Materials Science and Engineering: A, 2012. 558(0): p. 586-591. 28. X. Yuan, C. Yun Kang, and M.B. Kim, Microstructure and XRD analysis of brazing joint for duplex stainless steel using a Ni–Si–B filler metal. Materials Characterization, 2009. 60(9): p. 923-931. 29. F. Jalilian, M. Jahazi, and R.A.L. Drew, Microstructural evolution during transient liquid phase bonding of Inconel 617 using Ni–Si–B filler metal. Materials Science and Engineering: A, 2006. 423(1–2): p. 269-281. 30. 姜志華, 鋁合金電弧銲接及硬軟銲應用技術. 1995: 財團法人徐氏基金會 31. S.A. Mohamat, et al., The Effect of Flux Core Arc Welding (FCAW) Processes On Different Parameters. Procedia Engineering, 2012. 41(0): p. 1497-1501. 32. H.-Y. Huang, Effects of activating flux on the welded joint characteristics in gas metal arc welding. Materials & Design, 2010. 31(5): p. 2488-2495. 33. Q.-m. Li, et al., Effect of activating flux on arc shape and arc voltage in tungsten inert gas welding. Transactions of Nonferrous Metals Society of China, 2007. 17(3): p. 486-490. 34. M. Schwartz, Brazing. 2nd ed. 2003: ASM International. 35. G. Humpston and D.M. Jacobson, Principles of Soldering and Brazing. 1993, Materials Park, OH: ASM International. 36. S. Kou, Welding Metallurgy. 2nd ed. 2002: Wiley-Interscience. 37. R.D. Milner, A Survey of the Scientific Principles Related to Wetting and Spreading. Br. Weld. J., 1958. 5: p. 90-105. 38. D.L. Olson, ASM Handbook. Welding Brazing and Soldering. Vol. 6. 1990, Materials Park, OH: ASM International. 39. BMI Vacuum Furnace : http://www.bmi-fours.com/. 40. MAHLER Belt Furnace: http://www.mahlerofen.de/. 41. P. Villars, A. Prince, and H. Okamoto, Handbook of Ternary Alloy Phase Diagrams. 1995, Materials Park: ASM International. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61815 | - |
dc.description.abstract | 使用改良型的非晶質鎳鐵基VZ2106箔片硬銲304不鏽鋼基材,以提升傳統不鏽鋼銅硬銲道的抗蝕性,並且改善傳統BNi鎳基填料的硼化物脆性破壞的問題。實驗結果顯示新型的VZ2106填料不僅可成功硬銲304不鏽鋼,亦可避免銲道生成大量硼化物,其拉伸強度可提升至433MPa。由於目前不鏽鋼板式熱交換器的性能,已逐漸無法符合工業界高溫高壓的需求,研究中亦選用Inconel 625 (IN-625)合金開發次世代高性能板式熱交器。實驗中的填料分別使用非晶質鎳基MBF51箔片及鎳鐵基VZ2106箔片與銅箔片進行硬銲研究。MBF51填料之銲道主要析出物為硼化物及Nb6Ni16Si7。兩者在高溫及長時間持溫之下,硼化物可逐漸粗化並在晶界中形成非連續排列,而Nb6Ni16Si7析出相則由於IN-625基材對Si固溶度提升造成大量消失,但過高的硬銲溫度將造成基材晶粒粗化,反而使拉伸強度下降。此外,以VZ2106箔片做為填料時,結果顯示銲道主要析出物同樣為硼化物及Nb6Ni16Si7相,兩者在高溫及長時間作用下的變化狀況與在MBF51銲道中的變化相似,但剪力測試中則顯示Nb6Ni16Si7析出相為主要破裂起始源,適當的硬銲溫度控制可使Nb6Ni16Si7相大量消失,使剪力強度提升至超越IN-625基材的降伏強度。使用純銅箔片硬銲IN-625基材時,銲道的中央為富Cu/Ni相,而銲道介面上的析出物為Cr/Mo/Nb/Ni四元化合物,其剪力測試結果顯示破斷位置主要為富Cu/Ni相,銲點的剪力強度取決不同的硬銲溫度對填料流動性的影響。硬銲溫度過低時,Cu填料流動性不足,因此容易在銲道中產生缺陷;但是當硬銲溫度過高時,則Cu填料發生恆溫凝固效應,而使銲道介面出現大面積未接合處,導致剪力強度劇烈下降至200~250 MPa。研究中發現最佳的硬銲溫度為1160℃、持溫30min,其剪力試片強度可達到最大值約470 MPa。 | zh_TW |
dc.description.abstract | The modified Ni/(Fe)-based amorphous brazing foil, VZ2106, is utilized for improving corrosion resistence and mechanical properties of brazed stainless steel plate heat exchanger. The result shows that VZ2106 foil can reduce boride precipitates of brazed joint, and tensile strength of the joint is increased to 433 MPa. Because stainless plate heat exchanger can not meet the requirement of heat exchanger industry, IN-625 alloy is chosen for fabricating high performance plate heat exchanger. In this research, Ni-based amorphous foils, MBF51, V2106, and copper foil are applied in brazing IN-625 substrate. IN-625/MBF51/IN-625 brazed joints include two types of precipitates which are boride and Nb6Ni16Si7. As increasing the brazing temperature and dwell time, boride is coarsened and grows along the IN-625 grain boundary, but the amount of Nb6Ni16Si7 compound is decreased. Nevertheless, increasing the brazing temperature causes IN-625 grain coarsening which damages the tensile strength of MBF51 brazed joint. For IN-625/VZ2106/IN-625 brazed joint, both boride and Nb6Ni16Si7 phases are observed, and their microstructural evolution is similar to IN-625/MBF51/IN-625 joint. However, shear test shows that the crack is originated from Nb6Ni16Si7 phase in the IN-625/VZ2106/IN-625 brazed joint. As Nb6Ni16Si7 precipitates are disappeared from high temperature brazing, the bonding strength of VZ2106 brazed joints can exceed the yield strength of IN-625 base. For IN-625/Cu/IN-625 brazed joint is also investigated in this research. Cu/Ni rich pahse located in the middle of joint is crack initial and Cr/Mo/Nb/Ni quaternary compound is observed in the joint. Shear test indicates that different brazing temperatures affect the shear strength of brazed specimen apparently. Lower brazing temperature makes Cu filler without enough fluidity, and over elevated brazing temperature results in isothermal solidification of copper braze which induce defects of the joint. IN-625/Cu/IN-625 joint brazed at 1160℃ for 30min have the best shear strength. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T13:14:17Z (GMT). No. of bitstreams: 1 ntu-101-D99527002-1.pdf: 17078637 bytes, checksum: 42568a50486fe9002f3271d991898932 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 口試委員會審定書 i
中文摘要 ii 英文摘要 iii 目錄 iv 表目錄 vii 圖目錄 viii 第一章 前言 1 第二章 文獻回顧 2 2-1 合金簡介 2 2-1-1 304不鏽鋼 2 2-1-2 Inconel 625 2 2-2 接合研究發展概況 4 2-3 硬銲接合製程 6 2-3-1 潤濕角 7 2-3-2 硬銲接合強度主要因素 8 2-3-3 填料合金的熔融性質 10 2-4 硬銲熱處理爐 11 第三章 實驗方法與步驟 19 3-1 基材前處理 19 3-2 箔片填料 19 3-3 拉伸試驗 21 3-4 剪力試驗 21 3-5 SEM顯微組織分析 21 3-6 EPMA WDS定量分析 21 3-7 TEM顯微組織觀察及EDS半定量分析 22 第四章 304不鏽鋼基材與VZ2106填料硬銲製程 25 4-1 304SS/VZ2106/304SS硬銲接合 25 4-1-1 304SS/VZ2106(40 μm)/304SS硬銲於1165℃ 25 4-1-2 304SS/VZ2106(40 μm)/304SS硬銲於1175℃ 26 4-1-3 304SS/VZ2106(40 μm)/304SS硬銲於1185℃ 27 4-2 304SS/VZ2106(40 μm)/304SS 成分擴散深度分析 27 4-3 304SS/VZ2106(40 μm)/304SS 銲點拉伸試驗 28 第五章 使用MBF51及VZ2106兩種填料硬銲接合IN-625合金 35 5-1 IN-625/MBF51/IN-625硬銲接合 35 5-1-1 IN-625/MBF51(40 μm)/IN-625硬銲於1180℃ 35 5-1-2 IN-625/MBF51(40 μm)/IN-625硬銲於1150℃ 36 5-1-3 IN-625/MBF51(40 μm)/IN-625硬銲於1200℃ 37 5-1-4 IN-625/MBF51(40 μm)/IN-625 成分擴散深度分析 37 5-1-5 IN-625/MBF51(40 μm)/IN-625 銲點拉伸試驗 37 5-2 IN-625/VZ2106/IN-625硬銲接合 38 5-2-1 IN-625/VZ2106(40 μm)/IN-625硬銲於1150℃ 39 5-2-2 IN-625/VZ2106(40 μm)/IN-625硬銲於1180℃ 39 5-2-3 IN-625/VZ2106(40 μm)/IN-625硬銲於1200℃ 40 5-2-4 IN-625/VZ2106(80 μm)/IN-625硬銲於1150℃、1180℃及1200℃ 41 5-2-5 IN-625/VZ2106(120 μm)/IN-625硬銲於1150℃、1180℃及1200℃ 41 5-2-6 IN-625/VZ2106/IN-625於1200℃持溫30min 成分擴散深度分析 41 5-2-7 IN-625/VZ2106(40 μm)/IN-625銲點拉伸試驗 43 5-2-8 IN-625/VZ2106(40 μm)/IN-625銲點剪力試驗 43 5-2-9 IN-625/VZ2106(80 μm)/IN-625銲點剪力試驗 44 第六章 使用純Cu填料硬銲接合IN-625合金 69 6-1 IN-625/Cu/IN-625硬銲接合 69 6-1-1 IN-625/Cu(50 μm)/IN-625硬銲於1120℃ 69 6-1-2 IN-625/Cu(50 μm)/IN-625硬銲於1140℃ 70 6-1-3 IN-625/Cu(50 μm)/IN-625硬銲於1160℃ 71 6-1-4 IN-625/Cu(50 μm)/IN-625硬銲於1180℃ 71 6-1-5 IN-625/Cu(50 μm)/IN-625硬銲於1200℃ 72 6-1-6 IN-625/Cu(100 μm)/IN-625硬銲於1120℃、1140℃、1160℃、1180℃及1200℃ 73 6-1-7 IN-625/Cu(50 μm)/IN-625銲道TEM分析 73 6-1-8 IN-625/Cu(50 μm)/IN-625 成分擴散深度分析 74 6-1-9 IN-625/Cu(50 μm)/IN-625 銲點剪力試驗 76 6-1-10 IN-625/Cu(100 μm)/IN-625 銲點剪力試驗 77 第七章 結論 100 7-1 304SS與VZ2106硬銲填料接合製程 100 7-2 使用MBF51及VZ2106兩種填料硬銲接合IN-625合金 100 7-3 使用純Cu填料硬銲接合IN-625合金 102 參考文獻 103 | |
dc.language.iso | zh-TW | |
dc.title | 高性能板式熱交換器硬銲製程之研究 | zh_TW |
dc.title | The Study of Brazing High-Performance Plate Heat Exchanger | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 林招松,溫政彥,蔡履文,郭東昊 | |
dc.subject.keyword | 鎳/鐵基填料,銅填料,鎳基合金,不鏽鋼,微結構組織,剪力強度, | zh_TW |
dc.subject.keyword | Ni/(Fe)-based filler,Copper,Ni-based alloy,Stainless steel,Microstructure,Shear strength, | en |
dc.relation.page | 105 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-07-30 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 16.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。