請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61813
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張茂山(Mau-Sun Chang) | |
dc.contributor.author | Liek-Yeow Lee | en |
dc.contributor.author | 李昱耀 | zh_TW |
dc.date.accessioned | 2021-06-16T13:14:12Z | - |
dc.date.available | 2014-07-31 | |
dc.date.copyright | 2013-07-31 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-07-30 | |
dc.identifier.citation | Abdelhaleem M. RNA helicases: regulators of differentiation. Clin Biochem. 2005;38: 499-503.
Archer SK, Luu VD, de Queiroz RA, Brems S, Clayton C. Trypanosoma brucei PUF9 regulates mRNAs for proteins involved in replicative processes over the cell cycle. PLoS Pathog. 2009;5:e1000565. Botlagunta M, Vesuna F, Mironchik Y, Raman A, Lisok A, Winnard P Jr, et al. Oncogenic role of DDX3 in breast cancer biogenesis. Oncogene. 2008;27:3912-3922. Canman CE, Gilmer TM, Coutts SB, Kastan MB. Growth factor modulation of p53-mediated growth arrest versus apoptosis. Genes Dev 1995;9:600-611. Chang HY, Fan CC, Chu PC, Hong BE, Lee HJ, Chang MS. hPuf-A/KIAA0020 modulates PARP-1 cleavage upon genotoxic stress. Cancer Res. 2011;71:1126-1134. Chen D, Zheng W, Lin A, Uyhazi K, Zhao H, Lin H. Pumilio 1 suppresses multiple activators of p53 to safeguard spermatogenesis. Curr. Biol. 2012;22:420-425. Cordin O, Banroques J, Tanner NK, Linder P. The DEAD-box protein family of RNA helicases. Gene. 2006;367:17-37. Droll D, Archer S, Fenn K, Delhi P, Matthews K, Clayton C. The trypanosome Pumilio-domain protein PUF7 associates with a nuclear cyclophilin and is involved in ribosomal RNA maturation. FEBS Lett. 2010;584:1156-1162. Edwards TA, Pyle SE, Wharton RP, Aggarwal AK. Structure of Pumilio reveals similarity between RNA and peptide binding motifs. Cell. 2001;105:281-289. Galgano A, Forrer M, Jaskiewicz L, Kanitz A, Zavolan M, Gerber AP. Comparative analysis of mRNA targets for human PUF-family proteins suggests extensive interaction with the miRNA regulatory system. PLoS One. 2008;3:e3164. Gu W, Deng Y, Zenklusen D, Singer RH. A new yeast PUF family protein, Puf6p, represses ASH1 mRNA translation and is required for its localization. Genes Dev. 2004;18:1452-1465. Harvey JM, Clark GM, Osborne CK, Allred DC. Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol. 1999;17:1474-1481. Huang JS, Chao CC, Su TL, Yeh SH, Chen DS, Chen CT, et al. Diverse cellular transformation capability of overexpressed genes in human hepatocellular carcinoma. Biochem Biophys Res Commun. 2004;315:950-958. Jackson JS Jr, Houshmandi SS, Lopez Leban F, Olivas WM. Recruitment of the Puf3 protein to its mRNA target for regulation of mRNA decay in yeast. RNA. 2004; 10:1625–1636. Kadyrova LY, Habara Y, Lee TH, Wharton RP. Translational control of maternal Cyclin B mRNA by Nanos in the Drosophila germline. Development. 2007; 134:1519-1527. Kaye JA, Rose NC, Goldsworthy B, Goga A, L’Etoile ND. A 3'-UTR pumilio-binding element directs translational activation in olfactory sensory neurons. Neuron. 2009;61:57-70. Kedde M, van Kouwenhove M, Zwart W, Oude Vrielink JA, Elkon R, and Agami R. A Pumilio-induced RNA structure switch in p27-3'UTR controls miR-221 and miR-222 accessibility. Nat. Cell Biol. 2010;12:1014-1020. Kim JH, You KR, Kim IH, Cho BH, Kim CY, Kim DG. Over-expression of the ribosomal protein L36a gene is associated with cellular proliferation in hepatocellular carcinoma. Hepatology. 2004;39:129-138. Kuo MW, Wang SH, Chang JC, Chang CH, Huang LJ, Lin HH, et al. A novel puf-A gene predicted from evolutionary analysis is involved in the development of eyes and primordial germ-cells. PLoS One. 2009;4:e4980. Lacroix M, Leclercq G. Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat. 2004;83:249-289. Loreni F, Mancino M, Biffo S. Translation factors and ribosomal proteins control tumor onset and progression: how? Oncogene. 2013;Epub ahead of print. doi: 10.1038/onc.2013.153. Lu G, Dolgner SJ, Hall TM. Understanding and engineering RNA sequence specificity of PUF proteins. Curr Opin Struct Biol. 2009;19:110-5. Miller MA, Olivas WM. Roles of Puf proteins in mRNA degradation and translation. Wiley Interdiscip Rev RNA. 2011;2:471-492. Pique M, Lopez JM, Foissac S, Guigo R, Mendez R. A combinatorial code for CPE-mediated translational control. Cell. 2008;132:434-448. Qian YW, WangYC, Hollingsworth RE Jr, Jones D, Ling N, Lee EY. A retinoblastoma-binding protein related to a negative regulator of Ras in yeast. Nature. 1993;364:648–52. Scuto A, Zhang H, Zhao H, Rivera M, Yeatman TJ, Jove R, et al. RbAp48 regulates cytoskeletal organization and morphology by increasing K-Ras activity and signaling through mitogen-activated protein kinase. Cancer Res. 2007;67:10317-10324. Van Etten J, Schagat TL, Hrit J, Weidmann CA, Brumbaugh J, Coon JJ, et al. Human Pumilio proteins recruit multiple deadenylases to efficiently repress messenger RNAs. J Biol Chem. 2012;287:36370-36383. Wang X, McLachlan J, Zamore PD, Hall TM. Modular recognition of RNA by a human Pumilio-homology domain. Cell. 2002;110:501-512. Wang X, Zamore PD, Hall TM. Crystal structure of a Pumilio homology domain. Mol Cell. 2001;7:855-865. Wharton RP, Sonoda J, Lee T, Patterson M, Murata Y. The Pumilio RNA-binding domain is also a translational regulator. Mol. Cell. 1998;1:863-872. Wharton RP, Sonoda J, Lee T, Patterson M, Murata Y. The Pumilio RNA-binding domain is also a translational regulator. Mol Cell. 1998;1:863-872. Wickens M, Bernstein DS, Kimble J, Parker R. A PUF family portrait: 3'UTR regulation as a way of life. Trends Genet. 2002;18:150-157. Zhang B, Gallegos M, Puoti A, Durkin E, Fields S, Kimble J, et al. A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line. Nature. 1997;390:477-484. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61813 | - |
dc.description.abstract | Human Puf-A (hPuf-A) 是近幾年被發現的RNA結合蛋白Puf家族的新成員。Puf這一類蛋白會透過與目標mRNA的結合進而去調控目標mRNA的穩定性及促進其降解。藉由電腦模擬分析顯示hPuf-A的Puf domain含有6個Puf repeat且其蛋白質構形明顯有別於含有8個Puf repeat的典型Puf蛋白。而本實驗室先前的研究發現, 當細胞遭受到基因毒性物質傷害壓力時, 原本位處於核仁中的hPuf-A會釋出到核質, 進而去抑制PARP-1蛋白被凋亡蛋白酵素 caspases的切割、分解, 從而提高細胞的存活率。目前為止, 我們對於hPuf-A的了解並不多, 其在細胞裡所扮演的角色及生理上的調控功能尚存在很多的未知, 且有待我們去發掘。從Ductal carcinoma in situ (DCIS)、第一期至第四期的乳癌病人腫瘤組織的免疫組織染色結果中, 顯示hPuf-A的表現隨著乳癌期數的增加而增加, 並且hPuf-A的表現程度與乳癌臨床期的進程具有統計上的關聯性 (p=0.005)。將乳癌細胞株MDA-MB-231及T47D的內源性hPuf-A表現抑制後,發現這會降低癌細胞形成細胞群落的能力。相反的, 在MDA-MB-231乳癌細胞中大量表現hPuf-A則會促進癌細胞的群落形成能力且形成較大的細胞群落。在異種移植實驗 (xenograft assay)中, 我們將hPuf-A表現抑制 (hPuf-A-silenced)及hPuf-A大量表現的MDA-MB-231 乳癌細胞經由皮下注射植入裸鼠身上後發現, hPuf-A的大量表現會促進癌細胞的腫瘤生成。值得一提的是, DDX3及RbAp48的蛋白隨著hPuf-A表現被抑制後, 它們的表現也跟著下降了。其原因有可能是hPuf-A藉由結合DDX3及RbAp48蛋白的mRNA進而調控其表現。另外, 透過次世代定序, 發現hPuf-A會與許多核糖蛋白(ribosomal proteins)的mRNA結合。而此結合是否具有調控的功能或生理上的意義尚有值得被探討的空間。
總結, 據我們的研究顯示hPuf-A的大量表現會促進乳癌的腫瘤生成,且其機制有可能是藉由結合DDX3及RbAp48的mRNA進而影響其蛋白表現。 | zh_TW |
dc.description.abstract | Human Puf-A (hPuf-A) is a novel member of the RNA-binding protein, Puf family which regulates mRNA translation and decay. Computer modeling reveals that hPuf-A contains 6 Puf repeats instead of the 8-repeat Puf repeat domain and is structurally distinct from the canonical Puf proteins. In the previous study, we discovered that hPuf-A translocates from the nucleolus to the nucleoplasm upon genotoxic stress to prevent PARP-1 from caspases cleavage and degradation, thus promotes cell viability. However, the physiological functions of hPuf-A are still remained many to be discovered. In this study, we investigated the role of hPuf-A in promotion of breast cancer tumorigenesis. The immunohistochemical stainings of breast cancer specimens with clinical stage of Ductal carcinoma in situ (DCIS), stage I, II, III, IV showed that hPuf-A was upregulated in tumors with more advanced clinical stage. The expression levels of hPuf-A were significantly correlated with the clinical stage progression (P=0.005). Silencing the endogenous hPuf-A expression reduced the colony forming ability of MDA-MB-231 and T47D breast cancer cells. By contrast, overexpression of hPuf-A in MDA-MB-231 cells led to enhanced colony formation and colony size. Xenograft assays by subcutaneous injection of hPuf-A-silenced and hPuf-A overexpressing MDA-MB-231 cells into nude mice further demonstrated the tumorigenicity of hPuf-A. Interestingly, the silence of hPuf-A resulted in reduced expressions of DDX3 and RbAp48. The reduced expressions of DDX3 and RbAp48 might be regulated by the association of hPuf-A with DDX3 and RbAp48 mRNAs. Besides, the next generation sequencing revealed new potential mRNA targets of hPuf-A, and many of them belong to ribosomal proteins.
Overall, our results indicated that the upregulation of hPuf-A promotes breast cancer tumorigenesis. The underlying mechanism might be the regulation of hPuf-A to its associated mRNAs, which are DDX3 and RbAp48. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T13:14:12Z (GMT). No. of bitstreams: 1 ntu-102-R00b46001-1.pdf: 3216885 bytes, checksum: ee455c03ee9a9e2bb43c239a3b0be149 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 中文摘要...I
Abstract...III Content...V 1. Introduction 1.1. Puf proteins...1 1.1.1. Characteristic of Puf proteins...1 1.1.2. Biological roles of Puf proteins...2 1.1.3. The mechanisms of RNA-binding and translational regulation of Puf proteins...2 1.2. hPuf-A protein...3 1.3. The purpose of this study...3 2. Materials and methods 2.1. Antibodies...5 2.2. Cell culture...5 2.3. Small-interfering RNA (siRNA) transfection...6 2.4. Immunoblotting analysis...6 2.5. Lentiviral expression of hPuf-A...7 2.6. Lentiviral depletion of DDX3 and RbAp48...8 2.7. MTT assay...8 2.8. Colony formation assay...8 2.9. Xenograft assay...9 2.10. RNA immunoprecipitation assay...9 2.11. Reverse transcription-polymerase chain reaction (RT-PCR) analysis...10 2.12. Immunohistochemical staining analysis...11 2.13. Cell cycle analysis...12 2.14. Next generation sequencing analysis...13 2.15. Statistical analyses...14 3. Results 3.1. Expression of hPuf-A in breast cancer specimens and breast cancer cell lines...15 3.2. The effect of hPuf-A on breast cancer cell proliferation...16 3.3. Colony forming ability of hPuf-A-silenced and hPuf-A overexpressing breast cancer cells...16 3.4. Overexpression of hPuf-A promotes in vivo tumorigenesis...17 3.5. The tumorigenicity of hPuf-A is not regulated by the promotion of cell cycle progression...18 3.6. The expression of RbAp48 and DDX3 are regulated by hPuf-A...18 3.7. hPuf-A associates with RbAp48 and DDX3 mRNAs...19 3.8. The silence of DDX3 or RbAp48 protein expression reduces the colony forming ability of hPuf-A overexpressing cells...19 3.9. Next generation sequencing reveals other potential hPuf-A-associated mRNAs...20 4. Discussion...22 5. Figures and legends Figure 1. Expression of hPuf-A in breast cancer patients’ tissue samples and breast cancer cell lines...26 Table 1. Clinicopathologic characteristics of patient samples and expression of hPuf-A in breast cancer...28 Table 2. Correlation between clinicopathologic characteristics of patient samples and expression of hPuf-A in breast cancer...29 Figure 2. Relative quantitative results of hPuf-A IHC staining in breast cancer specimens...30 Figure 3. The effect of hPuf-A on breast cancer cell proliferation...31 Figure 4. Colony forming ability of hPuf-A-silenced or overexpressing breast cancer cells...32 Figure 5.Colony forming ability of hPuf-A-silenced T47D breast cancer cells...34 Figure 6. Promotion of tumorigenicity by hPuf-A in nude mice...35 Figure 7. Cell cycle analysis of hPuf-A-silenced of hPuf-A overexpressing cells...36 Figure 8. The regulation of protein expressions by hPuf-A...37 Figure 9. The association of hPuf-A with its target mRNAs...38 Figure 10. Colony formation assay by silencing DDX3 or RbAp48 expression in hPuf-A overexpressing MDA-MB-231 breast cancer cells...39 Figure 11. Next generation sequencing of hPuf-A-associated mRNAs...41 Figure 12. The proposed model of hPuf-A on promotion of breast cancer tumorigenesis...42 Figure 13. Plasmid constructs for luciferase reporter assay...43 6. References...44 7. Appendices...48 | |
dc.language.iso | en | |
dc.title | hPuf-A與乳癌腫瘤生成之關係探討 | zh_TW |
dc.title | Upregulated hPuf-A promotes breast cancer tumorigenesis | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張震東(Geen-Dong Chang),余榮熾(Lung-Chih Yu),陳宏文(Hungwen Chen),冀宏源(Hung-Yuan (Peter) | |
dc.subject.keyword | 人類Puf-A,RNA結合蛋白,乳癌,DDX3蛋白,RbAp48蛋白, | zh_TW |
dc.subject.keyword | hPuf-A,RNA-binding protein,breast cancer,DDX3,RbAp48, | en |
dc.relation.page | 49 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-07-30 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科學研究所 | zh_TW |
顯示於系所單位: | 生化科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 3.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。