請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61807完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳佩燁(Rita Pei-Yeh Chen) | |
| dc.contributor.author | Che Yang | en |
| dc.contributor.author | 楊哲 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:13:58Z | - |
| dc.date.available | 2016-08-06 | |
| dc.date.copyright | 2013-08-06 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-30 | |
| dc.identifier.citation | Alper T, Cramp WA, Haig DA, Clarke MC (1967) Does the agent of scrapie replicate without nucleic acid? Nature 214: 764-766
Alper T, Haig DA, Clarke MC (1966) The exceptionally small size of the scrapie agent. Biochemical and biophysical research communications 22: 278-284 Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181: 223-230 Bacchiocchi C, Graceffa P, Lehrer SS (2004) Myosin-induced movement of alphaalpha, alphabeta, and betabeta smooth muscle tropomyosin on actin observed by multisite FRET. Biophysical journal 86: 2295-2307 Baskakov IV, Legname G, Baldwin MA, Prusiner SB, Cohen FE (2002) Pathway complexity of prion protein assembly into amyloid. The Journal of biological chemistry 277: 21140-21148 Belay ED (1999) Transmissible spongiform encephalopathies in humans. Annual review of microbiology 53: 283-314 Biasini E, Turnbaugh JA, Unterberger U, Harris DA (2012) Prion protein at the crossroads of physiology and disease. Trends in Neurosciences 35: 92-103 Bruce ME, Will RG, Ironside JW, McConnell I, Drummond D, Suttie A, McCardle L, Chree A, Hope J, Birkett C, Cousens S, Fraser H, Bostock CJ (1997) Transmissions to mice indicate that 'new variant' CJD is caused by the BSE agent. Nature 389: 498-501 Bueler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M, Weissmann C (1993) Mice devoid of PrP are resistant to scrapie. Cell 73: 1339-1347 Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annual review of neuroscience 26: 267-298 Chandler RL (1961) Encephalopathy in mice produced by inoculation with scrapie brain material. Lancet 1: 1378-1379 Chiang YW, Zheng TY, Kao CJ, Horng JC (2009) Determination of interspin distance distributions by cw-ESR is a single linear inverse problem. Biophysical journal 97: 930-936 Chuang CC, Liao TY, Chen EH, Chen RP (2013) How do amino acid substitutions affect the amyloidogenic properties and seeding efficiency of prion peptides. Amino acids Cobb NJ, Sonnichsen FD, McHaourab H, Surewicz WK (2007) Molecular architecture of human prion protein amyloid: a parallel, in-register beta-structure. Proceedings of the National Academy of Sciences of the United States of America 104: 18946-18951 Colby DW, Prusiner SB (2011) Prions. Cold Spring Harbor perspectives in biology 3: a006833 Cuille J, Chelle P-L (1936) La maladie dite tremblante du mouton est-elle inoculable ? Comptes rendus hebdomadaires des seances de l'Academie des Sciences 203: 1552-1554 Deleault NR, Piro JR, Walsh DJ, Wang F, Ma J, Geoghegan JC, Supattapone S (2012) Isolation of phosphatidylethanolamine as a solitary cofactor for prion formation in the absence of nucleic acids. Proceedings of the National Academy of Sciences of the United States of America 109: 8546-8551 DeMarco ML (2004) From conversion to aggregation: Protofibril formation of the prion protein. Proceedings of the National Academy of Sciences 101: 2293-2298 Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nature reviews Molecular cell biology 6: 197-208 Gajdusek DC, Gibbs CJ, Alpers M (1966) Experimental transmission of a Kuru-like syndrome to chimpanzees. Nature 209: 794-796 Gibbs CJ, Jr., Gajdusek DC, Asher DM, Alpers MP, Beck E, Daniel PM, Matthews WB (1968) Creutzfeldt-Jakob disease (spongiform encephalopathy): transmission to the chimpanzee. Science 161: 388-389 Govaerts C, Wille H, Prusiner SB, Cohen FE (2004) Evidence for assembly of prions with left-handed beta-helices into trimers. Proceedings of the National Academy of Sciences of the United States of America 101: 8342-8347 Griffith JS (1967) Self-replication and scrapie. Nature 215: 1043-1044 Grigoryants VM, Veselov AV, Scholes CP (2000) Variable velocity liquid flow EPR applied to submillisecond protein folding. Biophysical journal 78: 2702-2708 Gustiananda M, Liggins JR, Cummins PL, Gready JE (2004) Conformation of prion protein repeat peptides probed by FRET measurements and molecular dynamics simulations. Biophysical journal 86: 2467-2483 Haas E, Wilchek M, Katchalski-Katzir E, Steinberg IZ (1975) Distribution of end-to-end distances of oligopeptides in solution as estimated by energy transfer. Proceedings of the National Academy of Sciences of the United States of America 72: 1807-1811 Hadlow WJ (1959) Scrapie and kuru. Lancet: 289-290 Helmus JJ, Surewicz K, Nadaud PS, Surewicz WK, Jaroniec CP (2008) Molecular conformation and dynamics of the Y145Stop variant of human prion protein in amyloid fibrils. Proceedings of the National Academy of Sciences of the United States of America 105: 6284-6289 Henderson R (2004) Realizing the potential of electron cryo-microscopy. Quarterly reviews of biophysics 37: 3-13 Heyduk T (2002) Measuring protein conformational changes by FRET/LRET. Current opinion in biotechnology 13: 292-296 Hink MA, Bisselin T, Visser AJ (2002) Imaging protein-protein interactions in living cells. Plant molecular biology 50: 871-883 Horiuchi M, Yamazaki N, Ikeda T, Ishiguro N, Shinagawa M (1995) A cellular form of prion protein (PrPC) exists in many non-neuronal tissues of sheep. The Journal of general virology 76 (Pt 10): 2583-2587 Hsiao KK, Scott M, Foster D, Groth DF, DeArmond SJ, Prusiner SB (1990) Spontaneous neurodegeneration in transgenic mice with mutant prion protein. Science 250: 1587-1590 Hubbell WL, Altenbach C (1994) Investigation of structure and dynamics in membrane proteins using site-directed spin labeling. Current opinion in structural biology 4: 566-573 Ikegami Y, Ito M, Isomura H, Momotani E, Sasaki K, Muramatsu Y, Ishiguro N, Shinagawa M (1991) Pre-clinical and clinical diagnosis of scrapie by detection of PrP protein in tissues of sheep. The Veterinary record 128: 271-275 Jackson GS, Hosszu LL, Power A, Hill AF, Kenney J, Saibil H, Craven CJ, Waltho JP, Clarke AR, Collinge J (1999) Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 283: 1935-1937 Jarrett JT, Lansbury PT, Jr. (1993) Seeding 'one-dimensional crystallization' of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73: 1055-1058 Kanaani J, Prusiner SB, Diacovo J, Baekkeskov S, Legname G (2005) Recombinant prion protein induces rapid polarization and development of synapses in embryonic rat hippocampal neurons in vitro. Journal of neurochemistry 95: 1373-1386 Knaus KJ, Morillas M, Swietnicki W, Malone M, Surewicz WK, Yee VC (2001) Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nature structural biology 8: 770-774 Koch MH, Vachette P, Svergun DI (2003) Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution. Quarterly reviews of biophysics 36: 147-227 Kretzschmar HA, Prusiner SB, Stowring LE, DeArmond SJ (1986) Scrapie prion proteins are synthesized in neurons. The American journal of pathology 122: 1-5 Kumar J, Sreeramulu S, Schmidt TL, Richter C, Vonck J, Heckel A, Glaubitz C, Schwalbe H (2010) Prion protein amyloid formation involves structural rearrangements in the C-terminal domain. Chembiochem : a European journal of chemical biology 11: 1208-1213 Lakowicz JR, Gryczynski I, Wiczk W, Laczko G, Prendergast FC, Johnson ML (1990) Conformational distributions of melittin in water/methanol mixtures from frequency-domain measurements of nonradiative energy transfer. Biophysical chemistry 36: 99-115 Langedijk JP, Fuentes G, Boshuizen R, Bonvin AM (2006) Two-rung model of a left-handed beta-helix for prions explains species barrier and strain variation in transmissible spongiform encephalopathies. Journal of molecular biology 360: 907-920 Lee LY, Chen RP (2007) Quantifying the sequence-dependent species barrier between hamster and mouse prions. Journal of the American Chemical Society 129: 1644-1652 Lee SW, Mou Y, Lin SY, Chou FC, Tseng WH, Chen CH, Lu CY, Yu SS, Chan JC (2008) Steric zipper of the amyloid fibrils formed by residues 109-122 of the Syrian hamster prion protein. Journal of molecular biology 378: 1142-1154 Liberski PP, Ironside JW (2004) An outline of the neuropathology of transmissible spongiform encephalopathies (prion diseases). Folia neuropathologica / Association of Polish Neuropathologists and Medical Research Centre, Polish Academy of Sciences 42 Suppl B: 39-58 Linden R, Martins VR, Prado MA, Cammarota M, Izquierdo I, Brentani RR (2008) Physiology of the prion protein. Physiological reviews 88: 673-728 Lu X, Wintrode PL, Surewicz WK (2007) Beta-sheet core of human prion protein amyloid fibrils as determined by hydrogen/deuterium exchange. Proceedings of the National Academy of Sciences of the United States of America 104: 1510-1515 McHaourab HS, Lietzow MA, Hideg K, Hubbell WL (1996) Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics. Biochemistry 35: 7692-7704 Miki M, Makimura S, Sugahara Y, Yamada R, Bunya M, Saitoh T, Tobita H (2012) A three-dimensional FRET analysis to construct an atomic model of the actin-tropomyosin-troponin core domain complex on a muscle thin filament. Journal of molecular biology 420: 40-55 Mouillet-Richard S, Laurendeau I, Vidaud M, Kellermann O, Laplanche JL (1999) Prion protein and neuronal differentiation: quantitative analysis of prnp gene expression in a murine inducible neuroectodermal progenitor. Microbes and infection / Institut Pasteur 1: 969-976 Oesch B, Westaway D, Walchli M, McKinley MP, Kent SB, Aebersold R, Barry RA, Tempst P, Teplow DB, Hood LE, et al. (1985) A cellular gene encodes scrapie PrP 27-30 protein. Cell 40: 735-746 Oikawa H, Suzuki Y, Saito M, Kamagata K, Arai M, Takahashi S (2013) Microsecond dynamics of an unfolded protein by a line confocal tracking of single molecule fluorescence. Scientific reports 3: 2151 Okamura Y, Kondo S, Sase I, Suga T, Mise K, Furusawa I, Kawakami S, Watanabe Y (2000) Double-labeled donor probe can enhance the signal of fluorescence resonance energy transfer (FRET) in detection of nucleic acid hybridization. Nucleic acids research 28: E107 Pammer J, Cross HS, Frobert Y, Tschachler E, Oberhuber G (2000) The pattern of prion-related protein expression in the gastrointestinal tract. Virchows Archiv : an international journal of pathology 436: 466-472 Pammer J, Weninger W, Tschachler E (1998) Human keratinocytes express cellular prion-related protein in vitro and during inflammatory skin diseases. The American journal of pathology 153: 1353-1358 Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE, et al. (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proceedings of the National Academy of Sciences of the United States of America 90: 10962-10966 Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216: 136-144 Prusiner SB (1998) Prions. Proceedings of the National Academy of Sciences of the United States of America 95: 13363-13383 Prusiner SB, Groth D, Serban A, Koehler R, Foster D, Torchia M, Burton D, Yang SL, DeArmond SJ (1993) Ablation of the prion protein (PrP) gene in mice prevents scrapie and facilitates production of anti-PrP antibodies. Proceedings of the National Academy of Sciences of the United States of America 90: 10608-10612 Prusiner SB, Scott M, Foster D, Pan KM, Groth D, Mirenda C, Torchia M, Yang SL, Serban D, Carlson GA, et al. (1990) Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 63: 673-686 Riek R, Hornemann S, Wider G, Billeter M, Glockshuber R, Wuthrich K (1996) NMR structure of the mouse prion protein domain PrP(121-231). Nature 382: 180-182 Robinson JM, Dong WJ, Cheung HC (2003) Can Forster resonance energy transfer measurements uniquely position troponin residues on the actin filament? A case study in multiple-acceptor FRET. Journal of molecular biology 329: 371-380 Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nature methods 5: 507-516 Safar J, Prusiner SB (1998) Molecular studies of prion diseases. Progress in brain research 117: 421-434 Saini S, Singh H, Bagchi B (2006) Fluorescence resonance energy transfer (FRET) in chemistry and biology: Non-Forster distance dependence of the FRET rate. J Chem Sci 118: 23-35 Sang JC, Lee CY, Luh FY, Huang YW, Chiang YW, Chen RP (2012) Slow spontaneous alpha-to-beta structural conversion in a non-denaturing neutral condition reveals the intrinsically disordered property of the disulfide-reduced recombinant mouse prion protein. Prion 6: 489-497 Sigurdsson B (1954) Rida, a chronic encephalitis of sheep. With general remarks on infections, which develop slowly, and some of their special characteristics. Br Vet J 110: 341-354 Silveira JR, Raymond GJ, Hughson AG, Race RE, Sim VL, Hayes SF, Caughey B (2005) The most infectious prion protein particles. Nature 437: 257-261 Stahl N, Baldwin MA, Teplow DB, Hood L, Gibson BW, Burlingame AL, Prusiner SB (1993) Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry 32: 1991-2002 Stopar D, Strancar J, Spruijt RB, Hemminga MA (2005) Exploring the local conformational space of a membrane protein by site-directed spin labeling. Journal of chemical information and modeling 45: 1621-1627 Struckmeier J, Wahl R, Leuschner M, Nunes J, Janovjak H, Geisler U, Hofmann G, Jahnke T, Muller DJ (2008) Fully automated single-molecule force spectroscopy for screening applications. Nanotechnology 19: 384020 Sun Y, Day RN, Periasamy A (2011) Investigating protein-protein interactions in living cells using fluorescence lifetime imaging microscopy. Nature protocols 6: 1324-1340 Surewicz WK, Apostol MI (2011) Prion protein and its conformational conversion: a structural perspective. Topics in current chemistry 305: 135-167 Swietnicki W, Morillas M, Chen SG, Gambetti P, Surewicz WK (2000) Aggregation and fibrillization of the recombinant human prion protein huPrP90-231. Biochemistry 39: 424-431 Talaga DS, Lau WL, Roder H, Tang J, Jia Y, DeGrado WF, Hochstrasser RM (2000) Dynamics and folding of single two-stranded coiled-coil peptides studied by fluorescent energy transfer confocal microscopy. Proceedings of the National Academy of Sciences of the United States of America 97: 13021-13026 Torres J, Stevens TJ, Samso M (2003) Membrane proteins: the 'Wild West' of structural biology. Trends in biochemical sciences 28: 137-144 Tycko R, Savtchenko R, Ostapchenko VG, Makarava N, Baskakov IV (2010) The alpha-helical C-terminal domain of full-length recombinant PrP converts to an in-register parallel beta-sheet structure in PrP fibrils: evidence from solid state nuclear magnetic resonance. Biochemistry 49: 9488-9497 Van Doorslaer S, Desmet F (2008) The Power of Using Continuous‐Wave and Pulsed Electron Paramagnetic Resonance Methods for the Structure Analysis of Ferric Forms and Nitric Oxide‐Ligated Ferrous Forms of Globins. 437: 287-310 Walsh P, Simonetti K, Sharpe S (2009) Core structure of amyloid fibrils formed by residues 106-126 of the human prion protein. Structure 17: 417-426 Wegmann S, Miesbauer M, Winklhofer KF, Tatzelt J, Muller DJ (2008) Observing fibrillar assemblies on scrapie-infected cells. Pflugers Archiv : European journal of physiology 456: 83-93 Will RG, Ironside JW, Zeidler M, Cousens SN, Estibeiro K, Alperovitch A, Poser S, Pocchiari M, Hofman A, Smith PG (1996) A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347: 921-925 Wille H, Bian W, McDonald M, Kendall A, Colby DW, Bloch L, Ollesch J, Borovinskiy AL, Cohen FE, Prusiner SB, Stubbs G (2009) Natural and synthetic prion structure from X-ray fiber diffraction. Proceedings of the National Academy of Sciences of the United States of America 106: 16990-16995 Wille H, Michelitsch MD, Guenebaut V, Supattapone S, Serban A, Cohen FE, Agard DA, Prusiner SB (2002) Structural studies of the scrapie prion protein by electron crystallography. Proceedings of the National Academy of Sciences of the United States of America 99: 3563-3568 Yang LL, Kao MW, Chen HL, Lim TS, Fann W, Chen RP (2012) Observation of protein folding/unfolding dynamics of ubiquitin trapped in agarose gel by single-molecule FRET. European biophysics journal : EBJ 41: 189-198 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61807 | - |
| dc.description.abstract | 普立昂疾病為一類致命且具傳染力之神經退化性疾病,主要病徵為在人類或動物中樞神經系統中產生異常纖維性澱粉堆疊進而造成海綿狀病變。正常的普立昂蛋白(PrPC)以α螺旋為主要結構且執行正常生理功能;當產生普立昂疾病時,蛋白結構會轉變為以β摺板為主的致病性、堆疊型普立昂蛋白(PrPSc),此異常的分子結構轉變即是造成細胞毒性之主要原因。但至今,我們仍然不明白有哪些二級結構以及胺基酸參與在普立昂蛋白結構轉變的過程。本實驗室先前的研究發現:移除雙硫鍵的老鼠普立昂蛋白在中性且近乎生理環境的條件下,會進行自發性的結構轉變,並且能夠利用中性溶液固定此重組普立昂蛋白在特定的結構狀態,基於先前的重要發現,使我們得以詳細分析普立昂蛋白結構轉變的機制。
本篇論文主要著重於觀察普立昂蛋白中三段α螺旋在整體結構轉變時,α螺旋局部二級結構變化,並利用電子自旋共振、圓二色光譜儀、穿透式電子顯微鏡、分析級超高速離心及單分子螢光共振能量轉換等技術研究此結構轉換的過程。本篇結果顯示:helix 1以及helix 3在整體結構轉變至β型態時仍會保持α螺旋結構;然而helix 2在整體結構轉變為β型態時,α螺旋則會完全解開,顯示helix 2參與蛋白整體的結構變化。當蛋白整體結構在β型態時,helix 2會產生分子間作用的現象,說明helix 2間的作用力穩定β-oligomers結構;而普立昂蛋白形成纖維狀結構時,helix 2和helix 3更進一步參與纖維性澱粉核心(amyloid core)的形成,並搭配著helix 1或是loop上的殘基提供額外的分子間作用力穩定整體纖維狀結構。 | zh_TW |
| dc.description.abstract | Prion diseases are not only fetal but also infectious neurodegenerative disorders. The critical molecular event of prion diseases is the structural conversion of a normal cellular prion protein, PrPC, into a misfolded, infectious form, PrPSc. The overall structure of the prion protein transits from α- to β-dominant state, giving rise to formation of toxic amyloid fibrils. Up to now, the structural transition mechanism is still elusive. Recently, our lab found that disulfide-bond reduced mouse prion protein could be fixed in α-helical or β-rich structure under neutral condition. This finding provides us an opportunity to dissect the conversion process in details. To examine the role of three α-helices in mPrP during this structural conversion process, site-directed spin-labeling technique (SDSL), electron spin resonance spectroscopy (ESR), analytical ultracentrifugation (AUC), transmission electron microscopy (TEM), circular dichroism spectroscopy (CD), and single molecule fluorescence resonance energy transfer (smFRET) were employed. In this study, we suggest that helix 1 and helix 3 are intact no matter in α- or β-state; however, helix 2 is unfolded after structural converted to β-oligomers. Only the residues in helix 2 are involved in intermolecular association in β-state, suggesting helix 2 is crucial for oligomerization process. In addition, the tertiary structural contact between helix 3 and loop is dragged open after structural transition. In fibril state, helix 2 and helix 3 cooperatively participate in association of amyloid core and helix 1 or loop supplies peripheral interaction to stabilize the fibril structure as well. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:13:58Z (GMT). No. of bitstreams: 1 ntu-102-R00b46010-1.pdf: 8235730 bytes, checksum: 972d5fecc57b844b1b5334efe1614057 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 謝辭 i
中文摘要 iii Abstract iv Abbreviations vi Contents ix Figure contents xiii Table contents xvii Chapter 1 Introductions 1 1.1 Prion diseases 1 1.2 The structure and physiological function of PrPC 5 1.3 Conversion mechanism of PrP isoforms 9 1.4 Models of PrPSc 11 1.5 Electron Spin Resonance (ESR) 16 1.5.1 Background of ESR 16 1.5.2 Spin-spin distance 20 1.5.3 Pulsed dipolar ESR 22 1.6 Single molecule fluorescence resonance energy transfer (smFRET) 26 1.7 Previous studies in our lab 31 1.8 The aims of this thesis 32 Chapter 2 Materials and Methods 35 2.1 Materials 35 2.1.1 Water 35 2.1.2 Chemicals 35 2.2 Methods 39 2.2.1 Site-directed mutagenesis and constructs cloning 39 2.2.2 Small-scale protein expression 41 2.2.3 Large-scale protein expression, purification, and identification 41 2.2.3.1 Glycerol cell stock preparation 41 2.2.3.2 Expression of recombinant mouse PrP in E. coli and cell lysis 42 2.2.3.3 Metal-ion affinity chromatography (IMAC) 43 2.2.3.4 HPLC purification and protein identification 43 2.2.4 Secondary structure analysis by circular dichroism and CDPro 45 2.2.5 Analytical ultracentrifugation (AUC) 46 2.2.6 Transmission electron microscopy (TEM) 47 2.2.7 Fibril formation and ThT (thioflavin T) binding assay 47 2.2.8 Spin-labeling and purification 49 2.2.9 Electron spin resonance (ESR) 50 2.2.10 Cytotoxicity assay 52 2.2.11 Single molecule fluorescence energy transfer (smFRET) 53 2.2.12 Models of structure 55 Chapter 3 Results - Preparation 57 3.1 Expression of mutant mouse prion protein constructs 57 3.2 Small expression of mPrP mutants 60 3.3 Large-scale expression 61 3.4 Primary purification: Metal-ion affinity chromatography (IMAC) 61 3.5 Secondary purification: High-performance liquid chromatography (HPLC) 62 3.6 Spin-labeling and purification 64 3.7 Fluorescent dye labeling and purification 65 3.8 Protein identification and storage 68 Chapter 4 Results 70 4.1 Dissecting the mutant PrP in particular structural states 70 4.1.1 pH values and concentration of salt 71 4.1.2 Spin-labeling effect 74 4.1.3 Influence of protein concentration 75 4.1.4 Confined material effect: Glycerol and mesopore 77 4.1.4.1 Glycerol 77 4.1.4.2 Mesopore 78 4.1.5 Spontaneously structural conversion in native condition 80 4.1.5.1 Self-generated structural transition in native condition 80 4.1.5.2 Acceleration in structural transition by adding reducing agent 82 4.2 Cytotoxicity of β-oligomers to mammalian cells 84 4.2.1 Oligomer formation 85 4.2.2 Cytotoxicity of oligomers 89 4.3 ESR: Spin mobility in different residues 91 4.3.1 Encapsulated capability of Zr-SBA for β-oligomers 91 4.3.2 Spin mobility in α- and β-state 93 4.4 ESR: Model of structural conversion in helices 96 4.4.1 Helix 1 97 4.4.1.1 D147R1/R151R1 98 4.4.1.2 D144R1/R151R1 104 4.4.2 Helix 2 108 4.4.3 Helix 3 117 4.4.4 Helix 3 and loop 121 4.4.4.1 ESR experiment 121 4.4.4.2 SmFRET experiment 127 4.5 Amyloid fibril structure 134 4.5.1 Characterization of fibrillization 134 4.5.2 ESR: helical structure in amyloid fibril 135 4.5.2.1 Helix 1 136 4.5.2.2 Helix 2 138 4.5.2.3 Helix 3 141 4.5.2.4 Helix 3 and loop 143 4.6 Comparison between each states of PrP 144 Chapter 5 Discussion 147 Chapter 6 Future work 156 References 158 Appendix 167 HPLC chromatograms (1) 167 HPLC chromatograms (2) – labeling 170 Mass results 175 | |
| dc.language.iso | en | |
| dc.subject | 螺旋結構 | zh_TW |
| dc.subject | 纖維狀結構 | zh_TW |
| dc.subject | α型態 | zh_TW |
| dc.subject | 普立昂蛋白 | zh_TW |
| dc.subject | β型態 | zh_TW |
| dc.subject | 結構轉變 | zh_TW |
| dc.subject | amyloid fibril | en |
| dc.subject | structural conversion | en |
| dc.subject | helical structure | en |
| dc.subject | α-PrP | en |
| dc.subject | β-PrP | en |
| dc.subject | Prion protein | en |
| dc.title | 探討老鼠普立昂蛋白從α至β結構轉變的機制 | zh_TW |
| dc.title | Exploring the α-to-β structural conversion mechanism for mouse prion protein | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王勝仕(Steven Sheng-Shih Wang),江昀緯(Yun-Wei Chiang),李政怡(Cheng-I Lee) | |
| dc.subject.keyword | 普立昂蛋白,結構轉變,螺旋結構,α型態,β型態,纖維狀結構, | zh_TW |
| dc.subject.keyword | Prion protein,structural conversion,helical structure,α-PrP,β-PrP,amyloid fibril, | en |
| dc.relation.page | 198 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-30 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 8.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
