請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61803
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊?伸(Yang) | |
dc.contributor.author | Hsiu-Ping Yi | en |
dc.contributor.author | 易修平 | zh_TW |
dc.date.accessioned | 2021-06-16T13:13:48Z | - |
dc.date.available | 2023-07-30 | |
dc.date.copyright | 2013-08-06 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-07-30 | |
dc.identifier.citation | 1. Yang, W., Lee, J. Y., and Nowotny, M. (2006) Making and breaking nucleic acids: two-Mg2+-ion catalysis and substrate specificity, Mol Cell 22, 5-13.
2. Hamm, H. E., and Gilchrist, A. (1996) Heterotrimeric G proteins, Curr Opin Cell Biol 8, 189-196. 3. Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties, Journal of Biological Chemistry 260, 3440-3450. 4. McEwen, D. P., Gee, K. R., Kang, H. C., and Neubig, R. R. (2001) Fluorescent BODIPY-GTP analogs: Real-time measurement of nucleotide binding to G proteins, Analytical Biochemistry 291, 109-117. 5. Kang, J. H., and Chung, J.-K. (2008) Molecular-genetic imaging based on reporter gene expression, Journal of Nuclear Medicine 49, 164S-179S. 6. Spudich, J. L., Yang, C. S., Jung, K. H., and Spudich, E. N. (2000) Retinylidene proteins: structures and functions from archaea to humans, Annu Rev Cell Dev Biol 16, 365-392. 7. Rao, V. R., and Oprian, D. D. (1996) Activating mutations of rhodopsin and other G protein-coupled receptors, Annu Rev Biophys Biomol Struct 25, 287-314. 8. Spudich, J. L., and Jung, K.-H. (2005) Microbial Rhodopsins: Phylogenetic and Functional Diversity, In Handbook of Photosensory Receptors, pp 1-23, Wiley-VCH Verlag GmbH & Co. KGaA. 9. Oesterhelt, D., and Stoeckenius, W. (1973) Functions of a new photoreceptor membrane, Proc Natl Acad Sci U S A 70, 2853-2857. 10. Matsuno-Yagi, A., and Mukohata, Y. (1977) Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation, Biochem Biophys Res Commun 78, 237-243. 11. Bogomolni, R. A., and Spudich, J. L. (1982) Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium, Proc Natl Acad Sci U S A 79, 6250-6254. 12. Takahashi, T., Mochizuki, Y., Kamo, N., and Kobatake, Y. (1985) Evidence That the Long-Lifetime Photointermediate of S-Rhodopsin Is a Receptor for Negative Phototaxis in Halobacterium halobium, Biochem Bioph Res Co 127, 99-105. 13. Briggs, W. R., and Spudich, J. L. (2005) Handbook of photosensory receptors, John Wiley & Sons. 14. Beja, O., Aravind, L., Koonin, E. V., Suzuki, M. T., Hadd, A., Nguyen, L. P., Jovanovich, S. B., Gates, C. M., Feldman, R. A., Spudich, J. L., Spudich, E. N., and DeLong, E. F. (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea, Science 289, 1902-1906. 15. Balashov, S. P., Imasheva, E. S., Boichenko, V. A., Anton, J., Wang, J. M., and Lanyi, J. K. (2005) Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna, Science 309, 2061-2064. 16. Balashov, S. P., and Lanyi, J. K. (2007) Xanthorhodopsin: Proton pump with a carotenoid antenna, Cell Mol Life Sci 64, 2323-2328. 17. Waschuk, S. A., Bezerra, A. G., Jr., Shi, L., and Brown, L. S. (2005) Leptosphaeria rhodopsin: bacteriorhodopsin-like proton pump from a eukaryote, Proc Natl Acad Sci U S A 102, 6879-6883. 18. Tsunoda, S. P., Ewers, D., Gazzarrini, S., Moroni, A., Gradmann, D., and Hegemann, P. (2006) H+ -pumping rhodopsin from the marine alga Acetabularia, Biophys J 91, 1471-1479. 19. Hoff, W. D., Jung, K. H., and Spudich, J. L. (1997) Molecular mechanism of photosignaling by archaeal sensory rhodopsins, Annu Rev Biophys Biomol Struct 26, 223-258. 20. Spudich, J. L. (2006) The multitalented microbial sensory rhodopsins, Trends Microbiol 14, 480-487. 21. Jung, K. H., Trivedi, V. D., and Spudich, J. L. (2003) Demonstration of a sensory rhodopsin in eubacteria, Mol Microbiol 47, 1513-1522. 22. Oesterhelt, D., and Stoeckenius, W. (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium, Nat New Biol 233, 149-152. 23. Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E., and Downing, K. H. (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy, J Mol Biol 213, 899-929. 24. Luecke, H., Schobert, B., Richter, H. T., Cartailler, J. P., and Lanyi, J. K. (1999) Structure of bacteriorhodopsin at 1.55 angstrom resolution, J Mol Biol 291, 899-911. 25. Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E., and Downing, K. H. (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy, J Mol Biol 213, 899-929. 26. Lozier, R. H., Bogomolni, R. A., and Stoeckenius, W. (1975) Bacteriorhodopsin: a light-driven proton pump in Halobacterium halobium, Biophys J 15, 955-962. 27. Dorset, D. L. (1995) Direct structure analysis in protein electron crystallography: crystallographic phases for halorhodopsin to 6-A resolution, Proc Natl Acad Sci U S A 92, 10074-10078. 28. Kolbe, M., Besir, H., Essen, L. O., and Oesterhelt, D. (2000) Structure of the light-driven chloride pump halorhodopsin at 1.8 A resolution, Science 288, 1390-1396. 29. Baliga, N. S., Bonneau, R., Facciotti, M. T., Pan, M., Glusman, G., Deutsch, E. W., Shannon, P., Chiu, Y., Weng, R. S., Gan, R. R., Hung, P., Date, S. V., Marcotte, E., Hood, L., and Ng, W. V. (2004) Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea, Genome Res 14, 2221-2234. 30. Fu, H. Y., Lin, Y. C., Chang, Y. N., Tseng, H., Huang, C. C., Liu, K. C., Huang, C. S., Su, C. W., Weng, R. R., Lee, Y. Y., Ng, W. V., and Yang, C. S. (2010) A novel six-rhodopsin system in a single archaeon, Journal of Bacteriology 192, 5866-5873. 31. Oren, A., Duker, S., and Ritter, S. (1996) The polar lipid composition of Walsby's square bacterium, FEMS Microbiology Letters 138, 135-140. 32. Javor, B., Requadt, C., and Stoeckenius, W. (1982) Box-shaped halophilic bacteria, Journal of Bacteriology 151, 1532-1542. 33. Ghai, R., Pasic, L., Fernandez, A. B., Martin-Cuadrado, A. B., Mizuno, C. M., McMahon, K. D., Papke, R. T., Stepanauskas, R., Rodriguez-Brito, B., Rohwer, F., Sanchez-Porro, C., Ventosa, A., and Rodriguez-Valera, F. (2011) New abundant microbial groups in aquatic hypersaline environments, Scientific Reports 1. 34. Bolhuis, H., Poele, E. M. T., and Rodriguez-Valera, F. (2004) Isolation and cultivation of Walsby's square archaeon, Environmental Microbiology 6, 1287-1291. 35. Bolhuis, H., Palm, P., Wende, A., Falb, M., Rampp, M., Rodriguez-Valera, F., Pfeiffer, F., and Oesterhelt, D. (2006) The genome of the square archaeon Haloquadratum walsbyi : life at the limits of water activity, Bmc Genomics 7. 36. Legault, B. A., Lopez-Lopez, A., Alba-Casado, J. C., Doolittle, W. F., Bolhuis, H., Rodriguez-Valera, F., and Papke, R. T. (2006) Environmental genomics of 'Haloquadratum walsbyi' in a saltern crystallizer indicates a large pool of accessory genes in an otherwise coherent species, Bmc Genomics 7. 37. Sudo, Y., Ihara, K., Kobayashi, S., Suzuki, D., Irieda, H., Kikukawa, T., Kandori, H., and Homma, M. (2011) A microbial rhodopsin with a unique retinal composition shows both sensory rhodopsin II and bacteriorhodopsin-like properties, Journal of Biological Chemistry 286, 5967-5976. 38. Jin, Y., Honig, T., Ron, I., Friedman, N., Sheves, M., and Cahen, D. (2008) Bacteriorhodopsin as an electronic conduction medium for biomolecular electronics, Chem Soc Rev 37, 2422-2432. 39. Miyasaka, T., and Koyama, K. (1992) Rectified photocurrents from purple membrane Langmuir-Blodgett-films at the electrode-electrolyte interface, Thin Solid Films 210, 146-149. 40. He, J. A., Samuelson, L., Li, L., Kumar, J., and Tripathy, S. K. (1998) Oriented bacteriorhodopsin/polycation multilayers by electrostatic layer-by-layer assembly, Langmuir 14, 1674-1679. 41. Chu, L. K., Yen, C. W., and El-Sayed, M. A. (2010) Bacteriorhodopsin-based photo-electrochemical cell, Biosens Bioelectron 26, 620-626. 42. Miroux, B., and Walker, J. E. (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels, J Mol Biol 260, 289-298. 43. 傅煦媛. (2008) 表現 Haloarcula marismortui 之六個光感受體揭露其獨特的感光特性, 國立台灣大學碩士論文. 44. 張詠寧. (2010) 由新發現於 Haloarcula marismortui 與 Haloquadratum walsbyi 之氯視紫紅質研究揭露異於其他微生物中離子運送蛋白質之高度保守性, 國立台灣大學碩士論文. 45. Tamogami, J., Kikukawa, T., Miyauchi, S., Muneyuki, E., and Kamo, N. (2009) A tin oxide transparent electrode provides the means for rapid time-resolved pH measurements: application to photoinduced proton transfer of bacteriorhodopsin and proteorhodopsin, Photochem Photobiol 85, 578-589. 46. Lanyi, J. K. (2004) Bacteriorhodopsin, Annu Rev Physiol 66, 665-688. 47. Szaraz, S., Oesterhelt, D., and Ormos, P. (1994) pH-induced structural changes in bacteriorhodopsin studied by Fourier transform infrared spectroscopy, Biophys J 67, 1706-1712. 48. Dellago, C., Naor, M. M., and Hummer, G. (2003) Proton transport through water-filled carbon nanotubes, Phys Rev Lett 90, 105902. 49. Schobert, B., Brown, L. S., and Lanyi, J. K. (2003) Crystallographic intermediates of structures of the M and N bacteriorhodopsin: Assembly of a hydrogen-bonded chain of water molecules between Asp-96 and the retinal Schiff base, J Mol Biol 330, 553-570. 50. Lanyi, J. K. (2006) Proton transfers in the bacteriorhodopsin photocycle, Biochim Biophys Acta 1757, 1012-1018. 51. Fu, H. Y., Yi, H. P., Lu, Y. H., and Yang, C. S. (2013) Insight into a single halobacterium using a dual-bacteriorhodopsin system with different functionally optimized pH ranges to cope with periplasmic pH changes associated with continuous light illumination, Mol Microbiol 88, 551-561. 52. Essen, L. O. (2002) Halorhodopsin: light-driven ion pumping made simple?, Curr Opin Struct Biol 12, 516-522. 53. Chizhov, I., and Engelhard, M. (2001) Temperature and halide dependence of the photocycle of halorhodopsin from Natronobacterium pharaonis, Biophys J 81, 1600-1612. 54. Koyama, K., Sumi, M., Kamo, N., and Lanyi, J. K. (1998) Photoelectric response of halorhodopsin from Natronobacterium pharaonis, Bioelectroch Bioener 46, 289-292. 55. Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P., and Bamberg, E. (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel, Proc Natl Acad Sci U S A 100, 13940-13945. 56. 謝祥元. (2011) 發展以蛋白質輔助之膜蛋白質大量表現系統, 國立台灣大學碩士論文. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61803 | - |
dc.description.abstract | 小分子物質與離子對蛋白質行使功能扮演重要的角色,包括對於細胞訊息傳導相當重要的Ca2+或是與神經衝動傳遞有關的Na2+與K+。為了可以更容易偵測小分子物質與離子的移動,本研究使用一簡易電化裝置來測量蛋白質行使功能時所造成的帶電小分子或離子的移動。電化裝置中由6至8 kDa的半透膜隔成sample cell與reference cell,並利用可以透過光線與導電的氧化銦錫(indium tin oxide, ITO)玻璃作為電極,在不對系統施加偏壓的狀況下測量訊號。在本研究中利用此ITO電化裝置成功偵測光驅動離子幫浦(Light-driven ion pump) Bacteriorhodopsin(BR)與Halorhodopsin(HR)受光刺激後運送離子所造成的電流訊號,也成功偵測到單純加入帶電小分子物質後引起的電流訊號,更進一步用來偵測點突變蛋白質,用以鑑定特定胺基酸在蛋白質行使功能時所扮演的角色。綜合以上結果,此一ITO電化裝置可以用於研究小分子物質或離子的移動,與蛋白質行使功能之間的關係。 | zh_TW |
dc.description.abstract | Small charged molecules and ions play important roles in functioning proteins, including the cell signal transduction messenger Ca2+ and Na2+ and K+ for nerve impulse. In order to detect the movement of small charged molecules and ions in functioning proteins, an ITO (Indium tin oxide)-coated electrochemical device was adopted as one of the components when we designed a system to serve this need. In this bias-voltage free ITO-coated electrochemical system, we used a 6 to 8 kDa semi permeable membrane to separate the chamber intosample cell and reference cell, while the ITO-coated slides served as electrodes.The results showed we successfully employed ITO-coated electrochemical device to detect the light-driven proton and chloride signals of two light-driven ion pumps, bacteriorhodopsin and halorhodopsin, respectively. We also successfully detected the current signals caused by small charged molecules. We further used this device to investigate the relationship between mutated proteins and their functions. According to above results, this ITO-coated electrochemical device can be used to investigate the movement of small charged molecules and ions in functioning proteins in a quantive way. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T13:13:48Z (GMT). No. of bitstreams: 1 ntu-102-R00b22007-1.pdf: 4614970 bytes, checksum: 91930a20050d67c10cbd381f7836f861 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 目錄 i
圖目錄 iv 表目錄 vi 摘要 vii Abstract viii 第一章 緒論 1 第一節 小分子物質或離子與蛋白質的關係 1 第二節 微生物視紫紅質 (Microbial rhodopsin) 5 第三節 細菌視紫紅質 (Bacteriorhodopsin) 8 第四節 氯視紫紅質 (Halorhodopsin) 10 第五節 嗜鹽古細菌 Haloarcula marismortui與Haloquadratum walsbyi 11 5.1 Haloarcula marismortui 11 5.2 Haloquadratum walsbyi 12 第六節 視紫紅質的功能性測試 13 第七節 研究動機與目的 14 第一節 實驗材料與藥品 16 1.1 菌種 16 1.2 質體 16 1.3 藥品 16 第二節 實驗儀器與設備 18 2.1 核酸電泳設備 18 2.2 蛋白質電泳與轉印設備 18 2.3 離心機 18 2.4 氫離子幫浦實驗用儀器 18 2.5光電流量測用儀器 18 2.6 其他 18 第三節 實驗方法 20 3.1 HmBRI D83TD94N之質體建構 20 3.2 膜蛋白質之表現及純化 21 3.2.1 膜蛋白質異源表現 21 3.2.2 破菌與蛋白質粗萃取 21 3.2.3 膜分離與回溶膜蛋白質 21 3.2.4 親和層析法 22 3.3蛋白質電泳與西方墨點法分析 22 3.3.1 SDS - PAGE變性膠體電泳 22 3.3.2 蛋白質轉印與西方墨點法及免疫呈色 23 3.4 特徵吸收峰光譜鑑定 23 3.5 氫離子幫浦活性測試 24 3.6 電流訊號測試 24 第三章 結果與討論 25 第一節 ITO電化裝置系統之建構 25 1.1 ITO電化裝置建構原理 25 1.2 ITO電化裝置系統架設 27 第二節 測量細菌視紫紅質造成之離子移動 29 2.1 細菌視紫紅質氫離子運輸之分子機制與光週期 29 2.2 HwBR與HmBRII不同蛋白質濃度下的電流訊號測量 31 2.3 HsBR於不同環境pH值下的電流訊號測定 34 2.4 HmBRI、HmBRII與點突變蛋白質的電流訊號測定 35 2.5 HwBR的電流訊號 42 第三節 測量氯視紫紅質造成之離子移動 43 3.1 氯視紫紅質氯離子運輸之分子機制與光週期 43 3.2 測量Halorhodopsin之電流訊號 45 3.3 測量HwHR whole cell之電流訊號 47 3.4 鹽濃度的影響 48 第四節 以 ITO電化裝置系統測量Channelrhodopsin-2與其它突變蛋白質 50 4.1測量Channelrhodopsin-2之電流訊號 50 4.2 測量HmBRI mutant之電流訊號 50 4.3 測量HmBRI mutant 之全細胞之電流訊號 52 第五節 測量小分子帶電物引起的電流訊號 53 5.1 小分子帶電物質檢測 53 第四章 總結 55 第五章 未來展望 56 參考文獻 57 附錄 64 A HEBR-HmSRII-HmHR融合蛋白質表現與分析 64 B 可發表形式之未發表論文-α-Helix 3 of AtRGS1 Interacts With AtGPA1 in its Ground State I | |
dc.language.iso | zh-TW | |
dc.title | 建立氧化銦錫(ITO)電化裝置偵測帶電分子與微生物視紫紅質之交互作用 | zh_TW |
dc.title | Establishment of an Indium tin oxide (ITO)-coated
electrochemical device for monitoring the dynamic movements of ions and microbial rhodopsins | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 梁博煌,黃青真,張麗冠,李昆達 | |
dc.subject.keyword | ITO 電化裝置,光電流,細菌視紫紅質,氯視紫紅質, | zh_TW |
dc.subject.keyword | ITO (Indium tin oxide)-coated electrochemical device,photocurrent,bacteriorhodopsin,halorhodopsin, | en |
dc.relation.page | 98 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-07-30 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科技學系 | zh_TW |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 4.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。