Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61799
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李建國(Chien-Kuo Lee)
dc.contributor.authorYu-Tin Linen
dc.contributor.author林于婷zh_TW
dc.date.accessioned2021-06-16T13:13:39Z-
dc.date.available2016-09-24
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-07-30
dc.identifier.citationAdolfsson, J., Mansson, R., Buza-Vidas, N., Hultquist, A., Liuba, K., Jensen, C.T., Bryder, D., Yang, L., Borge, O.J., Thoren, L.A., et al. (2005). Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121, 295-306.
Aikawa, Y., Katsumoto, T., Zhang, P., Shima, H., Shino, M., Terui, K., Ito, E., Ohno, H., Stanley, E.R., Singh, H., et al. (2010). PU.1-mediated upregulation of CSF1R is crucial for leukemia stem cell potential induced by MOZ-TIF2. Nature medicine 16, 580-585, 581p following 585.
Anjuere, F., Martin, P., Ferrero, I., Fraga, M.L., del Hoyo, G.M., Wright, N., and Ardavin, C. (1999). Definition of dendritic cell subpopulations present in the spleen, Peyer's patches, lymph nodes, and skin of the mouse. Blood 93, 590-598.
Asselin-Paturel, C., Boonstra, A., Dalod, M., Durand, I., Yessaad, N., Dezutter-Dambuyant, C., Vicari, A., O'Garra, A., Biron, C., Briere, F., et al. (2001). Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nature immunology 2, 1144-1150.
Bedoui, S., Whitney, P.G., Waithman, J., Eidsmo, L., Wakim, L., Caminschi, I., Allan, R.S., Wojtasiak, M., Shortman, K., Carbone, F.R., et al. (2009). Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nature immunology 10, 488-495.
Blake, S.J., Bruce Lyons, A., Fraser, C.K., Hayball, J.D., and Hughes, T.P. (2008). Dasatinib suppresses in vitro natural killer cell cytotoxicity. Blood 111, 4415-4416.
Bogunovic, M., Ginhoux, F., Helft, J., Shang, L., Hashimoto, D., Greter, M., Liu, K., Jakubzick, C., Ingersoll, M.A., Leboeuf, M., et al. (2009). Origin of the lamina propria dendritic cell network. Immunity 31, 513-525.
Bursch, L.S., Wang, L., Igyarto, B., Kissenpfennig, A., Malissen, B., Kaplan, D.H., and Hogquist, K.A. (2007). Identification of a novel population of Langerin+ dendritic cells. The Journal of experimental medicine 204, 3147-3156.
Carotta, S., Dakic, A., D'Amico, A., Pang, S.H., Greig, K.T., Nutt, S.L., and Wu, L. (2010). The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner. Immunity 32, 628-641.
Chen, L.S., Wei, P.C., Liu, T., Kao, C.H., Pai, L.M., and Lee, C.K. (2009). STAT2 hypomorphic mutant mice display impaired dendritic cell development and antiviral response. Journal of biomedical science 16, 22.
Chitu, V., and Stanley, E.R. (2006). Colony-stimulating factor-1 in immunity and inflammation. Current opinion in immunology 18, 39-48.
Conway, J.G., McDonald, B., Parham, J., Keith, B., Rusnak, D.W., Shaw, E., Jansen, M., Lin, P., Payne, A., Crosby, R.M., et al. (2005). Inhibition of colony-stimulating-factor-1 signaling in vivo with the orally bioavailable cFMS kinase inhibitor GW2580. Proceedings of the National Academy of Sciences of the United States of America 102, 16078-16083.
de Veer, M.J., Holko, M., Frevel, M., Walker, E., Der, S., Paranjape, J.M., Silverman, R.H., and Williams, B.R.G. (2001). Functional classification of interferon-stimulated genes identified using microarrays. Journal of leukocyte biology 69, 912-920.
Douglass, T.G., Driggers, L., Zhang, J.G., Hoa, N., Delgado, C., Williams, C.C., Dan, Q., Sanchez, R., Jeffes, E.W., Wepsic, H.T., et al. (2008). Macrophage colony stimulating factor: not just for macrophages anymore! A gateway into complex biologies. International immunopharmacology 8, 1354-1376.
Druker, B.J. (2002). Inhibition of the Bcr-Abl tyrosine kinase as a therapeutic strategy for CML. Oncogene 21, 8541-8546.
Durbin, J.E., Hackenmiller, R., Simon, M.C., and Levy, D.E. (1996). Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84, 443-450.
Essers, M.A., Offner, S., Blanco-Bose, W.E., Waibler, Z., Kalinke, U., Duchosal, M.A., and Trumpp, A. (2009). IFNalpha activates dormant haematopoietic stem cells in vivo. Nature 458, 904-908.
Fancke, B., Suter, M., Hochrein, H., and O'Keeffe, M. (2008). M-CSF: a novel plasmacytoid and conventional dendritic cell poietin. Blood 111, 150-159.
Feig, J.E., and Feig, J.L. (2012). Macrophages, dendritic cells, and regression of atherosclerosis. Frontiers in physiology 3, 286.
Feldman, M., and Fitzgerald-Bocarsly, P. (1990). Sequential enrichment and immunocytochemical visualization of human interferon-alpha-producing cells. Journal of interferon research 10, 435-446.
Fitzgerald-Bocarsly, P., and Feng, D. (2007). The role of type I interferon production by dendritic cells in host defense. Biochimie 89, 843-855.
Fujita, H., Kitawaki, T., Sato, T., Maeda, T., Kamihira, S., Takaori-Kondo, A., and Kadowaki, N. (2013). The tyrosine kinase inhibitor dasatinib suppresses cytokine production by plasmacytoid dendritic cells by targeting endosomal transport of CpG DNA. European journal of immunology 43, 93-103.
Gilliet, M., Cao, W., and Liu, Y.J. (2008). Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nature reviews Immunology 8, 594-606.
Ginhoux, F., Collin, M.P., Bogunovic, M., Abel, M., Leboeuf, M., Helft, J., Ochando, J., Kissenpfennig, A., Malissen, B., Grisotto, M., et al. (2007). Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state. The Journal of experimental medicine 204, 3133-3146.
Ginhoux, F., Tacke, F., Angeli, V., Bogunovic, M., Loubeau, M., Dai, X.M., Stanley, E.R., Randolph, G.J., and Merad, M. (2006). Langerhans cells arise from monocytes in vivo. Nature immunology 7, 265-273.
Gonzalez-Navajas, J.M., Lee, J., David, M., and Raz, E. (2012). Immunomodulatory functions of type I interferons. Nature reviews Immunology 12, 125-135.
Hart, A.L., Al-Hassi, H.O., Rigby, R.J., Bell, S.J., Emmanuel, A.V., Knight, S.C., Kamm, M.A., and Stagg, A.J. (2005). Characteristics of intestinal dendritic cells in inflammatory bowel diseases. Gastroenterology 129, 50-65.
Hipp, M.M., Hilf, N., Walter, S., Werth, D., Brauer, K.M., Radsak, M.P., Weinschenk, T., Singh-Jasuja, H., and Brossart, P. (2008). Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses. Blood 111, 5610-5620.
Ho, H.H., and Ivashkiv, L.B. (2006). Role of STAT3 in type I interferon responses: negative regulation of STAT1-dependent inflammatory gene activation J Biol Chem 281, 14111-14118.
Honda, K., and Taniguchi, T. (2006). IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nature reviews Immunology 6, 644-658.
Hubbard, S.R., and Till, J.H. (2000). Protein tyrosine kinase structure and function. Annual review of biochemistry 69, 373-398.
Inaba, K., Inaba, M., Romani, N., Aya, H., Deguchi, M., Ikehara, S., Muramatsu, S., and Steinman, R.M. (1992). Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. The Journal of experimental medicine 176, 1693-1702.
Kadow, S., Jux, B., Zahner, S.P., Wingerath, B., Chmill, S., Clausen, B.E., Hengstler, J., and Esser, C. (2011). Aryl hydrocarbon receptor is critical for homeostasis of invariant gammadelta T cells in the murine epidermis. Journal of immunology 187, 3104-3110.
Kadowaki, N., Antonenko, S., Lau, J.Y., and Liu, Y.J. (2000). Natural interferon alpha/beta-producing cells link innate and adaptive immunity. The Journal of experimental medicine 192, 219-226.
Kamath, A.T., Pooley, J., O'Keeffe, M.A., Vremec, D., Zhan, Y., Lew, A.M., D'Amico, A., Wu, L., Tough, D.F., and Shortman, K. (2000). The development, maturation, and turnover rate of mouse spleen dendritic cell populations. Journal of immunology 165, 6762-6770.
Karsunky, H., Merad, M., Cozzio, A., Weissman, I.L., and Manz, M.G. (2003). Flt3 ligand regulates dendritic cell development from Flt3+ lymphoid and myeloid-committed progenitors to Flt3+ dendritic cells in vivo. The Journal of experimental medicine 198, 305-313.
Katze, M.G., He, Y., and Gale, M., Jr. (2002). Viruses and interferon: a fight for supremacy. Nature reviews Immunology 2, 675-687.
Kingston, D., Schmid, M.A., Onai, N., Obata-Onai, A., Baumjohann, D., and Manz, M.G. (2009). The concerted action of GM-CSF and Flt3-ligand on in vivo dendritic cell homeostasis. Blood 114, 835-843.
Koltsova, E.K., and Ley, K. (2011). How dendritic cells shape atherosclerosis. Trends in immunology 32, 540-547.
Kondo, M., Wagers, A.J., Manz, M.G., Prohaska, S.S., Scherer, D.C., Beilhack, G.F., Shizuru, J.A., and Weissman, I.L. (2003). Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annual review of immunology 21, 759-806.
Lande, R., Gregorio, J., Facchinetti, V., Chatterjee, B., Wang, Y.H., Homey, B., Cao, W., Wang, Y.H., Su, B., Nestle, F.O., et al. (2007). Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449, 564-569.
Lee, C.K., Raz, R., Gimeno, R., Gertner, R., Wistinghausen, B., Takeshita, K., DePinho, R.A., and Levy, D.E. (2002). STAT3 is a negative regulator of granulopoiesis but is not required for G-CSF-dependent differentiation. Immunity 17, 63-72.
Li, W., and Stanley, E.R. (1991). Role of Dimerization and Modification of the Csf-1 Receptor in Its Activation and Internalization during the Csf-1 Response. Embo Journal 10, 277-288.
Lin, H., Lee, E., Hestir, K., Leo, C., Huang, M., Bosch, E., Halenbeck, R., Wu, G., Zhou, A., Behrens, D., et al. (2008). Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320, 807-811.
Liu, K., and Nussenzweig, M.C. (2010). Origin and development of dendritic cells. Immunological reviews 234, 45-54.
Liu, K., Victora, G.D., Schwickert, T.A., Guermonprez, P., Meredith, M.M., Yao, K., Chu, F.F., Randolph, G.J., Rudensky, A.Y., and Nussenzweig, M. (2009). In vivo analysis of dendritic cell development and homeostasis. Science 324, 392-397.
MacDonald, K.P., Rowe, V., Bofinger, H.M., Thomas, R., Sasmono, T., Hume, D.A., and Hill, G.R. (2005a). The colony-stimulating factor 1 receptor is expressed on dendritic cells during differentiation and regulates their expansion. Journal of immunology 175, 1399-1405.
MacDonald, K.P., Rowe, V., Bofinger, H.M., Thomas, R., Sasmono, T., Hume, D.A., and Hill, G.R. (2005b). The colony-stimulating factor 1 receptor is expressed on dendritic cells during differentiation and regulates their expansion. J Immunol 175, 1399-1405.
Mashkani, B., Griffith, R., and Ashman, L.K. (2010). Colony stimulating factor-1 receptor as a target for small molecule inhibitors. Bioorganic & medicinal chemistry 18, 1789-1797.
McKenna, H.J. (2001). Role of hematopoietic growth factors/flt3 ligand in expansion and regulation of dendritic cells. Current opinion in hematology 8, 149-154.
McKenna, H.J., Stocking, K.L., Miller, R.E., Brasel, K., De Smedt, T., Maraskovsky, E., Maliszewski, C.R., Lynch, D.H., Smith, J., Pulendran, B., et al. (2000). Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95, 3489-3497.
Merad, M., Ginhoux, F., and Collin, M. (2008). Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nature reviews Immunology 8, 935-947.
Merad, M., and Manz, M.G. (2009). Dendritic cell homeostasis. Blood 113, 3418-3427.
Merad, M., Sathe, P., Helft, J., Miller, J., and Mortha, A. (2013). The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annual review of immunology 31, 563-604.
Meraz, M.A., White, J.M., Sheehan, K.C., Bach, E.A., Rodig, S.J., Dighe, A.S., Kaplan, D.H., Riley, J.K., Greenlund, A.C., Campbell, D., et al. (1996). Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84, 431-442.
Muller, U., Steinhoff, U., Reis, L.F., Hemmi, S., Pavlovic, J., Zinkernagel, R.M., and Aguet, M. (1994). Functional role of type I and type II interferons in antiviral defense. Science 264, 1918-1921.
Naik, S.H., Sathe, P., Park, H.Y., Metcalf, D., Proietto, A.I., Dakic, A., Carotta, S., O'Keeffe, M., Bahlo, M., Papenfuss, A., et al. (2007). Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nature immunology 8, 1217-1226.
Novak, U., Harpur, A.G., Paradiso, L., Kanagasundaram, V., Jaworowski, A., Wilks, A.F., and Hamilton, J.A. (1995). Colony-stimulating factor 1-induced STAT1 and STAT3 activation is accompanied by phosphorylation of Tyk2 in macrophages and Tyk2 and JAK1 in fibroblasts. Blood 86, 2948-2956.
Okada, T., Lian, Z.X., Naiki, M., Ansari, A.A., Ikehara, S., and Gershwin, M.E. (2003). Murine thymic plasmacytoid dendritic cells. European journal of immunology 33, 1012-1019.
Onai, N., Obata-Onai, A., Schmid, M.A., Ohteki, T., Jarrossay, D., and Manz, M.G. (2007). Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nature immunology 8, 1207-1216.
Park, C., Li, S., Cha, E., and Schindler, C. (2000). Immune response in Stat2 knockout mice. Immunity 13, 795-804.
Pestka, S., Krause, C.D., and Walter, M.R. (2004). Interferons, interferon-like cytokines, and their receptors. Immunological reviews 202, 8-32.
Platanias, L.C. (2005). Mechanisms of type-I- and type-II-interferon-mediated signalling. Nature reviews Immunology 5, 375-386.
Reizis, B., Bunin, A., Ghosh, H.S., Lewis, K.L., and Sisirak, V. (2011). Plasmacytoid dendritic cells: recent progress and open questions. Annual review of immunology 29, 163-183.
Romani, N., Clausen, B.E., and Stoitzner, P. (2010). Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin. Immunological reviews 234, 120-141.
Rutella, S., and Locatelli, F. (2011). Intestinal dendritic cells in the pathogenesis of inflammatory bowel disease. World journal of gastroenterology : WJG 17, 3761-3775.
Sarrazin, S., Mossadegh-Keller, N., Fukao, T., Aziz, A., Mourcin, F., Vanhille, L., Kelly Modis, L., Kastner, P., Chan, S., Duprez, E., et al. (2009). MafB restricts M-CSF-dependent myeloid commitment divisions of hematopoietic stem cells. Cell 138, 300-313.
Sasmono, R.T., Oceandy, D., Pollard, J.W., Tong, W., Pavli, P., Wainwright, B.J., Ostrowski, M.C., Himes, S.R., and Hume, D.A. (2003). A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101, 1155-1163.
Schade, A.E., Schieven, G.L., Townsend, R., Jankowska, A.M., Susulic, V., Zhang, R., Szpurka, H., and Maciejewski, J.P. (2008). Dasatinib, a small-molecule protein tyrosine kinase inhibitor, inhibits T-cell activation and proliferation. Blood 111, 1366-1377.
Schmid, M.A., Kingston, D., Boddupalli, S., and Manz, M.G. (2010). Instructive cytokine signals in dendritic cell lineage commitment. Immunological reviews 234, 32-44.
Sherr, C.J., Rettenmier, C.W., Sacca, R., Roussel, M.F., Look, A.T., and Stanley, E.R. (1985). The C-Fms Proto-Oncogene Product Is Related to the Receptor for the Mononuclear Phagocyte Growth-Factor, Csf-1. Cell 41, 665-676.
Siegal, F.P., Kadowaki, N., Shodell, M., Fitzgerald-Bocarsly, P.A., Shah, K., Ho, S., Antonenko, S., and Liu, Y.J. (1999). The nature of the principal type 1 interferon-producing cells in human blood. Science 284, 1835-1837.
Suda, T., and Liu, D. (2007). Hydrodynamic gene delivery: its principles and applications. Molecular therapy : the journal of the American Society of Gene Therapy 15, 2063-2069.
Tailor, P., Tamura, T., Kong, H.J., Kubota, T., Kubota, M., Borghi, P., Gabriele, L., and Ozato, K. (2007). The feedback phase of type I interferon induction in dendritic cells requires interferon regulatory factor 8. Immunity 27, 228-239.
Takayanagi, H., Oda, H., Yamamoto, S., Kawaguchi, H., Tanaka, S., Nishikawa, T., and Koshihara, Y. (1997). A new mechanism of bone destruction in rheumatoid arthritis: synovial fibroblasts induce osteoclastogenesis. Biochemical and biophysical research communications 240, 279-286.
Talpaz, M., Shah, N.P., Kantarjian, H., Donato, N., Nicoll, J., Paquette, R., Cortes, J., O'Brien, S., Nicaise, C., Bleickardt, E., et al. (2006). Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. The New England journal of medicine 354, 2531-2541.
Trumpp, A., Essers, M., and Wilson, A. (2010). Awakening dormant haematopoietic stem cells. Nature reviews Immunology 10, 201-209.
Varol, C., Vallon-Eberhard, A., Elinav, E., Aychek, T., Shapira, Y., Luche, H., Fehling, H.J., Hardt, W.D., Shakhar, G., and Jung, S. (2009). Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31, 502-512.
Vremec, D., Lieschke, G.J., Dunn, A.R., Robb, L., Metcalf, D., and Shortman, K. (1997). The influence of granulocyte/macrophage colony-stimulating factor on dendritic cell levels in mouse lymphoid organs. European journal of immunology 27, 40-44.
Vremec, D., Pooley, J., Hochrein, H., Wu, L., and Shortman, K. (2000). CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. Journal of immunology 164, 2978-2986.
Wang, W.B., Levy, D.E., and Lee, C.K. (2011). STAT3 negatively regulates type I IFN-mediated antiviral response. J Immunol 187, 2578-2585.
Wang, Y., Szretter, K.J., Vermi, W., Gilfillan, S., Rossini, C., Cella, M., Barrow, A.D., Diamond, M.S., and Colonna, M. (2012). IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nature immunology 13, 753-760.
Waskow, C., Liu, K., Darrasse-Jeze, G., Guermonprez, P., Ginhoux, F., Merad, M., Shengelia, T., Yao, K., and Nussenzweig, M. (2008). The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nature immunology 9, 676-683.
Wenink, M.H., Santegoets, K.C., Butcher, J., van Bon, L., Lamers-Karnebeek, F.G., van den Berg, W.B., van Riel, P.L., McInnes, I.B., and Radstake, T.R. (2011). Impaired dendritic cell proinflammatory cytokine production in psoriatic arthritis. Arthritis and rheumatism 63, 3313-3322.
Wilson, A., Laurenti, E., Oser, G., van der Wath, R.C., Blanco-Bose, W., Jaworski, M., Offner, S., Dunant, C.F., Eshkind, L., Bockamp, E., et al. (2008). Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118-1129.
Wohn, C., Ober-Blobaum, J.L., Haak, S., Pantelyushin, S., Cheong, C., Zahner, S.P., Onderwater, S., Kant, M., Weighardt, H., Holzmann, B., et al. (2013). Langerinneg conventional dendritic cells produce IL-23 to drive psoriatic plaque formation in mice. Proceedings of the National Academy of Sciences of the United States of America 110, 10723-10728.
Yeung, Y.G., and Stanley, E.R. (2003). Proteomic approaches to the analysis of early events in colony-stimulating factor-1 signal transduction. Molecular & cellular proteomics : MCP 2, 1143-1155.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61799-
dc.description.abstract樹突細胞 (Dendritic cells, 簡稱DC)是一種存在於人體的特化抗原呈現細胞,它們可分為傳統樹突細胞(cDC) 和漿狀樹突細胞 (pDC)兩種不同的亞群(subsets),並且在體內扮演免疫和耐受性反應調解者。樹突細胞分佈全身,壽命期短,約3~7天,因此需要持續藉由前驅細胞(progenitors)分化補充。在造血系統中,共同樹突細胞前驅細胞 (common dendritic cell progenitor, CDP)以及共同淋巴前驅細胞 (common lymphoid progenitor, CLP) 均具有分化成樹突細胞的能力。然而,目前的研究中,FMS類酪氨酸激酶3配體 ( FMS Like Tyrosine Kinase 3 Ligand,簡稱Flt3L) 對於樹突細胞發展角色已比較清楚,但巨噬細胞聚落刺激因子 (macrophage-colony stimulating factor,簡稱M-CSF) 如何調節前驅細胞發育成樹突細胞的過程仍尚未完全了解,因此在本論文中,我們將探討巨噬細胞聚落刺激因子影響樹突細胞發育的相關機制。
利用體外培養的方式,我們發現M-CSF 可增加cDC的生成;同時可藉由水壓流體基因傳送(hydrodynamic gene transfer, 簡稱HGT)或靜脈注射途徑中觀察到,M-CSF 會誘導CDP上M-CSFR 的表現量增加,並且增加CDP的生成,因此發育過程能有效生成cDC的因素是藉由增加CDP細胞增生的能力(proliferation)以及減少細胞凋亡(apoptosis)來達成。在TF-1-fms 細胞中(一種血病細胞株,大量表現M-CSFR),M-CSF的刺激下可活化STAT (Signal transducer and activator of transcription protein) 蛋白,包括STAT1,STAT3蛋白的酪氨酸磷酸化以及活化Akt和M-CSFR。有趣的是,我們使用第一型干擾素(Type I IFNs)訊息傳遞具缺陷的基因突變小鼠Ifnar-/-,Stat1-/-,Stat2m/m,Stat3f/f-MxCre 進行活體實驗時,我們發現M-CSF促進cDC生成的現象受到抑制;同時,使用正常基因型小鼠進行的實驗結果也顯示,若在小鼠體內表現同時表現M-CSF和第一型干擾素, 則可加成cDC的生成。此結果顯示,第一型干擾素可能參與調節M-CSF影響cDC的發育機制。
在篩選對M-CSFR的抑制劑研究中,我們找到Dasatinib是最具有效能和最具有特異性的抑制劑。它抑制TF-1-fms 細胞株和cDC細胞分裂的IC50分別為42 nM and 11 nM。Dasatinib抑制cDC的生成更勝於目前對於M-CSFR最有效的藥物GW2580。此外,體外骨髓細胞和活體實驗中,Dasatinib也會抑制M-CSF誘導前驅細胞CDP的生成以及cDC的發育。以上實驗結果證實,M-CSF促使cDC的發育過程主要透過兩種機制,即透過CDP增生及分化成cDC以及增加cDC細胞自身複製。整體而言,STAT1,STAT2,STAT3 以及第一型干擾素對M-CSF 誘導cDC的發育扮演正向調節者(positive regulator)的角色。而Dasatinib抑制M-CSF 訊息傳遞以及cDC的生成能力,可作為新穎的工具來治療如牛皮癬、動脈粥狀硬化以及發炎性腸道等和cDC過多或活化的相關疾病。
zh_TW
dc.description.abstractDendritic cells (DCs) are specialized antigen-presenting cells and are essential mediators of immunity and tolerance. DCs distribute throughout the body and are continuously replenished by hematopoietic progenitors. While the requirement of Flt3L (FL) for DC development is well characterized, the mechanisms of the involvement of M-CSF in the regulation of DC development and homeostasis are still not fully understood.
In vitro treatment of M-CSF increased expansion of cDC and not pDC. M-CSF-dependent enhancement of cDC was also observed in vivo following hydrodynamic gene transfer (HGT) or cytokine injection via intravenous route. M-CSF induced M-CSFR expression on common dendritic cell progenitors (CDP) and increased their expansion by enhancing survival and proliferation of CDPs and differentiation into cDCs. M-CSF signaling activated STAT proteins, including STAT1 and STAT3 by tyrosine phosphorylation in addition to Akt and M-CSFR in TF1-fms, an erythroleukemia cell line, expressing c-fms. Interestingly, M-CSF-dependent cDC generation was reduced in the absence of IFNAR1, STAT1 and STAT3 in vivo. Moreover, M-CSF synergized with IFNα to promote cDC development in vivo, suggesting that IFN-I may be involved in the M-CSF-dependent DC development.
In the screening of specific inhibitor for M-CSFR, we have identified dasatinib, a multiple tyrosine kinase inhibitor, as the most potent and selective drag. The IC50 for inhibiting proliferation of TF-1 fms and DC development is 42nM and 11 nM, respectively. The latter is even better than GW2580, the most potent inhibitor for M-CSFR by far. In addition, dasatinib also specifically blocked M-CSF-induced CDP expansion and cDC development from BM in vitro and in vivo. Taken together, M-CSF enhances the development mainly cDC, mainly through, at least two different mechanisms, namely CDP expansion/ differentiation and cDC proliferation. Moreover, STAT1, STAT2, STAT3, and IFN-I may positively regulate M-CSF-dependent cDC development. The ability of Dasatinib to inhibit M-CSFR signaling and M-CSF-dependent cDC development provide a novel tool to treat cDC–associated diseases, including psoriasis, atherosclerosis and inflammatory bowel diseases.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:13:39Z (GMT). No. of bitstreams: 1
ntu-102-R00449003-1.pdf: 2802548 bytes, checksum: 565b69d0b6a8d92d08fc3146e6b0650b (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsTable of Contents
口試委員會審定書
誌謝
中文摘要…………………………………………………………….…..……………….i
Abstract…………………………………………………………………………iii
Abbreviations………………………………………………………………………v
Table of contents………………………………………………………..………vii
List of figures……………………………………………………………………………x
List of tables………………………………………………………………………...…xii
Chapter I Introduction…………………………………..………....……………….1
1.1 DC subsets …………………………………...……………………………..2
1.2 DC progenitors……......................……………..……………………………3
1.3 Cytokines in DC development………………………………...….……….……4
1.4 Role of Type I IFNs in HSC homeostasis………..………….…….......………6
1.5 Type I IFN-mediated signaling………………………………………….……7
1.6 M-CSF signaling……………………………………………………………7
1.7 M-CSFR inhibitors…………………………………….…………….……….…8
Chapter II Materials and Methods………………………...…………..…………10
2.1 Mice……………………………………….…….……………..…..........…11
2.2 Cell lines and reagents……………………………...…..…………..…….…11
2.3 In vitro DC cultures………….…………………………………...….…11
2.4 Preparation of Hu M-CSF…………………………………………..……12
2.5 Ex vivo analysis of progenitors population……………………………..……12
2.6 Ex vivo analysis of DC, myeloid, T and B and NKT subsets…………..13
2.7 Hydrodynamic gene teansfer (HGT)………….………………………13
2.8 Bioassay for cytokine-dependent proliferation……….……14
2.9 In vitro and in vivo inhibitor treatment……………………….….…….14
2.10 Proliferation and apoptosis assay……………………………………….14
2.11 Western blotting analysis…………………………………………………… 15
2.12 Primers ……………………………………………………………........15
2.13 Antibodies………………………………………………………………16
2.14 Chemicals and Regents……………………………………………………17
Chapter III Results…………………………..……………………………….……...19
3.1 M-CSF enhances DC development in vitro and in vivo……………….…20
3.2 M-CSF enhances CDP expansion in vivo………………………………...21
3.3 M-CSF activates STAT1, STAT2 and STAT3 in TF-1-fms cell line …...22
3.4 M-CSF-dependent cDC generation was reduced in the absence of IFNAR1, STAT1 and STAT3 in vitro and in vivo………………………………...22
3.5 Identification and characterization of M-CSFR inhibitors……………….23
3.6 Inhibitory effect of dasatinib on activation of M-CSFR downstream signaling molecules…………………..………………………………...23
3.7 Dasatinib specifically blocked M-CSF-induced CDP expansion and cDC development in vitro and in vivo……………..…………………….….24
3.8 GW2580 blocked M-CSF-induced CDP expansion and cDC development in vivo………………………………………….……….………………25
3.9 M-CSF cytokine enhances DC development in vivo……………………..25
Chapter IV Discussion………………………….……………………………………26
4.1 CDPs is the progenitor of M-CSF-dependent cDC development…………..27
4.2 The detailed mechanism of IFN-I involved in the M-CSF-dependent DC
development remains to be determined…………………………………...29
4.3 M-CSFR signaling and inhibitors effect on primary CDP by ICS for
pM-CSFR, pSTAT3 and pSTAT1……………………….……………….30
4.4 Dasatinib provide a novel tool to treat cDC–associated diseases…………..30
Figures…………..……………...………………………………………...…...…..33
Tables…………………………………………………………………..………..73
References…………..…………………………………..……………….........…..76
List of figures
Figure 1. M-CSF enhances DC development in vitro.……………..…….……... 36
Figure 2. M-CSF enhances cDC development in vivo…………….…………….37
Figure 3. M-CSF also enhances macrophage expansion in the BM and spleen in vivo.………………………………………………………………………………..39
Figure 4. The effect of M-CSF on NK and NKT cells………………….…………..41
Figure 5. The effect of M-CSF on T and B lymphocytes……………………..…….43
Figure 6. M-CSF induces CDP expansion in the BM and increases M-CSFR expression in vitro………………………….………………………...…………....45
Figure 7. M-CSF increases proliferation of cDCs and CDPs……………….…….46
Figure 8. M-CSF decreases apoptosis of BM CDP and sorted CDP………….……...47
Figure 9. M-CSF enhances cDC differentiation from CDP………………………48
Figure 10. M-CSF activates STAT1, STAT2 and STAT3………..…..………..…..49
Figure11. Efect of STAT1 and STAT3 in M-CSF-dependent- cDC development in vitro……………………….……………………….……………………………... 51
Figure 12. Impaired M-CSF-dependent- cDC development in vitro in the absent of IFNAR1. ………………………….…………………….…..…………………..52
Figure 13. Impaired M-CSF-dependent development of cDC and CDP in Stat1-/-, Stat2m/m, Stat3-/- and Ifnar1-/- mice in vivo……………………………………..…...54
Figure 14. IFN-I enhances M-CSF–dependent cDC development in vivo………..…56
Figure 15. Identification and characterization of M-CSFR inhibitors……...………57
Figure 16. Inhibitory effect of dasatinib on activation of M-CSFR downstream signaling molecules………………………………………………..…………….……58
Figure 17. Dasatinib blocks M-CSF –dependent cDC development in vitro….…60
Figure 18. Dasatinib blocks FL –dependent cDC development in vitro…………....61
Figure 19. Dasatinib blocks M-CSF-dependent CDP expansion in the BM in vitro…………………………………………………...…………………….………63
Figure 20. Dasatinib blocks M-CSF-dependent expression of cDC in vivo………65
Figure 21. Dasatinib blocks M-CSF-dependent expansion of CDP in vivo……..…..67
Figure 22. GW2580 blocks M-CSF-dependent expression of cDC in vivo………....69
Figure 23. GW2580 blocks M-CSF-dependent expansion of CDP in vivo............…71
Figure 24. M-CSF cytokine enhances DC development in vivo……………72
List of Tables
Table 1. A table of summary of IC50 of different inhibitions on the inhibition of TF1-fms, NFS-60 and Ba/f3-Flt3 is shown………………………………..……...……74
Table 2. A table of summary of IC50 of different inhibitions on the inhibition of M-CSF-dependent cDC development is shown. ……………………...……...…...……74
Table 3. A table of summary of IC50 of different inhibitions on the inhibition of FL-dependent cDC development is shown…………………….………...……………..74
Table 4. The effect of cytokine receptor or ligand knockout mice on DC development.75
dc.language.isoen
dc.title第一型干擾素訊息在巨噬細胞聚落刺激因子依賴性樹突細胞發育過程中所扮演角色之研究zh_TW
dc.titleEffects of Type I Interferon Signals on M-CSF-dependent Dendritic Cell Developmenten
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee嚴仲陽(Jeffrey J.Y. Yen),林國儀(Kuo-I?Lin)
dc.subject.keyword干擾素,巨噬細胞聚落刺激因子,樹突細胞,zh_TW
dc.subject.keywordinterferon,M-CSF,dendritic cell,en
dc.relation.page88
dc.rights.note有償授權
dc.date.accepted2013-07-30
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
2.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved