請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61797完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳振中(Jerry Chun-Chung Chen) | |
| dc.contributor.author | Wei-Ya Chen | en |
| dc.contributor.author | 陳薇雅 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:13:34Z | - |
| dc.date.available | 2014-08-06 | |
| dc.date.copyright | 2013-08-06 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-30 | |
| dc.identifier.citation | 1.6 參考文獻
[1] S. Mann, Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry, Oxford University Press, 2001. [2] S. Mann, Biomineralization and Biomimetic Materials Chemistry, J. Mater. Chem. 5 (1995) 935–946. [3] S. Mann, Molecular Tectonics in Biomineralization and Biomimetic Materials Chemistry, Nature. 365 (1993) 499–505. [4] Q. Huo, D. Margolese, U. Ciesla, P. Feng, T. Gier, P. Sieger, et al., Generalized Synthesis of Periodic Surfactant Inorganic Composite-Materials, Nature. 368 (1994) 317–321. [5] J.D. Hartgerink, E. Beniash, S.I. Stupp, Self-assembly and mineralization of peptide-amphiphile nanofibers, Science. 294 (2001) 1684–1688. [6] S. Weiner, L. Addadi, Design strategies in mineralized biological materials, J. Mater. Chem. 7 (1997) 689–702. [7] S. Mann, J. Hannington, R. Williams, Phospholipid-Vesicles as a Model System for Biomineralization, Nature. 324 (1986) 565–567. [8] L.C. Palmer, C.J. Newcomb, S.R. Kaltz, E.D. Spoerke, S.I. Stupp, Biomimetic Systems for Hydroxyapatite Mineralization Inspired By Bone and Enamel, Chem. Rev. 108 (2008) 4754–4783. [9] J. Webb, D.J. Macey, W. Chua-anusorn, T.G. St. Pierre, L.R. Brooker, I. Rahman, et al., Iron biominerals in medicine and the environment, Coordination Chemistry Reviews. 190–192 (1999) 1199–1215. [10] C. Groeger, M. Sumper, E. Brunner, Silicon uptake and metabolism of the marine diatom Thalassiosira pseudonana: Solid-state Si-29 NMR and fluorescence microscopic studies, J. Struct. Biol. 161 (2008) 55–63. [11] P. Westbroek, C. Brown, J. Vanbleijswijk, C. Brownlee, G. Brummer, M. Conte, et al., A Model System Approach to Biological Climate Forcing - the Example of Emiliania-Huxleyi, Glob. Planet. Change. 8 (1993) 27–46. [12] D.A. Bazylinski, R.B. Frankel, Magnetosome formation in prokaryotes, Nat. Rev. Microbiol. 2 (2004) 217–230. [13] S. Weiner, I. Sagi, L. Addadi, Choosing the crystallization path less traveled, Science. 309 (2005) 1027–1028. [14] S. Weiner, Transient precursor strategy in mineral formation of bone, Bone. 39 (2006) 431–433. [15] L. Addadi, S. Raz, S. Weiner, Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization, Adv. Mater. 15 (2003) 959–970. [16] M. Niederberger, H. Coelfen, Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly, Phys. Chem. Chem. Phys. 8 (2006) 3271–3287. [17] A.-W. Xu, Y. Ma, H. Coelfen, Biomimetic mineralization, J. Mater. Chem. 17 (2007) 415–449. [18] F.C. Meldrum, H. Coelfen, Controlling Mineral Morphologies and Structures in Biological and Synthetic Systems, Chem. Rev. 108 (2008) 4332–4432. [19] D. Gebauer, A. Voelkel, H. Coelfen, Stable Prenucleation Calcium Carbonate Clusters, Science. 322 (2008) 1819–1822. [20] H. Colfen, S. Mann, Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures, Angew. Chem.-Int. Edit. 42 (2003) 2350–2365. [21] L. Wang, G.H. Nancollas, Calcium Orthophosphates: Crystallization and Dissolution, Chem. Rev. 108 (2008) 4628–4669. [22] S.V. Dorozhkin, Calcium Orthophosphates in Nature, Biology and Medicine, Materials. 2 (2009) 399–498. [23] R. Klement, G. Tromel, Hydroxyapatite, an essential ingredient of inorganic bone and tooth substances., Hoppe-Seylers Z. Physiol. Chem. 213 (1932) 263–269. [24] M. Glimcher, A. Hodge, F. Schmitt, Macromolecular Aggregation States in Relation to Mineralization - the Collagen-Hydroxyapatite System as Studied Invitro, Proc. Natl. Acad. Sci. U. S. A. 43 (1957) 860–867. [25] A. Posner, A. Perloff, A. Diorio, Refinement of the Hydroxyapatite Structure, Acta Crystallographica. 11 (1958) 308–309. [26] R. Legros, N. Balmain, G. Bonel, Structure and Composition of the Mineral Phase of Periosteal Bone, J. Chem. Res.-S. (1986) 8–9. [27] S. Dowker, J. Elliott, Infrared-Absorption Bands from Nco- and Ncn2- in Heated Carbonate-Containing Apatites Prepared in the Presence of Nh4+ Ions, Calcif. Tissue Int. 29 (1979) 177–178. [28] D. Tadic, F. Peters, M. Epple, Continuous synthesis of amorphous carbonated apatites, Biomaterials. 23 (2002) 2553–2559. [29] X.M. Deng, J.Y. Hao, C.S. Wang, Preparation and mechanical properties of nanocomposites of poly(D,L-lactide) with Ca-deficient hydroxyapatite nanocrystals, Biomaterials. 22 (2001) 2867–2873. [30] C. Jager, T. Welzel, W. Meyer-Zaika, M. Epple, A solid-state NMR investigation of the structure of nanocrystalline hydroxyapatite, Magn. Reson. Chem. 44 (2006) 573–580. [31] C. Jaeger, S. Maltsev, A. Karrasch, Progress of structural elucidation of amorphous calcium phosphate (ACP) and hydroxyapatite (HAp): Disorder and surfaces as seen by solid state NMR, in: T. Nakamura, K. Yamashita, M. Neo (Eds.), Bioceramics 18, Pts 1 and 2, Trans Tech Publications Ltd, Zurich-Uetikon, 2006: pp. 69–72. [32] S.V. Dorozhkin, M. Epple, Biological and medical significance of calcium phosphates, Angew. Chem.-Int. Edit. 41 (2002) 3130–3146. [33] E. Eanes, Gillesse.ih, A. Gosner, Intermediate States in Precipitation of Hydroxyapatite, Nature. 208 (1965) 365–&. [34] C. Combes, C. Rey, Amorphous calcium phosphates: Synthesis, properties and uses in biomaterials, Acta Biomater. 6 (2010) 3362–3378. [35] J. Christoffersen, M.R. Christoffersen, W. Kibalczyc, F.A. Andersen, A contribution to the understanding of the formation of calcium phosphates, Journal of Crystal Growth. 94 (1989) 767–777. [36] F. Betts, N. Blumenthal, A. Posner, G. Becker, A. Lehninger, Atomic-Structure of Intracellular Amorphous Calcium-Phosphate Deposits, Proc. Natl. Acad. Sci. U. S. A. 72 (1975) 2088–2090. [37] J. Harries, D. Hukins, S. Hasnain, Analysis of the Exafs Spectrum of Hydroxyapatite, Journal of Physics C-Solid State Physics. 19 (1986) 6859–6872. [38] J. Harries, D. Hukins, C. Holt, S. Hasnain, Conversion of Amorphous Calcium-Phosphate into Hydroxyapatite Investigated by Exafs Spectroscopy, J. Cryst. Growth. 84 (1987) 563–570. [39] F. Peters, K. Schwarz, M. Epple, The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis, Thermochim. Acta. 361 (2000) 131–138. [40] J.C. Elliott, Structure and chemistry of the apatites and other calcium orthophosphates [...] [...], Elsevier, Amsterdam [u.a., 1994. [41] M. Christoffersen, J. Christoffersen, W. Kibalczyc, Apparent Solubilities of 2 Amorphous Calcium Phosphates and of Octacalcium Phosphate in the Temperature-Range 30-42-Degrees-C, J. Cryst. Growth. 106 (1990) 349–354. [42] E.D. Eanes, Amorphous calcium phosphate, in: L.C. Chow, E.D. Eanes (Eds.), Monographs in Oral Science. Octacalcium phosphate, 2001: pp. 130–147. [43] S. Graham, P. Brown, The Low-Temperature Formation of Octacalcium Phosphate, J. Cryst. Growth. 132 (1993) 215–225. [44] S. Graham, P.W. Brown, Reactions of octacalcium phosphate to form hydroxyapatite, J. Cryst. Growth. 165 (1996) 106–115. [45] M. Iijima, D.G.A. Nelson, Y. Pan, A.T. Kreinbrink, M. Adachi, T. Goto, et al., Fluoride analysis of apatite crystals with a central planar OCP inclusion: Concerning the role of F- ions on apatite/OCP/apatite structure formation, Calcif. Tissue Int. 59 (1996) 377–384. [46] T. Aoba, H. Komatsu, Y. Shimazu, H. Yagishita, Y. Taya, Enamel mineralization and an initial crystalline phase, Connect. Tissue Res. 38 (1998) 129–137. [47] Y.-H. Tseng, C.-Y. Mou, J.C.C. Chan, Solid-state NMR study of the transformation of octacalcium phosphate to hydroxyapatite: A mechanistic model for central dark line formation, J. Am. Chem. Soc. 128 (2006) 6909–6918. [48] M. Markovic, B. Fowler, W. Brown, Octacalcium Phosphate Carboxylates .2. Characterization and Structural Considerations, Chem. Mat. 5 (1993) 1406–1416. [49] N.J. Crane, V. Popescu, M.D. Morris, P. Steenhuis, M.A. Ignelzi, Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization, Bone. 39 (2006) 434–442. [50] T.W.T. Tsai, W.-Y. Chen, Y.-H. Tseng, J.C.C. Chan, Phase transformation of calcium phosphates in the presence of glutamic acid, Can. J. Chem.-Rev. Can. Chim. 89 (2011) 885–891. [51] A.J. Salgado, O.P. Coutinho, R.L. Reis, Bone tissue engineering: State of the art and future trends, Macromol. Biosci. 4 (2004) 743–765. [52] S. Weiner, H.D. Wagner, The material bone: Structure mechanical function relations, Annu. Rev. Mater. Sci. 28 (1998) 271–298. [53] H. Anderson, Vesicles Associated with Calcification in Matrix of Epiphyseal Cartilage, J. Cell Biol. 41 (1969) 59–&. [54] A. Heuer, D. Fink, V. Laraia, J. Arias, P. Calvert, K. Kendall, et al., Innovative Materials Processing Strategies - a Biomimetic Approach, Science. 255 (1992) 1098–1105. [55] L. Hessle, K.A. Johnson, H.C. Anderson, S. Narisawa, A. Sali, J.W. Goding, et al., Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 9445–9449. [56] J. Mahamid, A. Sharir, D. Gur, E. Zelzer, L. Addadi, S. Weiner, Bone mineralization proceeds through intracellular calcium phosphate loaded vesicles: A cryo-electron microscopy study, J. Struct. Biol. 174 (2011) 527–535. [57] H. Blair, S. Teitelbaum, R. Ghiselli, S. Gluck, Osteoclastic Bone-Resorption by a Polarized Vacuolar Proton Pump, Science. 245 (1989) 855–857. [58] A.L. Boskey, Matrix proteins and mineralization: An overview, Connect. Tissue Res. 35 (1996) 357–363. [59] L.N.Y. Wu, B.R. Genge, D.G. Dunkelberger, R.Z. LeGeros, B. Concannon, R.E. Wuthier, Physicochemical characterization of the nucleational core of matrix vesicles, J. Biol. Chem. 272 (1997) 4404–4411. [60] A. Arsenault, E. Hunziker, Electron-Microscopic Analysis of Mineral-Deposits in the Calcifying Epiphyseal Growth Plate, Calcif. Tissue Int. 42 (1988) 119–126. [61] M. Ogiso, T. Tabata, T. Ichijo, D. Borgese, Bone Calcification on the Hydroxyapatite Dental Implant and the Bone-Hydroxyapatite Interface, J. Long-Term Eff. Med. Implants. 2 (1992) 137–148. [62] L.N.Y. Wu, G.R. Sauer, B.R. Genge, W.B. Valhmu, R.E. Wuthier, Effects of analogues of inorganic phosphate and sodium ion on mineralization of matrix vesicles isolated from growth plate cartilage of normal rapidly growing chickens, J. Inorg. Biochem. 94 (2003) 221–235. [63] M. Glimcher, L. Bonar, M. Grynpas, W. Landis, A. Roufosse, Recent Studies of Bone-Mineral - Is the Amorphous Calcium-Phosphate Theory Valid, J. Cryst. Growth. 53 (1981) 100–119. [64] M. Grynpas, L. Bonar, M. Glimcher, Failure to Detect an Amorphous Calcium-Phosphate Solid-Phase in Bone-Mineral - a Radial-Distribution Function Study, Calcif. Tissue Int. 36 (1984) 291–301. [65] Y. Wu, M. Glimcher, C. Rey, J. Ackerman, A Unique Protonated Phosphate Croup in Bone-Mineral Not Present in Synthetic Calcium Phosphates - Identification by P-31 Solid-State Nmr-Spectroscopy, J. Mol. Biol. 244 (1994) 423–435. [66] L.T. Kuhn, Y.T. Xu, C. Rey, L.C. Gerstenfeld, M.D. Grynpas, J.L. Ackerman, et al., Structure, composition, and maturation of newly deposited calcium-phosphate crystals in chicken osteoblast cell cultures, J. Bone Miner. Res. 15 (2000) 1301–1309. [67] M.D. Grynpas, Transient precursor strategy or very small biological apatite crystals?, Bone. 41 (2007) 162–164. [68] J. Mahamid, B. Aichmayer, E. Shimoni, R. Ziblat, C. Li, S. Siegel, et al., Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 6316–6321. [69] L.T. Kuhn, M.D. Grynpas, C.C. Rey, Y. Wu, J.L. Ackerman, M.J. Glimcher, A comparison of the physical and chemical differences between cancellous and cortical bovine bone mineral at two ages, Calcif. Tissue Int. 83 (2008) 146–154. [70] J. Tropp, N. Blumenthal, J. Waugh, Phosphorus Nmr-Study of Solid Amorphous Calcium-Phosphate, J. Am. Chem. Soc. 105 (1983) 22–26. [71] N. Nassif, N. Pinna, N. Gehrke, M. Antonietti, C. Jager, H. Colfen, Amorphous layer around aragonite platelets in nacre, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 12653–12655. [72] R.A. Metzler, I.W. Kim, K. Delak, J.S. Evans, D. Zhou, E. Beniash, et al., Probing the organic-mineral interface at the molecular level in model biominerals, Langmuir. 24 (2008) 2680–2687. [73] R. Bertermann, N. Kroger, R. Tacke, Solid-state Si-29 MAS NMR studies of diatoms: structural characterization of biosilica deposits, Anal. Bioanal. Chem. 375 (2003) 630–634. [74] T.W.T. Tsai, J.C.C. Chan, Recent Progress in the Solid-State NMR Studies of Biomineralization, in: G.A. Webb (Ed.), Annual Reports on Nmr Spectroscopy, Vol 73, Elsevier Academic Press Inc, San Diego, 2011: pp. 1–61. [75] E. Eanes, A. Hailer, Liposome-Mediated Calcium-Phosphate Formation in Metastable Solutions, Calcif. Tissue Int. 37 (1985) 390–394. 2.5 參考文獻 [1] M.J. Duer, Introduction to solid-state NMR spectroscopy, Blackwell, Oxford, UK; Malden, MA, 2004. [2] C. Jaeger, S. Maltsev, A. Karrasch, Progress of structural elucidation of amorphous calcium phosphate (ACP) and hydroxyapatite (HAp): Disorder and surfaces as seen by solid state NMR, in: T. Nakamura, K. Yamashita, M. Neo (Eds.), Bioceramics 18, Pts 1 and 2, Trans Tech Publications Ltd, Zurich-Uetikon, 2006: pp. 69–72. [3] R. Vold, J. Waugh, M. Klein, D. Phelps, Measurement of Spin Relaxation in Complex Systems, J. Chem. Phys. 48 (1968) 3831–&. [4] J. Schaefer, E. Stejskal, C-13 Nuclear Magnetic-Resonance of Polymers Spinning at Magic Angle, J. Am. Chem. Soc. 98 (1976) 1031–1032. [5] J. Herzfeld, A. Berger, Sideband Intensities in Nmr-Spectra of Samples Spinning at the Magic Angle, J. Chem. Phys. 73 (1980) 6021–6030. [6] S.R. Hartmann, E.L. Hahn, Nuclear Double Resonance in the Rotating Frame, Phys. Rev. 128 (1962) 2042–2053. [7] Y.-H. Tseng, C.-Y. Mou, J.C.C. Chan, Solid-state NMR study of the transformation of octacalcium phosphate to hydroxyapatite: A mechanistic model for central dark line formation, J. Am. Chem. Soc. 128 (2006) 6909–6918. [8] C. Jager, T. Welzel, W. Meyer-Zaika, M. Epple, A solid-state NMR investigation of the structure of nanocrystalline hydroxyapatite, Magn. Reson. Chem. 44 (2006) 573–580. [9] Y.-H. Tseng, Y.-L. Tsai, T.W.T. Tsai, J.C.H. Chao, C.-P. Lin, S.-H. Huang, et al., Characterization of the phosphate units in rat dentin by solid-state NMR spectroscopy, Chem. Mat. 19 (2007) 6088–6094. [10] T.W.T. Tsai, W.-Y. Chen, Y.-H. Tseng, J.C.C. Chan, Phase transformation of calcium phosphates in the presence of glutamic acid, Can. J. Chem.-Rev. Can. Chim. 89 (2011) 885–891. [11] G.Y. Cho, Y.T. Wu, J.L. Ackerman, Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy, Science. 300 (2003) 1123–1127. [12] G. Metz, X. Wu, S. Smith, Ramped-Amplitude Cross-Polarization in Magic-Angle-Spinning Nmr, J. Magn. Reson. Ser. A. 110 (1994) 219–227. [13] G.S. Rule, T.K. Hitchens, Fundamentals of protein NMR Spectroscopy, in: Focus on Structural Biology, 2006: p. 1. [14] D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calve, B. Alonso, et al., Modelling one- and two-dimensional solid-state NMR spectra, Magn. Reson. Chem. 40 (2002) 70–76. [15] L. Emsley, Spin Diffusion for NMR Crystallography, in: eMagRes, John Wiley & Sons, Ltd, 2007. [16] L.A. Tobin, Y. Xie, M. Tsokos, S.I. Chung, A.A. Merz, M.A. Arnold, et al., Pegylated siRNA-loaded calcium phosphate nanoparticle-driven amplification of cancer cell internalization in vivo, Biomaterials. 34 (2013) 2980–2990. [17] S.-J. Huang, Y.-L. Tsai, Y.-L. Lee, C.-P. Lin, J.C.C. Chan, Structural Model of Rat Dentin Revisited, Chem. Mat. 21 (2009) 2583–2585. 3.7 參考文獻 [1] C.C. Tester, R.E. Brock, C.-H. Wu, M.R. Krejci, S. Weigand, D. Joester, In vitro synthesis and stabilization of amorphous calcium carbonate (ACC) nanoparticles within liposomes, Crystengcomm. 13 (2011) 3975–3978. [2] Y. Fukui, K. Fujimoto, Control in Mineralization by the Polysaccharide-Coated Liposome via the Counter-Diffusion of Ions, Chem. Mat. 23 (2011) 4701–4708. [3] P.B. Messersmith, S. Vallabhaneni, V. Nguyen, Preparation of calcium-loaded liposomes and their use in calcium phosphate formation, Chem. Mat. 10 (1998) 109–116. [4] Q.L. Feng, Q.H. Chen, H. Wang, F.Z. Cui, Influence of concentration of calcium ion on controlled precipitation of calcium phosphate within unilamellar lipid vesicles, J. Cryst. Growth. 186 (1998) 245–250. [5] P.B. Messersmith, S. Starke, Thermally triggered calcium phosphate formation from calcium-loaded liposomes, Chem. Mat. 10 (1998) 117–124. [6] M.B. Dowling, J.-H. Lee, S.R. Raghavan, pH-Responsive Jello: Gelatin Gels Containing Fatty Acid Vesicles†, Langmuir. 25 (2009) 8519–8525. [7] S. Mann, M. Kime, R. Ratcliffe, R. Williams, Precipitation Within Unilamellar Vesicles .2. Membrane Control of Ion-Transport, J. Chem. Soc.-Dalton Trans. (1983) 771–774. [8] S. Mann, J. Hannington, R. Williams, Phospholipid-Vesicles as a Model System for Biomineralization, Nature. 324 (1986) 565–567. [9] S. Mann, D. Archibald, J. Didymus, T. Douglas, B. Heywood, F. Meldrum, et al., Crystallization at Inorganic-Organic Interfaces - Biominerals and Biomimetic Synthesis, Science. 261 (1993) 1286–1292. [10] M.Q. Chu, G.J. Liu, Preparation and characterization of hydroxyapatite/liposome core-shell nanocomposites, Nanotechnology. 16 (2005) 1208–1212. [11] D. Tadic, F. Peters, M. Epple, Continuous synthesis of amorphous carbonated apatites, Biomaterials. 23 (2002) 2553–2559. [12] T. Welzel, W. Meyer-Zaika, M. Epple, Continuous preparation of functionalised calcium phosphate nanoparticles with adjustable crystallinity, Chem. Commun. (2004) 1204–1205. [13] C. Jager, T. Welzel, W. Meyer-Zaika, M. Epple, A solid-state NMR investigation of the structure of nanocrystalline hydroxyapatite, Magn. Reson. Chem. 44 (2006) 573–580. [14] C. Combes, C. Rey, Amorphous calcium phosphates: Synthesis, properties and uses in biomaterials, Acta Biomater. 6 (2010) 3362–3378. [15] S. Somrani, M. Banu, M. Jemal, C. Rey, Physico-chemical and thermochemical studies of the hydrolytic conversion of amorphous tricalcium phosphate into apatite, J. Solid State Chem. 178 (2005) 1337–1348. [16] G. Metz, X. Wu, S. Smith, Ramped-Amplitude Cross-Polarization in Magic-Angle-Spinning Nmr, Journal of Magnetic Resonance Series A. 110 (1994) 219–227. [17] A. Bennett, C. Rienstra, M. Auger, K. Lakshmi, R. Griffin, Heteronuclear Decoupling in Rotating Solids, J. Chem. Phys. 103 (1995) 6951–6958. [18] Y.-H. Tseng, Y.-L. Tsai, T.W.T. Tsai, J.C.H. Chao, C.-P. Lin, S.-H. Huang, et al., Characterization of the phosphate units in rat dentin by solid-state NMR spectroscopy, Chem. Mat. 19 (2007) 6088–6094. [19] S.-J. Huang, Y.-L. Tsai, Y.-L. Lee, C.-P. Lin, J.C.C. Chan, Structural Model of Rat Dentin Revisited, Chem. Mat. 21 (2009) 2583–2585. 4.8 參考文獻 [1] C. Combes, C. Rey, Amorphous calcium phosphates: Synthesis, properties and uses in biomaterials, Acta Biomater. 6 (2010) 3362–3378. [2] J. Yesinowski, H. Eckert, Hydrogen Environments in Calcium Phosphates - H-1 Mas Nmr at High Spinning Speeds, J. Am. Chem. Soc. 109 (1987) 6274–6282. [3] G.Y. Cho, Y.T. Wu, J.L. Ackerman, Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy, Science. 300 (2003) 1123–1127. [4] A.K. Lynn, W. Bonfield, A novel method for the simultaneous, titrant-free control of pH and calcium phosphate mass yield, Accounts Chem. Res. 38 (2005) 202–207. [5] S. Mann, R. Williams, Precipitation Within Unilamellar Vesicles .1. Studies of Silver(i) Oxide Formation, J. Chem. Soc.-Dalton Trans. (1983) 311–&. [6] S. Mann, M. Kime, R. Ratcliffe, R. Williams, Precipitation Within Unilamellar Vesicles .2. Membrane Control of Ion-Transport, J. Chem. Soc.-Dalton Trans. (1983) 771–774. [7] M.Q. Chu, G.J. Liu, Preparation and characterization of hydroxyapatite/liposome core-shell nanocomposites, Nanotechnology. 16 (2005) 1208–1212. [8] S. Mann, J. Hannington, R. Williams, Phospholipid-Vesicles as a Model System for Biomineralization, Nature. 324 (1986) 565–567. [9] M. Michel, M. Winterhalter, L. Darbois, J. Hemmerle, J.C. Voegel, P. Schaaf, et al., Giant liposome microreactors for controlled production of calcium phosphate crystals, Langmuir. 20 (2004) 6127–6133. [10] C.C. Tester, R.E. Brock, C.-H. Wu, M.R. Krejci, S. Weigand, D. Joester, In vitro synthesis and stabilization of amorphous calcium carbonate (ACC) nanoparticles within liposomes, Crystengcomm. 13 (2011) 3975–3978. [11] A. Picker, H. Nuss, P. Guenoun, C. Chevallard, Polymer Vesicles as Microreactors for Bioinspired Calcium Carbonate Precipitation, Langmuir. 27 (2011) 3213–3218. [12] H.T. Schmidt, A.E. Ostafin, Liposome directed growth of calcium phosphate nanoshells, Adv. Mater. 14 (2002) 532–+. [13] Y. Fukui, K. Fujimoto, Control in Mineralization by the Polysaccharide-Coated Liposome via the Counter-Diffusion of Ions, Chem. Mat. 23 (2011) 4701–4708. [14] L.A. Tobin, Y. Xie, M. Tsokos, S.I. Chung, A.A. Merz, M.A. Arnold, et al., Pegylated siRNA-loaded calcium phosphate nanoparticle-driven amplification of cancer cell internalization in vivo, Biomaterials. 34 (2013) 2980–2990. [15] D. Tadic, F. Peters, M. Epple, Continuous synthesis of amorphous carbonated apatites, Biomaterials. 23 (2002) 2553–2559. [16] D. Tadic, A. Veresov, V.I. Putlayev, M. Epple, In-vitro preparation of nanocrystalline calcium phosphates as bone substitution materials in surgery, Materialwiss. Werkstofftech. 34 (2003) 1048–1051. [17] S. Somrani, C. Rey, M. Jemal, Thermal evolution of amorphous tricalcium phosphate, J. Mater. Chem. 13 (2003) 888–892. [18] J. Tropp, N. Blumenthal, J. Waugh, Phosphorus Nmr-Study of Solid Amorphous Calcium-Phosphate, J. Am. Chem. Soc. 105 (1983) 22–26. [19] J. Roberts, L. Bonar, R. Griffin, M. Glimcher, Characterization of Very Young Mineral Phases of Bone by Solid-State P-31 Magic Angle Sampling Spinning Nuclear-Magnetic-Resonance and X-Ray-Diffraction, Calcif. Tissue Int. 50 (1992) 42–48. [20] Y.-H. Tseng, Y.-L. Tsai, T.W.T. Tsai, J.C.H. Chao, C.-P. Lin, S.-H. Huang, et al., Characterization of the phosphate units in rat dentin by solid-state NMR spectroscopy, Chem. Mat. 19 (2007) 6088–6094. [21] S.-J. Huang, Y.-L. Tsai, Y.-L. Lee, C.-P. Lin, J.C.C. Chan, Structural Model of Rat Dentin Revisited, Chem. Mat. 21 (2009) 2583–2585. [22] S. Somrani, M. Banu, M. Jemal, C. Rey, Physico-chemical and thermochemical studies of the hydrolytic conversion of amorphous tricalcium phosphate into apatite, J. Solid State Chem. 178 (2005) 1337–1348. [23] J. Christoffersen, M.R. Christoffersen, W. Kibalczyc, F.A. Andersen, A contribution to the understanding of the formation of calcium phosphates, Journal of Crystal Growth. 94 (1989) 767–777. [24] H. Lowenstam, S. Weiner, Transformation of Amorphous Calcium-Phosphate to Crystalline Dahllite in the Radular Teeth of Chitons, Science. 227 (1985) 51–53. [25] E.D. Eanes, Amorphous calcium phosphate, in: L.C. Chow, E.D. Eanes (Eds.), Monographs in Oral Science. Octacalcium phosphate, 2001: pp. 130–147. [26] Z. Amjad, Calcium Phosphates in Biological and Industrial Systems, Kluwer Acad. Publ., 1998. [27] C. Jager, T. Welzel, W. Meyer-Zaika, M. Epple, A solid-state NMR investigation of the structure of nanocrystalline hydroxyapatite, Magn. Reson. Chem. 44 (2006) 573–580. [28] R. Santos, R. Wind, C. Bronnimann, H-1 Cramps and H-1-P-31 Hetcor Experiments on Bone, Bone-Mineral, and Model Calcium-Phosphate Phases, J. Magn. Reson. Ser. B. 105 (1994) 183–187. [29] J. Mahamid, A. Sharir, L. Addadi, S. Weiner, Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: Indications for an amorphous precursor phase, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 12748–12753. [30] J. Mahamid, B. Aichmayer, E. Shimoni, R. Ziblat, C. Li, S. Siegel, et al., Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 6316–6321. [31] J. Mahamid, A. Sharir, D. Gur, E. Zelzer, L. Addadi, S. Weiner, Bone mineralization proceeds through intracellular calcium phosphate loaded vesicles: A cryo-electron microscopy study, J. Struct. Biol. 174 (2011) 527–535. [32] Z. Zyman, D. Rokhmistrov, V. Glushko, Structural changes in precipitates and cell model for the conversion of amorphous calcium phosphate to hydroxyapatite during the initial stage of precipitation, J. Cryst. Growth. 353 (2012) 5–11. [33] M. Grynpas, L. Bonar, M. Glimcher, Failure to Detect an Amorphous Calcium-Phosphate Solid-Phase in Bone-Mineral - a Radial-Distribution Function Study, Calcif. Tissue Int. 36 (1984) 291–301. [34] Y. Wu, M. Glimcher, C. Rey, J. Ackerman, A Unique Protonated Phosphate Croup in Bone-Mineral Not Present in Synthetic Calcium Phosphates - Identification by P-31 Solid-State Nmr-Spectroscopy, J. Mol. Biol. 244 (1994) 423–435. [35] L.T. Kuhn, Y.T. Xu, C. Rey, L.C. Gerstenfeld, M.D. Grynpas, J.L. Ackerman, et al., Structure, composition, and maturation of newly deposited calcium-phosphate crystals in chicken osteoblast cell cultures, J. Bone Miner. Res. 15 (2000) 1301–1309. [36] Y. Wu, J.L. Ackerman, E.S. Strawich, C. Rey, H.M. Kim, M.J. Glimcher, Phosphate ions in bone: Identification of a calcium-organic phosphate complex by P-31 solid-state NMR spectroscopy at early stages of mineralization, Calcif. Tissue Int. 72 (2003) 610–626. [37] C. Jaeger, S. Maltsev, A. Karrasch, Progress of structural elucidation of amorphous calcium phosphate (ACP) and hydroxyapatite (HAp): Disorder and surfaces as seen by solid state NMR, in: T. Nakamura, K. Yamashita, M. Neo (Eds.), Bioceramics 18, Pts 1 and 2, Trans Tech Publications Ltd, Zurich-Uetikon, 2006: pp. 69–72. [38] A. Posner, F. Betts, Synthetic Amorphous Calcium-Phosphate and Its Relation to Bone-Mineral Structure, Accounts Chem. Res. 8 (1975) 273–281. [39] A. Oyane, K. Onuma, T. Kokubo, A. Ito, Clustering of calcium phosphate in the system CaCl2-H3PO4-KCl-H2O, J. Phys. Chem. B. 103 (1999) 8230–8235. [40] A. Dey, P.H.H. Bomans, F.A. Muller, J. Will, P.M. Frederik, G. de With, et al., The role of prenucleation clusters in surface-induced calcium phosphate crystallization, Nat Mater. 9 (2010) 1010–1014. [41] M.D. Grynpas, Transient precursor strategy or very small biological apatite crystals?, Bone. 41 (2007) 162–164. [42] N.J. Crane, V. Popescu, M.D. Morris, P. Steenhuis, M.A. Ignelzi, Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization, Bone. 39 (2006) 434–442. [43] S. Weiner, Transient precursor strategy in mineral formation of bone, Bone. 39 (2006) 431–433. [44] S. Weiner, I. Sagi, L. Addadi, Choosing the crystallization path less traveled, Science. 309 (2005) 1027–1028. [45] K. Sakamoto, S. Yamaguchi, M. Kaneno, I. Fujihara, K. Satoh, Y. Tsunawaki, Synthesis and thermal decomposition of layered calcium phosphates including carboxylate ions, Thin Solid Films. 517 (2008) 1354–1357. [46] T.W.T. Tsai, W.-Y. Chen, Y.-H. Tseng, J.C.C. Chan, Phase transformation of calcium phosphates in the presence of glutamic acid, Can. J. Chem.-Rev. Can. Chim. 89 (2011) 885–891. [47] K. Onuma, A. Ito, Cluster growth model for hydroxyapatite, Chem. Mat. 10 (1998) 3346–3351. [48] K. Onuma, Recent research on pseudobiological hydroxyapatite crystal growth and phase transition mechanisms, Prog. Cryst. Growth Charact. Mater. 52 (2006) 223–245. [49] J. Puech, J. Heughebaert, G. Montel, A New Mode of Growing Apatite Crystallites, J. Cryst. Growth. 56 (1982) 20–24. [50] L.C. Palmer, C.J. Newcomb, S.R. Kaltz, E.D. Spoerke, S.I. Stupp, Biomimetic Systems for Hydroxyapatite Mineralization Inspired By Bone and Enamel, Chem. Rev. 108 (2008) 4754–4783. [51] L. Wang, G.H. Nancollas, Calcium Orthophosphates: Crystallization and Dissolution, Chem. Rev. 108 (2008) 4628–4669. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61797 | - |
| dc.description.abstract | 磷酸鈣是脊椎動物硬組織的主要礦物成分,其在生物體內的礦化過程通常在限制空間中,像是細胞、囊泡或是細胞間介質當中。在本論文中將研究在微脂體內部生成的磷酸鈣礦物的成礦過程。首先我們建立出微脂體-磷酸鈣系統,接著進一步以各種技術鑑定產物。樣品TEM顯示合成的磷酸鈣尺度約50 nm且型貌為團聚狀。由XRD以及FT-IR可發現所合成的樣品具有HAp結晶相,隨著實驗礦化時間的增加,其結晶性會越好。以固態核磁共振技術,我們可以鑑定出樣品中同時含有ACP以及HAp,並且樣品中HAp與ACP在空間上排列相當緊密,會呈現類似「固態分散體」的模型。由此可建立成礦的過程:均勻分佈在ACP團簇當中的HAp晶粒隨著培養時間的增加,屬於ACP (solid) → HAp (solid)的轉變路徑。 | zh_TW |
| dc.description.abstract | Calcium phosphate is the main constituent of biological hard tissues in vertebrates. The growth of this mineral phase in vivo occurs in confined space such as cellular vesicles and extracellular matrix. In this work, we investigate the mineralization process of calcium phosphate within phospholipid bilayer vesicles (liposomes). To this aim, liposomes containing calcium/ phosphate ions were prepared by thin film method. TEM images show that the formed nano-crystallites are aggregates with diameter around 50 nm. The XRD data reveal that the precipitate of calcium phosphate is of poor crystalline apatite phase. In addition, the IR spectra suggest the transformation pathway follows the order starting from amorphous calcium phosphate (ACP) and finally to hydroxyapatite (HAp). From solid-state NMR data, ACP and HAp co-exist in the samples and they are in close proximity to each other. A closely-packed model is proposed and the transformation pathway follows: ACP (solid) → HAp (solid) | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:13:34Z (GMT). No. of bitstreams: 1 ntu-102-R00223121-1.pdf: 4258547 bytes, checksum: 7c3dd2e77f60a3d774757977712b6ac1 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 目錄
口試委員會審定書……………………………………………….......…..I 中文摘要………………………………………………………………...II 英文摘要………………………………………………………………..III 第1章 序論 1 1.1 生物礦化概要 1 1.2 磷酸鈣礦物 4 1.2.1 氫氧基磷灰石hydroxyapatite, HAp 6 1.2.2 非晶態磷酸鈣amorphous calcium phosphate, ACP 8 1.2.3 磷酸八鈣octacalcium phosphate, OCP 9 1.2.4 磷酸二鈣水合物brushite 10 1.3 磷酸鈣在骨骼組織中的礦化 10 1.3.1 骨骼組織簡介 10 1.3.2 骨骼基質囊泡 12 1.3.3 骨骼HAp之成礦過程 12 1.4 固態核磁共振在磷酸鈣相關之研究 13 1.5 實驗目的 13 1.6 參考文獻 14 第2章 固態核磁共振基本原理 23 2.1 簡介 23 2.2 交叉極化Cross polarization, CP 25 2.2.1 交叉極化原理簡介 25 2.2.2 31P{1H}交叉極化應用於磷酸鈣礦化系統 26 2.2.3 磷酸鈣標準樣品之31P{1H}交叉極化動態 28 2.3 異核相關二維圖譜 Heteronuclear correlation, HETCOR 29 2.4 31P–31P自旋擴散 31 2.5 參考文獻 31 第3章 實驗方法與鑑定 34 3.1 實驗藥品與儀器 34 3.1.1 化學藥品一覽表 34 3.1.2 實驗儀器型號一覽表 34 3.2 磷酸根離子擴散進入微脂體之合成策略 35 3.2.1 包覆鈣離子之微脂體之製備以及純化 36 3.2.2 磷酸鈣成礦之實驗 40 3.3 pH值梯度誘導成礦之策略 41 3.3.1 包覆成核溶液之微脂體之製備以及純化 42 3.3.2 磷酸鈣成礦實驗 43 3.4 非晶態磷酸(ACP)鈣標準品之合成 44 3.5 樣品鑑定方法 44 3.5.1 X光粉末繞射儀 (XRD) 44 3.5.2 紅外線光譜儀 (IR) 45 3.5.3 穿透式電子顯微鏡 (TEM) 45 3.5.4 粒徑分佈儀(DLS, dynamic light scattering) 46 3.6 固態核磁共振光譜 46 3.6.1 31P{1H}交叉極化魔角旋轉光譜 46 3.6.2 自旋擴散實驗(Spin diffusion) 47 3.7 參考文獻 47 第4章 結果與討論 50 4.1 磷酸根離子擴散進入微脂體之合成策略 50 4.1.1 樣品形貌之顯微觀察 50 4.1.2 固體產物之鑑定 51 4.1.3 小結 53 4.2 pH值梯度誘導成礦之磷酸鈣晶粒基本鑑定 53 4.2.1 樣品形貌之顯微觀察 54 4.2.2 XRD及FT-IR之鑑定 56 4.2.3 小結 58 4.3 31P{1H}交叉極化實驗解析晶態與非晶態磷酸鈣 59 4.3.1 非晶態磷酸鈣之鑑定 59 4.3.2 分析以微脂體調控之樣品 61 4.4 31P–31P自旋擴散之實驗 64 4.5 微脂體調控之磷酸鈣晶粒結構分析 66 4.5.1 對照組「CaP_17hr」之結構模型 66 4.5.2 微脂體調控之磷酸鈣晶粒結構分析 67 4.6 老鼠牙本質的單元結構模型修正 67 4.7 在微脂體調控下磷酸鈣之成礦機制 68 4.8 參考文獻 70 第5章 結論與未來展望 76 圖目錄 圖 1 1 各種生物礦物型貌示意圖 1 圖 1 2 各種微生物體內發現的ACC聚集之型貌 3 圖 1 3 非古典結晶理論示意圖 3 圖 1 4 ACP理論模型示意圖 8 圖 1 5 Poster’s cluster和HAp晶格間的關係 9 圖 1 6 骨骼組織之七大階層分類 11 圖 1 7 雞骨基質囊泡的TEM影像,比例尺為200 nm 12 圖 2 1 Zeeman effect示意圖 24 圖 2 2 MAS實驗示意圖 25 圖 2 3 MAS轉速越快,圖譜解析度越好 25 圖 2 4 異何自旋系統的交叉極化過程 26 圖 2 5 31P{1H}交叉極化所使用之脈衝序列 27 圖 2 6 簡單的CP訊號傳遞模型 28 圖 2 7 標準樣品HAp, brushite以及monetite之交叉極化動態 29 圖 2 8 二維實驗之示意圖,在不同t1條件下收取t2時間內的訊號,再分別對兩個時間維度作傅立葉轉換 30 圖 2 9 31P{1H}交叉極化二維實驗 30 圖 2 10 31P–31P自旋擴散實驗脈衝序列 31 圖 3 1以磷酸根離子擴散進入微脂體之合成策略示意圖 36 圖 3 2 經負染之微脂體電子顯微鏡影像 38 圖 3 3 膠體層析管柱裝置 39 圖 3 4 微脂體內部鈣離子外漏測試實驗 39 圖 3 5 直接離心得到的沉澱產物 40 圖 3 6 以pH值梯度誘導成礦之合成策略示意圖 42 圖 3 7 層析過程之鈣離子濃度量變趨勢 43 圖 3 8 照片為圖3-9中虛線框部分之溶液樣貌 43 圖 3 9 取圖3-7中虛線框部分之溶液粒徑分佈趨勢 43 圖 3 10 31P{1H}交叉極化脈衝序列 47 圖 3 11 31P{1H}異核相關光譜之脈衝序列 47 圖 3 12自旋擴散實驗之脈衝序列 47 圖 4 1 兩種型貌之磷酸鈣沉澱TEM圖 50 圖 4 2 對照組樣品TEM圖 50 圖 4 3 直接離心樣品之XRD圖譜 51 圖 4 4 直接離心樣品之IR圖譜 51 圖 4 5 直接離心之樣品31P{1H}交叉極化一維磷譜. 52 圖 4 6 濃縮離心處理之樣品31P{1H}交叉極化二維光譜 52 圖 4 7 磷酸根各物種之比例隨溶液pH值變化之曲線圖 53 圖 4 8 磷酸鈣樣品TEM圖;其中(a)至(c)有微脂體調控(lipoCaP),(d)為對照組(CaP)沒有微脂體調控。成礦時間:(a) 1小時、(b) 17小時、(c) 5天、(d) 17小時 55 圖 4 9 微脂體外部溶液以硝酸根離子取代磷酸根離子,礦化培養一天的TEM顯影;箭頭指出100 nm以下之礦化顆粒,其中許多顆粒具中空球殼結構 56 圖 4 10 在微脂體調控下樣品XRD圖譜 56 圖 4 11 在微脂體調控下樣品FT-IR圖譜 58 圖 4 12 製備之ACP XRD圖譜 59 圖 4 13 製備之ACP XRD圖譜 59 圖 4 14 製備之ACP之TEM顯影以及EDS元素分析 60 圖 4 15 製備之ACP 31P{1H}交叉極化一維磷譜 60 圖 4 16 製備之ACP 31P{1H}交叉極化二維圖 60 圖 4 17 ACP標準樣品31P{1H}交叉極動態 61 圖 4 18 樣品「lipoCaP_17hr」之31P{1H} HETCOR圖譜 62 圖 4 19 取圖4-10之氫核訊號維度之投影及模擬曲線;長虛線是分解出來屬於HAp的OH基團訊號、而短虛線則屬於ACP的訊號 62 圖 4 20 樣品「lipoCaP_17hr」之31P{1H}交叉極化動態 62 圖 4 21 各樣品之HAp莫耳分率 63 圖 4 22 樣品「lipoCaP_17hr」不同自旋擴散時間下所得到的1H譜 65 圖 4 23 HAp與ACP相對訊號隨不同自旋擴散時間之變化圖。(a):lipoCaP_3hr、(b):lipoCaP_17hr、(c):lipoCaP_5d、(d):CaP_17hr 66 圖 4 24 奈米HAp晶粒模型,其中灰色部分為ACP殼層 66 圖 4 25不同模型之示意圖 67 圖 4 26 老鼠牙本質單元結構模型 68 圖 4 27修正後的老鼠牙本質單元結構模型 68 圖 4 28 lipoCaP系列樣品之成礦過程 69 表目錄 表 1 1 各種廣泛研究之礦物 2 表 1 2 各種型式之磷酸鈣基本資料表 5 表 1 3 各種磷酸鈣結晶之晶格資訊 6 表 1 4 生物HAp材料與純相HAp之比較 7 表 2 1 磷酸鈣標準樣品之交叉極化動態參數 29 表 3 1 微脂體製備流程 37 表 3 2 不同組成成份之微脂體粒徑分佈 38 表 3 3 透析膜使用步驟 41 表 4 1 各樣品的31P{1H}交叉極化動態參數 63 | |
| dc.language.iso | zh-TW | |
| dc.subject | 生物礦化 | zh_TW |
| dc.subject | 氫氧基磷灰石 | zh_TW |
| dc.subject | 非晶態磷酸鈣 | zh_TW |
| dc.subject | 微脂體 | zh_TW |
| dc.subject | 固態核磁共振 | zh_TW |
| dc.subject | 交叉極化 | zh_TW |
| dc.subject | 異核相關圖譜 | zh_TW |
| dc.subject | 自旋擴散 | zh_TW |
| dc.subject | biomineralization | en |
| dc.subject | spin diffusion | en |
| dc.subject | HETCOR | en |
| dc.subject | cross polarization | en |
| dc.subject | solid-state NMR | en |
| dc.subject | liposome | en |
| dc.subject | amorphous calcium phosphate (ACP) | en |
| dc.subject | hydroxyapatite (HAp) | en |
| dc.title | 以微脂體調控磷酸鈣礦化之研究 | zh_TW |
| dc.title | Mineralization Control of Calcium Phosphates by Liposomes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李度(Tu Lee),何佳安(Ja-an Annie Ho) | |
| dc.subject.keyword | 生物礦化,氫氧基磷灰石,非晶態磷酸鈣,微脂體,固態核磁共振,交叉極化,異核相關圖譜,自旋擴散, | zh_TW |
| dc.subject.keyword | biomineralization,hydroxyapatite (HAp),amorphous calcium phosphate (ACP),liposome,solid-state NMR,cross polarization,,HETCOR,spin diffusion, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-30 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 4.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
