請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61794
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 曾雪峰(Snow H. Tseng) | |
dc.contributor.author | Chien Chao | en |
dc.contributor.author | 趙謙 | zh_TW |
dc.date.accessioned | 2021-06-16T13:13:27Z | - |
dc.date.available | 2020-07-02 | |
dc.date.copyright | 2020-07-02 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-06-28 | |
dc.identifier.citation | [1] S. D. Mellin and G. P. Nordin, 'Limits of scalar diffraction theory and an iterative angular spectrum algorithm for finite aperture diffractive optical element design,' Optics Express, vol. 8, no. 13, pp. 705-722, 2001. [2] C. Cutler, A. King, and W. Kock, 'Microwave antenna measurements,' Proceedings of the IRE, vol. 35, no. 12, pp. 1462-1471, 1947. [3] D. M. Kerns, 'Correction of near-field antenna measurements made with an arbitrary but known measuring antenna,' Electronics Letters, vol. 6, no. 11, pp. 346-347, 1970. [4] W. H. Kummer and E. S. Gillespie, 'Antenna measurements—1978,' Proceedings of the IEEE, vol. 66, no. 4, pp. 483-507, 1978. [5] A. Yaghjian, 'An overview of near-field antenna measurements,' IEEE Transactions on antennas and propagation, vol. 34, no. 1, pp. 30-45, 1986. [6] S. Saario, D. Thiel, J. Lu, and S. O'Keefe, 'An assessment of cable radiation effects on mobile communications antenna measurements,' in IEEE Antennas and Propagation Society International Symposium 1997. Digest, 1997, vol. 1: IEEE, pp. 550-553. [7] J. Hald and F. Jensen, Spherical near-field antenna measurements. Iet, 1988. [8] C. H. Schmidt, M. M. Leibfritz, and T. F. Eibert, 'Fully probe-corrected near-field far-field transformation employing plane wave expansion and diagonal translation operators,' IEEE Transactions on Antennas and Propagation, vol. 56, no. 3, pp. 737-746, 2008. [9] R. Pierri, G. D'Elia, and F. Soldovieri, 'A two probes scanning phaseless near-field far-field transformation technique,' IEEE Transactions on Antennas and Propagation, vol. 47, no. 5, pp. 792-802, 1999. [10] O. M. Bucci, C. Gennarelli, and C. Savarese, 'Fast and accurate near-field-far-field transformation by sampling interpolation of plane-polar measurements,' IEEE Transactions on Antennas and Propagation, vol. 39, no. 1, pp. 48-55, 1991. [11] S. González García, B. Garcia Olmedo, and R. Gomez Martin, 'A time‐domain near‐to far‐field transformation for FDTD in two dimensions,' Microwave and Optical Technology Letters, vol. 27, no. 6, pp. 427-432, 2000. [12] X. Li, A. Taflove, and V. Backman, 'Modified FDTD near-to-far-field transformation for improved backscattering calculation of strongly forward-scattering objects,' IEEE Antennas and Wireless Propagation Letters, vol. 4, pp. 35-38, 2005. [13] D. J. Robinson and J. B. Schneider, 'On the use of the geometric mean in FDTD near-to-far-field transformations,' IEEE transactions on antennas and propagation, vol. 55, no. 11, pp. 3204-3211, 2007. [14] O. M. Ramahi, 'Near-and far-field calculations in FDTD simulations using Kirchhoff surface integral representation,' IEEE Transactions on Antennas and Propagation, vol. 45, no. 5, pp. 753-759, 1997. [15] C.-C. Oetting and L. Klinkenbusch, 'Near-to-far-field transformation by a time-domain spherical-multipole analysis,' IEEE Transactions on Antennas and Propagation, vol. 53, no. 6, pp. 2054-2063, 2005. [16] I. R. Capoglu and G. S. Smith, 'A direct time-domain FDTD near-field-to-far-field transform in the presence of an infinite grounded dielectric slab,' IEEE transactions on antennas and propagation, vol. 54, no. 12, pp. 3805-3814, 2006. [17] W. C. Chew, E. Michielssen, J. M. Song, and J. M. Jin, Fast and Efficient Algorithms in Computational Electromagnetics. Artech House, Inc., 2001. [18] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method. Artech House, 2005. [19] R. F. Harrington, Field computation by moment methods. Wiley-IEEE Press, 1993. [20] K. Yee, 'Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,' IEEE Transactions on antennas and propagation, vol. 14, no. 3, pp. 302-307, 1966. [21] S. D. Gedney and J. A. Roden, 'Numerical stability of nonorthogonal FDTD methods,' IEEE Transactions on Antennas and Propagation, vol. 48, no. 2, pp. 231-239, 2000. [22] P. Thoma and T. Weiland, 'Numerical stability of finite difference time domain methods,' IEEE transactions on Magnetics, vol. 34, no. 5, pp. 2740-2743, 1998. [23] T. S. Rappaport, Wireless Communications Principles and Practice. Prentice-Hall, 2010. [24] Balanis, Antenna Theory: Analysis and Design (3rd ed.). 2005. [25] A. D. Yaghjian, 'An Overview of Near-field Antenna Measurements,' IEEE Trans. on Antennas and Propagation, vol. 34, pp. 30-45, 1986. [26] O. Neitz, R. A. Mauermayer, Y. Weitsch, and T. F. Eibert, 'A propagating plane-wave-based near-field transmission equation for antenna gain determination from irregular measurement samples,' IEEE Transactions on Antennas and Propagation, vol. 65, no. 8, pp. 4230-4238, 2017. [27] M. A. Qureshi, C. H. Schmidt, and T. F. Eibert, 'Efficient near-field far-field transformation for nonredundant sampling representation on arbitrary surfaces in near-field antenna measurements,' IEEE transactions on antennas and propagation, vol. 61, no. 4, pp. 2025-2033, 2012. [28] M. D. Migliore, F. Soldovieri, and R. Pierri, 'Far-field antenna pattern estimation from near-field data using a low-cost amplitude-only measurement setup,' IEEE Transactions on Instrumentation and Measurement, vol. 49, no. 1, pp. 71-76, 2000. [29] R. Cornelius and D. Heberling, 'Spherical wave expansion with arbitrary origin for near-field antenna measurements,' IEEE Transactions on Antennas and Propagation, vol. 65, no. 8, pp. 4385-4388, 2017. [30] R. J. Luebbers, D. Ryan, J. H. Beggs, and K. S. Kunz, 'A two-dimensional time domain near zone to far zone transformation,' 1991. [31] R. J. Luebbers, K. S. Kunz, M. Schneider, and F. Hunsberger, 'A finite-difference time-domain near zone to far zone transformation (electromagnetic scattering),' IEEE Transactions on Antennas and Propagation, vol. 39, no. 4, pp. 429-433, 1991. [32] P. Petre and T. K. Sarkar, 'A planar near-field to far-field transformation using an equivalent magnetic current approach,' in IEEE Antennas and Propagation Society International Symposium 1992 Digest, 1992: IEEE, pp. 1534-1537. [33] S. Blanch, R. Yaccarino, J. Romeu, and Y. R. Samii, 'Near-field to far-field transformation of bi-polar measurements by equivalent magnetic current approach,' in IEEE Antennas and Propagation Society International Symposium. 1996 Digest, 1996, vol. 1: IEEE, pp. 561-564. [34] T. K. Sarkar and A. Taaghol, 'Near-field to near/far-field transformation for arbitrary near-field geometry utilizing an equivalent electric current and MoM,' IEEE Transactions on Antennas and Propagation, vol. 47, no. 3, pp. 566-573, 1999. [35] A. Y. Simba, A. Itou, L. Hamada, S. Watanabe, T. Arima, and T. Uno, 'Development of liquid-type human-body equivalent antennas for induced ankle current measurements at VHF band,' IEEE transactions on electromagnetic compatibility, vol. 54, no. 3, pp. 565-573, 2011. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61794 | - |
dc.description.abstract | 繞射是波的基本特性,並且能用Huygens–Fresnel principle 跟波疊加原理加以描述每一個向前傳遞的波都可將之前的波前視為新的波源。繞射現象是一種真實的物理情形,然而對於有些過於複雜無法透過直接解析的情況,透過電腦數值計算的方式可以得到複雜邊界條件下的數值解。一般而言會將計算電磁學分成以下: full-wave法跟high-frequency法,在full-wave法種類下方程式又可以細分成偏微分或是積分方程形式,其中時域有限差分法(FDTD)是在時域下以偏微分方程的形式解Maxwell’s方程式的一種方法。 當我們使用FDTD去解析電磁波的問題時,數值相位誤差扮演著影響結果的重要腳色,在數值計算中,誤差的來源是用光在數值網格上行進的速度對於真實世界光在真空中的比值來定義誤差。因此我們能透過改變計算中數值網格的大小,去讓光在數值網格上行進的速度非常的接近真實的光速,因此提高答案的精確度,在此研究中,我們使用不同的網格大小λ/20到 λ/80,去探討解析度的差異對於遠場繞射情形的影響並且將所有的結果都跟單狹縫遠場繞射的解析解去做比對驗證,最終得到在在不同解析度的情況下,每個角度的計算數值對於解析解的差異。 | zh_TW |
dc.description.abstract | Diffraction is a basic characteristic of wave which can be described by the Huygens–Fresnel principle and the principle of superposition of waves. The propagation of a wave can be visualized by considering every particle of the transmitted medium on a wavefront as a point source for a secondary spherical wave. Diffraction phenomenon is one the real-world physics problems, however some of them are not analytically calculable. Computational numerical techniques can overcome the inability to obtain the solutions of governing equations under complex structure and boundary conditions. The techniques of computational electromagnetics into two major categories: full-wave methods and high-frequency methods, under the category of full-wave methods, techniques can be classified as partial differential equation (PDE) based or integral equation (IE) based. FDTD is under the category of full-wave methods which is used to solve Maxwell’s curl equations at points on space grids in the time domain. When one uses FDTD methods to study electromagnetic wave problems, the numerical dispersion errors play a key role to determine the accuracy of the numerical results. In the numerical calculations, the wave propagating through the grid causes a phase error that directly affects the numerical results. In other words, the numerical dispersion error could be reduced by choosing a finer grid or higher resolution. In this research, we interested in the effect of grid resolution on the far-field pattern, so we compared the four different far-field pattern under the selected resolution which is from λ/20 to λ/60. The validation is done by comparing the results to the analytical solutions of single-slit diffraction. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T13:13:27Z (GMT). No. of bitstreams: 1 U0001-2206202005082200.pdf: 3113756 bytes, checksum: 29b31dd07c79bd62844b21a77d76de9a (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES viii Chapter 1 Introduction 1 1.1 Huygens–Fresnel principle 6 1.2 Single-Slit Diffraction 7 1.3 Near-Field and Far-Field 8 1.4 Near-to-Far-Field Transformation 11 Chapter 2 Simulation Method 13 2.1 Finite-Difference Time-Domain in Two Domain 13 2.2 Periodic Boundary Conditions 20 2.3 Near-to-far-field Transformation 21 Chapter 3 FDTD Modelling of Far-Field 32 3.1 Modelling of Near-to-Far-Field Transformation 32 3.2 Gaussian Source 33 3.3 Integration boundary of the NTFF 34 3.4 Wave propagation of NTFF calculation 38 Chapter 4 Calculations of the far-field patterns 41 4.1 Exact value of single-slit diffraction pattern 41 4.1.1 Far-field pattern of 3λ slit length 43 4.1.2 Far-field pattern of 5λ slit length 47 Chapter 5 Discussion 51 5.1 The effects of grid resolutions on far-field pattern 51 5.2 Error distribution of angles 53 5.2.1 Error distribution from 0° to 90° 53 5.2.2 Error distribution from 0° to 30° 55 5.3 Accuracy improvement 57 Chapter 6 Conclusion 59 REFERENCE 60 | |
dc.language.iso | en | |
dc.title | 以近遠場轉換初探模擬解析度對遠場數值計算的影響 | zh_TW |
dc.title | Exploring the Effect of Grid Resolution on the Finite-Difference Time-Domain (FDTD) Algorithm and Near-to-far-field (NTFF) Transformation for Far-Field Numerical Calculations | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳士元(Shih-Yuan Chen),黃定洧(Ding-Wei Huang) | |
dc.subject.keyword | NULL | en |
dc.relation.page | 64 | |
dc.identifier.doi | 10.6342/NTU202001089 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-06-29 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2206202005082200.pdf 目前未授權公開取用 | 3.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。