Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61777
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭仁傑
dc.contributor.authorNi-Na Changen
dc.contributor.author張妮娜zh_TW
dc.date.accessioned2021-06-16T13:12:48Z-
dc.date.available2015-09-10
dc.date.copyright2013-09-10
dc.date.issued2013
dc.date.submitted2013-07-30
dc.identifier.citationAita MN, Tadokoro K, Ogawa NO, Hyodo F, Ishii R, Smith SL, Saino T, Kishi MJ, Saitoh SI, Wada E (2011) Linear relationship between carbon and nitrogen isotope ratios along simple food chains in marine environments. J Plankton Res 0: 1-14.
Antonio ES, Kasai A, Ueno M, Won N, Ishihi Y, Yokoyama H, Yamashita Y, (2010) Spatial variation in organic matter utilization by benthic communities from Yuta River-Estuary to offshore of Tango Sea, Japan. Estuarine Coastal Shelf Sci 86: 107-117.
Antonio ES, Kasai A, Ueno M, Ishihi Y, Yokoyama H, Yamashita Y (2012) Spatial-temporal feeding dynamics of benthic communities in an estuary-marine gradient. Estuar Coast Shelf Sci 112: 86-97.
Baden SP, Loo LO, Pihl L, Rosenberg R (1990) Effects of eutrophication on benthic communities including fish: Swedish west coast. Ambio 19: 113-122.
Baird D, Christian RR, Peterson CH, Johnson, GA (2004) Consequences of hypoxia on estuarine ecosystem function: energy diversion from consumers to microbes. Ecol Appl 14: 805–822.
Blanchard F, LeLoc’h F, Hily C, Boucher J (2004) Fishing effects on diversity, size and community structure of the benthic invertebrate and fish megafauna on the Bay of Biscay coast of France. Mar Ecol Prog Ser 280: 249-260.
Bouillon S, Chandra Mohan P, Sreenivas N, Dehairs F (2000) Sources of suspended organic matter and selective feeding by zooplankton in an estuarine mangrove ecosystem as traced by stable isotopes. Mar Ecol Prog Ser 208: 79-92.
Breitburg, D (2002) Effects of Hypoxia, and the Balance between hypoxia and enrichment, on coastal fishes and fisheries. Estuaries 25: 767-781.
Breitburg DL, Craig JK, Fulford RS, Rose KA, Boynton WR, Brady DC, Ciotti BJ, Diaz RJ, Friedland KD, Hagy III JD, Hart DR, Hines AH, Houde ED, Kolesar SE, Nixon SW, Rice JA, Secor DH, Targett YE (2009) Nutrient enrichment and fisheries exploitation: interactive effects on estuarine living resources and their management. Hydrobiologia 629: 31-47.
Brett MT, Kainz MK, Taipale SJ, Seshan H (2009) Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production. P Natl Acad Sci USA 106: 21197-21201.
Caddy JF, Bakun A (1994) A tentative classification of coastal marine ecosystems based on dominant processes of nutrient supply. Ocean Coast Manage 23: 201-211.
Chai C, Yu Z, Shen Z, Song X, Cao X, Yao Y (2009) Nutrient characteristics in the Yangtze River Estuary and the adjacent East China Sea before and after impoundment of the Three Gorges Dam. Sci total environ 407: 4687-4695.
Chandra S, Vander Zande MJ, Heyvaer AC, Richard BC, Allen BC, Goldman CR (2005) The effects of cultural eutrophication on the coupling between pelagic primary producers and benthic consumers. Limnol Oceanogr 50: 1368-1376.
Chang NN, Shiao JC, Gong GC (2012) Diversity of demersal fish in the East China Sea: Implication of eutrophication and fishery. Cont Shelf Res 47: 42-54.
Chen C, Zhu J, Beardsley RC, Franks PJS, (2003) Physical-biological sources for dense algal blooms near the Changjiang River. Geophys Res Lett 30: 1515.
Chen CC, Gong GC, Shiah FK (2007) Hypoxia in the East China Sea: one of the largest coastal low-oxygen areas in the world. Mar Environ Res 64: 399-408.
Chen CS, Beardsley RC, Limeburner R, Kim K (1994) Comparison of winter and summer hydrographic observations in the Yellow and East China Seas and adjacent Kuroshio during 1986. Cont Shelf Res 14: 909-929.
Chen CTA (2003) New vs. export production on the continental shelf. Deep-Sea Res Pt. II 50: 1327-1333.
Chen YLL, Chen HY, Gong GC, Lin YH, Jan S, Takahashi M (2004) Phytoplankton production during a summer coastal upwelling in the East China Sea. Cont Shelf Res 24: 1321-1338.
Chen YLL, Lu H, Shiah F, Gong G, Liu K, Kanda J (1999) New production and f-ratio on the continental shelf of the East China Sea: comparisons between nitrate inputs from the subsurface Kuroshio Current and the Changjiang River. Estuarine. Coast Shelf Sci 48: 59-75.
Chen YQ, Shen XQ (1995) Changes in the biomass of the East China Sea ecosystem. In: Tang, Q.S., Sherman, K. (Eds.), The Large Marine Ecosystems of the Pacific Rim: A marine conservation and development report. IUCN publication, Gland, pp. 91-112.
Chou WC, Gong GC, Sheu DD, Jan S, Hung CC, Chen CC (2009) Reconciling the paradox that the heterotrophic waters of the East China Sea shelf act as a significant CO2 sink during the summertime: Evidence and implications. Geo Res Lett 36: L15607.
Christensen JH, Christensen OB (2003) Severe summertime flooding in Europe. Nature 421: 805-806.
Cifuentes LA, Sharp JH, Fogel ML (1988) Stable carbon and nitrogen isotope biogeochemistry in the Delaware estuary. Limnol Oceanogr 33: 1102-1115.
Cividanes S, Incera M, Lopez J (2002) Temporal variability in the biochemical composition of sedimentary organic matter in an intertidal flat of the Galician coast (NW Spain). Oceanologica Acta 25: 1-12.
Costa MJ, Vasconcelos R, Costa JL, Cabral HN (2007) River flow influence on the fish community of the Tagus estuary (Portugal). Hydrobiologia 587: 113-123.
Dagg M, Benner R, Lohrenz S, Lawrence D (2004) Transformation of dissolved and particulate materials on continental shelves influenced by large rivers: Plume processes. Cont Shelf Res 24: 833-858.
Dai Z, Du J, Zhang X, Xu N, Li J (2011) Variation of riverine material loads and environmental consequences on the Changjiang (Yangtze) Estuary in recent decades (1955-2008). Environ Sci Technol 45: 223–227.
Darnaude AM, Salen-Picard C, Harmelin-Vivien, M.L (2004b) Depth variation in terrestrial particulate organic matter exploitation by marine coastal benthic communities off the Rhone River delta (NW Mediterranean). Mar Ecol Prog Ser 275: 47-57.
Darnaude AM, Salen-Picard C, Polunin NVC, Harmelin-Vivien ML (2004a) Trophodynamic linkage between river runoff and coastal fishery yield elucidated by stable isotope data in the Gulf of Lions (NW Mediterranean). Oecologia 138: 325-332.
Deegan LA, Garritt RH (1997) Evidence for spatial variability in estuarine food webs. Mar Ecol Prog Ser 147: 31-47.
Deng JY, Meng TX, Ren SM, Qin XY, Zhu JY (1988) Species composition, abundance and distribution of fish in the Bohai Sea. Mar Fish Res 9: 11-89.
Diaz RJ (2001) Overview of hypoxia around the world. J environ qual 30: 275-281.
Dou S (1992) Feeding habit and seasonal variation of food constituents of left-eyed flounder, Paralichthys olivaceus, of the Bohai Sea. Mar Sci 4: 277-281.
Dupont JM, Hallock P, Jaap WC (2010) Ecological impacts of the 2005 red tide on artificial reef epibenthic macroinvertebrate and fish communities in the eastern Gulf of Mexico. Mar Ecol Prog Ser 415: 189–200.
Fry B, Sherr EB (1984) δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Cont Mar Sci 27: 13-47.
Fry B, Wainright SC (1991) Diatom sources of 13C-rich carbon in marine food webs. Mar Ecol Prog Ser 76: 149-157.
Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter, JH, Townsend AR, Voosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry: 70 153-226.
Gao S, Wang YP (2008) Changes in material fluxes from the Changjiang River and their implications on the adjoining continental shelf ecosystem. Cont Shelf Res 28: 1490-1500.
Gearing PJ, Gearing JN, Maughan JT, Oviatt CA (1991) Isotopic distribution of carbon from sewage sludge and eutrophication in the sediments and food web of estuarine ecosystems. Environ Sci Technol 25: 295-301.
Gerdeaux D, Perga ME (2006) Changes in whitefish scales δ13C during eutrophication and reoligophication of subalpine lakes. Limnol Oceanogr 51: 772-780.
Grall J, Chauvaud L (2002) Marine eutrophication and benthos: the need for new approaches and concepts. Global Change Biol 8: 813-830.
Gray JS, Wu RSS, Or YY (2002) Effects of hypoxia and organic enrichment on the coastal marine environment. Mar Ecol Prog Ser 238: 249-279.
Gong GC (1992) Chemical hydrography of the Kuroshio front in the sea northeast of Taiwan. Ph.D. Dissertation, National Taiwan University, Taipei
Gong GC, Chen YL, Liu KK (1996) Summertime hydrography and chlorophyll a distribution in the East China Sea in summer: implications of nutrient dynamics. Cont Shelf Res 16: 1561-1590.
Gong GC, Liu KK, Chiang KP, Hsiung TM, Chang J, Chen CC, Hung CC, Chou WC, Chung CC, Chen HY, Shiah FK, Tsai AY, Hsieh CH, Shiao JC, Tseng CM, Hsu SC, Lee HJ, Lee MA, Lin II, Tsai F (2011) Yangtze River floods enhance coastal ocean phytoplankton biomass and potential fish production. Geo Res Lett 38: L13603.
Gong GC, Wen WH, Wang BW, Liu GJ (2003) Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep Sea Res Part II 50: 1219–1236.
Grime CB (2001) Fishery production and the Mississippi River discharge. Fisheries 26: 17-26.
Hama T, Miyazaki T, Ogawa Y, Iwakuma T, Takahashi M, Otsuki A, Ichimura S (1983) Measurement of photosynthetic production of a marine phytoplankton population using a stable 13C isotope. Mar Biol 73: 31-36.
Howarth RW, Jensen H, Marino R, Postma H (1995) Transport to and processing of phosphorus in near-shore and oceanic waters, in: Tiessen, H. (Ed). Phosphorus in the global environment: transfers, cycles, and management, John Wiley and Sons, Chichester, UK.
Ichikawa H, Beardsley RC (2002) The current system in the Yellow and East China Seas. J Oceanogr 58: 77-92.
Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque B.J, Bradbury RH, Cooke R., Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warne, RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293: 629-638.
Jiang YZ, Cheng JH, Li SF (2009) Temporal changes in the fish community resulting from a summer fishing moratorium in the northern East China Sea. Mar Ecol Prog Ser 387: 265-273.
Kao SJ, Lin FJ, Liu KK (2003) Organic carbon and nitrogen contents and their isotopic compositions in surficial sediments from the East China Sea shelf and the southern Okinawa Trough. Deep-Sea Res PT II 50: 1203-1217.
Karna DW (2003) A Review of Some of the Effects of Reduced Dissolved Oxygen on Fish and Invertebrate Resources of Ward Cove, Alaska. Seattle, WA: Water Restoration Unit, Office of Water, US EPA, Region 10, pp. 20.
Karim MR, Sekine M, Higuchi T, Imai T, Ukita M (2003) Simulation of fish behavior and mortality in hypoxic water in an enclosed bay. Ecol Model 159: 27-42.
Katoh O (2000) Current distribution in southern East China Sea in summer. J Geophys Res 105: 8565-8573.
Li D, Daler D (2004) Ocean pollution from land-based sources: East China Sea, China. Ambio 33: 107-113.
Li DJ, Zhang J, Huang DJ, Wu Y, Liang J (2002) Oxygen deficit out of the Changjiang Estuary. Sci China Ser D: Earth Sci 32: 686-694.
Li J, Li S, Ding F, Cheng J (2007) Analysis on annual change of fish diversity in Yangtze estuary offshore water area. J Fish Sci Chin 14: 637-643. (In Chinese).
Li SL, Liu CQ, Li J, Liu X, Chetelat B, Wang B, Wang F (2010) Assessment of the sources of nitrate in the Changjiang River, China: using a nitrogen and orxygen isotopic approach. Environ Sci Technol 44: 1573-1578.
Lin LS, Zheng YJ, Liu Y, Zhang HY (2006) The ecological study of small sized fish in the East China Sea: the species composition and seasonal variation of small sized fish. Mar Sci 30: 58-63 (In Chinese).
Liu WH, Zhan BY (1999) The dynamic analysis on the fishery stocks in the East China Sea. Journal of Shanghai Fisheries University 8: 19-24.
Liu X, Yu Z, Song X, Cao X (2009) The nitrogen isotopic composition of dissolved nitrate in the Yangtze River (Changjiang) estuary, China. Estuar Coast Shelf S 85: 641-650.
Loneragan NR, Bunn SE (1999) River flows and estuarine ecosystems: implications for coastal fisheries from a review and a case study of the Logan River, southeast Queensland. Aust J Ecol 24: 431-440.
Milly PCD, Wetherald RT, Dunne KA, Delworth TL (2002) Increasing risk of great floods in a changing climate. Nature 415: 514-517.
Minagawa M, Wada E (1984) Stepwise enrichment of δ15N along food chains: further evidence and the relation betweenδ15N and animal age. Geochim Cosmochim Ac 48: 1135-1140.
Morshuizen LDT, Whitfiel, AK, Paterson, AW (1996) Influence of freshwater flow regime on fish assemblages in the great fish river and estuary. S Afr J Aquat Sci 22: 52-61.
Nadon MO, Himmelman JH (2006) Stable isotopes in subtidal food webs: Have enriched carbon ratios in benthic consumers been misinterpreted? Limnol. Oceanogr 51: 2828-2836.
Nascimento FJA, Karlson AML, Elmgren R (2008) Settling blooms of filamentous cyanobacteria as food for meifauna assemblages. Limnol Oceanogr 53: 2636-2643.
Nixon SW (1995) Costal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41, 19-219
Nixon SW, Oviatt CA, Frithsen J, Sullivan B (1986) Nutrients and the productivity of estuarine and coastal marine ecosystems. Limnol soc S Afr 12: 43-71.
Pai SC, Gong GC, Liu KK (1993) Determination of dissolved oxygen in seawater by direct spectrophotometry of total iodine. Mar Chem 41: 343-351.
Pearson TH, Rosenberg R (1978) Macrobenthic successions in relation to organic enrichment and pollution of the marine environment. Oceanogr Mar Biol- Annu Rev 16: 229-311.
Peters KE, Sweeney RE, Kaplan IR (1978) Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter. Limnol Oceanog 23: 598-604.
Peterson BJ, Howarth RW, Garritt RH (1985) Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science 227: 1361-1363.
Petersen JK, Pihl L (1995) Responses to hypoxia of plaice, Pleuronectes platessa, and dab, Limanda limanda, in the south-east Kattegat: distribution and growth. Environ Biol Fishes 43: 311-321.
Pihl L (1994) Changes in the diet of demersal fish due to eutrophication-induced hypoxia in the Kattegat, Sweden. Can J Fish Aquat Sci 51: 321-336.
Pihl L, Baden SP, Diaz RJ, Schaffner LC (1992) Hypoxia-induced structural changes in the diet of bottom-feeding fish and Crustacea. Mar Biol 112: 349-361.
Pihl L, Baden SP, Diaz RJ (1991) Effects of periodic hypoxia on distribution of demersal fish and crustaceans. Mar Biol 108: 349-360.
Post DM. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703-718.
Powers SP, Peterson CH, Christian RR, Sullivan E, Powers MJ, Bishop MJ, Buzzelli CP (2005) Effects of eutrophication on bottom habitat and prey resources of demersal fishes. Mar Ecol Prog Ser 302: 233-243.
Rabouille C, Conely DJ, Dai MH, Cai WJ, Chen CTA, Lansard B, Green R, Yin K, Harrison PJ, Dagg M, Mckee B (2008) Comparison of hypoxia among four river-dominated ocean margins: The Changjiang (Yangtze), Mississippi, Pearl, and Rhone rivers. Cont Shelf Res 28: 1527– 1537.
Raven JA, Johnston AM, Newman JR, Scrim-Geour CM (1994) Inorganic carbon acquisition by aquatic photo-lithotrophs of the Dighty Bum, Angus, U.K.: Uses and limi-tations of natural abundance measurements of carbon isotopes. New Phytol 127: 271-286.
Riera P, Richard P (1996) Isotopic determination of food sources of Crassostrea gigas along a trophic gradient in the estuarine bay of Marennes-Oleron, Estuar. Coast Shelf Sci 42: 347-360.
Rice JC (2005) understanding fish habitat ecology to achieve conservation. J fish biol 67: 1-22.
Salen-Picard C, Darnaude AM, Arlhac D, Harmelin-Vivien ML (2002) Fluctuations of macrobenthic populations: a link between climate-driven river run-off and sole fishery yields in the Gulf of Lions. Oecologia 133, 380-388.
Savoye N, Aminot A, Treguer P, Fontugne M, Naulet N, Kerouel R (2003) Dynamics of particulate organic matter δ15N and δ13C during spring phytoplankton blooms in a macrotidal ecosystem (Bay of Seine, France). Mar Ecol Prog Ser 255: 27-41.
Schindler DE, Carpenter SR, Cole JJ, kitchell JE, Pace ML (1997) Influence of food web structure on carbon exchange between lakes and the atmosphere Science 277: 248-250.
Shan XJ, Jin XS, Yuan W (2010) Fish assemblage structure in the hypoxic zone in the Changjiang (Yangtze River) estuary and its adjacent waters. Chin J Oceanol Limnol 28: 459-469.
Smith GB (1975) The 1971 red tide and its impact on certain communities in the mid-eastern Gulf of Mexico. Environ Lett 9: 141–152.
Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems: a global problem. Environ Sci Pollut Res 10: 1-14.
Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ pollut 100: 179-196.
Tamelander T, Kivimae C, Bellerby RG, Renaud PE, Kristiansen S (2009) Base-line variations in stable isotope values in an Arctic marine ecosystem: effects of carbon and nitrogen uptake by phytoplankton, Hydrobiologia 630: 63-73.
Tang DL, Di BP, Wei GF, Ni IH, Oh IS, Wang SF (2006) Spatial, seasonal and species variations of harmful algal blooms in the South Yellow Sea and East China Sea, Hydrobiologia 568: 245-253.
ter Braak CJF, Verdonschot PFM (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57:253–287.
Utne-Palm AC, Salvanes AG, Currie B, Kaartvedt S, Nilsson GE, Braithwaite VA, Stecyk JA, Hundt M, van der Bank M, Flynn B, Sandvik GK, Klevjer TA, Sweetman AK, Bruchert V, Pittman K, Peard KR, Lunde IG, Strandabo RA, Gibbons MJ (2010) Trophic structure and community stability in an overfished ecosystem. Science 329: 333-336.
Vander Zanden MJ, Vadeboncoeur Y (2002) Fishes as integrators of benthic and pelagic food webs in lakes. Ecology 83:2152–2161.
Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. PNAS 105: 15452-15457.
Villnas A, Norkko J, Lukkari K, Hewitt J, Norkko A (2012) Consequences of Increasing Hypoxic Disturbance on Benthic Communities and Ecosystem Functioning. Plos One 7: e44920.
Vob M, Struck U (1997) Stable nitrogen and carbon isotopes as indicator of eutrophication of the Oder river (Baltic Sea). Mar Chem 59: 35-49.
Wada EM, Minagawa H, Mizutani H, Tsuji T, Imaizumi R, Karasawa K (1987) Biogeochemical studies on the transport of organic matter along the Otsuchi River watershed, Japan. Estuar Coast Shelf S 25: 321-336.
Wang B (2006) Cultural eutrophication in the Changjiang (Yangtze River) plume: History and perspective. Estuarine Coastal Shelf Sci 69: 471-477.
Wang J, Wu J (2009) Occurrence and potential risks of harmful algal blooms in the East China Sea. Sci Total Environ 407: 4012-4021.
Wannamaker CM, Rice JA (2000) Effects of hypoxia on movements and behavior of selected estuarine organisms from the southeastern United States. J Exp Mar Biol Ecol 249: 145-163.
Watson R, Pauly D (2001) Systematic distortions in world fisheries catch trends. Nature 414: 534-536.
Wei H, He Y, Li Q, Liu Z, Wang H (2007) Summer hypoxia adjacent to the Changjiang Estuary. J Mar Syst 67: 292-303.
Wu RSS (2002) Hypoxia: from molecular responses to ecosystem responses. Mar Pollut Bull 45: 35–45.
Wu Y, Zhang J, Li DJ, Wei H, Lu RH (2003) Isotope variability of particulate organic matter at the PN section in the East China Sea. Biogeochemistry 65: 31-49.
Wu Y, Dittmar T, Ludwichowski KU, Kattner G, Zhang J, Zhu ZY, Koch BP (2007a) Tracing suspended organic nitrogen from the Yangtze River catchment into the East China Sea. Mar Chem 107: 367-377.
Wu Y, Zhang J, Liu SM, Zhang ZF, Yao QZ, Hong GH, Copper L (2007b) Sources and distribution of carbon within the Yangtze River system. Est Cont Shelf Sci 71: 13-25.
Yamada U, Tokimura M, Horikawa H, Nakabo T (2007) Fishes and Fisheries of the East and Yellow seas. Hanagawa: Tokai University Press. pp. 1-1340 (In Japanese).
Yu H and Xian W (2009) The environment effect on fish assemblage structure in waters adjacent to the Changjiang (Yangtze) River estuary (1998–2001). Chin J Oceanol Limnol 27: 443-456.
Zhou MJ, Shen ZL, Yu RC (2008) Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River. Cont Shelf Res 28: 1483-1489.
Zhu C, Xue B, Pan J, Zhang H, Wagner T, Pancost RD (2008) The dispersal of sedimentary terrestrial organic matter in the East China Sea (ECS) as revealed by biomarkers and hydro-chemical characteristics. Org Geochem 29: 952-957.
Zhu ZY, Zhang J, Wu Y, Zhang YY, Lin J, Liu SM (2011) Hypoxia off the Changjiang (Yangtze River) Estuary: Oxygen depletion and organic matter decomposition. Mar chem 125: 108-116.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61777-
dc.description.abstract長江每年輸入大量無機營養鹽及有機物質進入東海海域,並造成其產生嚴重的優養化與缺氧情形。而近年來因氣候變遷而引發的洪水事件會進一步加強陸源物質對於臨近海域生態系統的影響。然而,關於優養化及其他陸源物質對於東海底棲生態系統之影響的相關研究卻很缺乏,且對洪水所帶來的潛在貢獻與風險之評估也仍鮮為探討。故本實驗首先欲探討東海底棲性魚類群聚結構與東海環境特性之相關性為何。此外,我們也透過分析魚類群聚組成與穩定性同位素組成,進一步討論提高的初級生產力是否能貢獻予底棲消費者,亦或會沉降造成嚴重缺氧而危害底棲生物。本研究發現,東海近岸的禁漁範圍,最容易產生底部低氧甚至是缺氧情形。夏季時,多數生物指標,如:生物多樣性、物種豐富度等,皆與表層營養鹽及葉綠素濃度呈現顯著負相關,而與底部溶氧濃度呈顯著正相關,顯示近岸區域的魚類群聚很可能受到優養化及缺氧的負面影響。且近岸測站多以小型的
六線長鯊蝦虎魚(Amblychaeturichtyhs hexanema)為最主要的優勢物種,反映了多數物種無法存活於該低氧環境。所以,原劃定為養護漁業資源的近岸禁魚區之效益,可能相當有限。穩定性碳、氮同位素分析則是顯示絕大部分的東海底棲消費者,皆仰賴海源性的初級生產力;相反地,鮮少利用陸源性有機物質。而近岸測站的魚類與甲殼類標本體內有較高的穩定性碳同位素值(δ13C),反映其攝取了表層的藻華生物。
發生於2010年的長江洪水事件,會於東海近岸造成更加嚴重的缺氧情況,以致於魚類多樣性低迷。然而部分水深較深,且不易受到缺氧影響的區域,其魚類物種豐富度與長江輸水量呈現顯著正相關,此結果可能反映了長江洪水發生時,適度提高的初級生產力能間接地提高魚類的食物可利用性,因而貢獻到魚類的物種豐富度。故整體而言,長江淡水輸入所刺激的高初級生產力,僅能夠在無缺氧發生的環境下,對東海的底棲生態系統有所貢獻。
zh_TW
dc.description.abstractThe East China Sea (ECS) received large quantities of freshwater, nutrients, and organic matters from the adjacent Changjiang and experienced severe eutrophication and hypoxia in recent decades. Frequent flood events related to climate change may further magnify the impacts of land-based materials on the ECS. Nevertheless, the basic knowledge about response of ECS benthic organisms to these disturbances remain poorly understood. Risk and benefit assessments of flood-induced high primary production and riverborne POM are also scarce. The present study aimed to recognize the links between demersal fish assemblage structures and environmental characteristics across the ECS. Also, we assess the balance between food source contribution and hypoxia risk caused by the increased primary production by analyzing fish community structures and stable isotope compositions for zooplankton, crustaceans and demersal fish. The inshore area of ECS, corresponding to the trawling-prohibited zone, was prone to low DO condition and hypoxia. Biological indices, including species richness and diversity exhibited significantly negative correlations with nutrient concentrations and positive correlations with bottom-water dissolved oxygen, indicating the negative impacts of eutrophication and accompanied hypoxia on the inshore fish assemblages. This area was also heavily dominated by the opportunistic fish Gobiids— Amblychaeturichthys hexanema, reflecting low survival rate of most fishes over there. Thus, the efficacy of inshore trawling-prohibition practice, which intended to restore the ECS fish stocks, was probably very limited. The stable isotope analyses indicated great reliance of benthic organisms on the marine productions regardless of distance from shore. Relatively higher δ13C of demersal fish and crustaceans in the inner shelf implied their uptake of marine blooming materials. Conversely, terrestrial POM plays minor role in nourishing the benthic consumers in the ECS. The Changjiang flood event in 2010 further enhanced the hypoxia formation and resulted in the lowest fish diversity in the inner shelf. Yet fish assemblages inhabited the normoxic mid to outer shelf demonstrated positive response to the Changjiang flood event. Therefore, the Changjiang River discharge only benefits the ECS benthic ecosystem on condition that the bottom waters maintain higher levels of DO.en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:12:48Z (GMT). No. of bitstreams: 1
ntu-102-D98241002-1.pdf: 5154265 bytes, checksum: cfbf1d3ce04aed9ad6677dd279abb687 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents謝辭 Ⅰ
摘要 Ⅱ
Abstract Ⅲ
Contents Ⅴ
Chapter 1: General Introduction 1
1.1 Marine ecosystems adjacent to rivers 1
1.2 Global Eutrophication 1
1.3 Impacts of eutrophication and hypoxia on the benthic ecosystem 2
1.4 Potential contribution of terrestrial organic matters to fishery yields 4
1.5 Introduction to the East China Sea environment 4
1.6 Eutrophication and hypoxia in the East China Sea 5
1.7 Objectives 6
Chapter 2: Structure of demersal fish assemblages in the East China Sea 8
2.1 Introduction 8
2.2 Materials and Methods 9
2.2.1 Study area 9
2.2.2 Hydrographic measurements 10
2.2.3 Sample collection 11
2.2.4 Statistical analyses 11
2.3 Results 13
2.3.1 Environmental characteristics of study area 13
2.3.2 Assemblage structures of demersal fish 14
2.3.3 Species-environment correlations 17
2.3.4 Relationships between environmental properties and assemblage structures of benthic fishes 18
2.4 Discussion 19
2.4.1 Environmental characteristics of the East China Sea 19
2.4.2 Spatiotemporal variations in fish assemblage structures: implications for hypoxia impacts 20
2.4.3 Fishing impacts 23
2.4.4. Summary 24
Chapter 3: Contributions of riverborne inorganic and organic matters to benthic food web in the East China Sea 25
3.1 Introduction 25
3.2 Materials and Methods 27
3.2.1 Sample collection 27
3.2.2 Stable isotope analyses 28
3.2.3 Data analyses 30
3.3 Results 30
3.3.1 Isotopic signatures of zooplankton and benthic crustaceans 30
3.3.2 Isotopic signature of fish communities 32
3.3.3 Spatiotemporal variations in δ13C and δ15N of fish species 33
3.3.4 Relationships between environmental characters and isotopic composition 33
3.4 Discussion 34
3.4.1 Food source for the benthic ecosystem 34
3.4.2 Isotopic variations in benthic consumers 36
3.4.3 Isotopic variation among trophic levels 39
3.4.4 Summary 40
Chapter 4: Assessment of potential benefit and risk of the Changjiang floods to the East China Sea benthic ecosystem 41
4.1 Background 42
4.2 Spatial heterogeneity in ecological responses to the Changjiang River flood 42
4.3 Synthesized assessment 43
Chapter 5: Brief summary 44
References 45
Tables 58
Supplementary Table. 73
Figures 78
dc.language.isoen
dc.subject穩定性碳zh_TW
dc.subject缺氧zh_TW
dc.subject優養化zh_TW
dc.subject底棲魚類群聚zh_TW
dc.subject氮同位素zh_TW
dc.subject東海zh_TW
dc.subjectDemersal fish assemblageen
dc.subjectEutrophicationen
dc.subjectStable carbon isotopeen
dc.subjectHypoxiaen
dc.subjectEast China Seaen
dc.subjectStable nitrogen isotopeen
dc.title東海底棲性魚類群聚與環境因子之關聯:論優養化之影響zh_TW
dc.titleRelationship between environmental conditions and assemblage structures of demersal fish in the East China Sea: impacts of eutrophicationen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳仲吉,周文臣,林幸助,葉信明,謝志豪
dc.subject.keyword優養化,缺氧,底棲魚類群聚,東海,穩定性碳,氮同位素,zh_TW
dc.subject.keywordEutrophication,Hypoxia,Demersal fish assemblage,East China Sea,Stable carbon isotope,Stable nitrogen isotope,en
dc.relation.page97
dc.rights.note有償授權
dc.date.accepted2013-07-30
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
5.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved