請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61761
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 莊永裕(Yung-Yu Chuang) | |
dc.contributor.author | Zhixiang Wang | en |
dc.contributor.author | 汪智祥 | zh_TW |
dc.date.accessioned | 2021-06-16T13:12:10Z | - |
dc.date.available | 2020-07-02 | |
dc.date.copyright | 2020-07-02 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-06-22 | |
dc.identifier.citation | [1] 4D technology polarization camera. https://www.4dtechnology.com/products/polarimeters/polarcam/. [2] FluxData polarization camera. http://www.fluxdata.com/imaging-polarimeters. [3] Phoenix polarization camera. https://thinklucid.com/phoenix-machine-vision/. [4] Spectral multi-sensor camera system. https://www.spectraldevices.com/products/multi-camera-imaging-systems. [5] M. Anderson, R. Motta, S. Chandrasekar, and M. Stokes. Proposal for a standard default color space for the Internet—sRGB. In Color and Imaging Conference, 1996. [6] G. A. Atkinson and E. R. Hancock. Recovery of surface orientation from diffuse polarization. IEEE Transactions on Image Processing, 15(6):1653–1664, 2006. [7] K. Berger, R. Voorhies, and L. H. Matthies. Depth from stereo polarization in specular scenes for urban robotics. In Proceedings of International Conference on Robotics and Automation (ICRA), 2017. [8] E. Collett. Field Guide to Polarization, volume 15. SPIE Press, 2005. [9] Z. Cui, J. Gu, B. Shi, P. Tan, and J. Kautz. Polarimetric multi-view stereo. In Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), 2017. [10] P. E. Debevec and J. Malik. Recovering high dynamic range radiance maps from photographs. In Proceedings of ACM SIGGRAPH, 1997. [11] M. Díaz and P. Sturm. Radiometric calibration using photo collections. In Proceedings of International Conference on Computational Photography (ICCP), 2011. [12] M. D. Grossberg and S. K. Nayar. What is the space of camera response functions? In Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), 2003. [13] M. D. Grossberg and S. K. Nayar. Modeling the space of camera response functions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(10):1272–1282, 2004. [14] H. Ha, Y. Bok, K. Joo, J. Jung, and I. So Kweon. Accurate camera calibration robust to defocus using a smartphone. In Proceedings of International Conference on Computer Vision (ICCV), 2015. [15] A. Kadambi, V. Taamazyan, B. Shi, and R. Raskar. Depth sensing using geometrically constrained polarization normals. International Journal of Computer Vision, 125(1-3):34–51, 2017. [16] D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar. Polarization fields: dynamic light field display using multi-layer LCDs. ACM Transactions on Graphics, 30(6):186, 2011. [17] C. Li, S. Lin, K. Zhou, and K. Ikeuchi. Radiometric calibration from faces in images. In Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), 2017. [18] S. Lin, J. Gu, S. Yamazaki, and H.-Y. Shum. Radiometric calibration from a single image. In Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), 2004. [19] Y. Liu and X. Su. Camera calibration with planar crossed fringe patterns. Optik International Journal for Light and Electron Optics, 123(2):171–175, 2012. [20] Q.-T. Luong and O. D. Faugeras. Self-calibration of a moving camera from point correspondences and fundamental matrices. International Journal of Computer Vision, 22(3):261–289, 1997. [21] Y. Matsushita and S. Lin. Radiometric calibration from noise distributions. In Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), 2007. [22] S. J. Maybank and O. D. Faugeras. A theory of self-calibration of a moving camera. International Journal of Computer Vision, 8(2):123–151, 1992. [23] C. S. McCamy, H. Marcus, and J. G. Davidson. A color-rendition chart. Journal of Applied Photographic Engineering, 2(3):95–99, 1976. [24] T. Mitsunaga and S. K. Nayar. Radiometric self calibration. In Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), 1999. [25] D. Miyazaki, M. Kagesawa, and K. Ikeuchi. Transparent surface modeling from a pair of polarization images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(1):73–82, 2004. [26] D. Miyazaki, T. Shigetomi, M. Baba, R. Furukawa, S. Hiura, and N. Asada. Surface normal estimation of black specular objects from multiview polarization images. Optical Engineering, 56(4):041303, 2016. [27] D. Miyazaki, R. T. Tan, K. Hara, and K. Ikeuchi. Polarization-based inverse rendering from a single view. In Proceedings of International Conference on Computer Vision (ICCV), 2003. [28] Z. Mo, B. Shi, S.-K. Yeung, and Y. Matsushita. Radiometric calibration for internet photo collections. In Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), 2017. [29] T.-T. Ng, S.-F. Chang, and M.-P. Tsui. Using geometry invariants for camera response function estimation. In Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), 2007. [30] M. Pollefeys, R. Koch, and L. Van Gool. Self-calibration and metric reconstruction inspite of varying and unknown intrinsic camera parameters. International Journal of Computer Vision, 32(1):7–25, 1999. [31] M. Saito, Y. Sato, K. Ikeuchi, and H. Kashiwagi. Measurement of surface orientations of transparent objects using polarization in highlight. In Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), 1999. [32] Y. Y. Schechner. Self-calibrating imaging polarimetry. In Proceedings of International Conference on Computational Photography (ICCP), 2015. [33] W. A. P. Smith, R. Ramamoorthi, and S. Tozza. Linear depth estimation from an uncalibrated, monocular polarisation image. In Proceedings of European Conference on Computer Vision (ECCV), 2016. [34] Z. Song and R. Chung. Use of LCD panel for calibrating structured-light-based range sensing system. IEEE Transactions on Instrumentation and Measurement, 57(11):2623–2630, 2008. [35] J. Takamatsu and Y. Matsushita. Estimating camera response functions using probabilistic intensity similarity. In Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), 2008. [36] D. Teo, B. Shi, Y. Zheng, and S.-K. Yeung. Self-calibrating polarising radiometric calibration. In Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), 2018. [37] R. Tsai. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE Journal on Robotics and Automation, 3(4):323–344, 1987. [38] G. Wetzstein, W. Heidrich, and D. Luebke. Optical image processing using light modulation displays. Computer Graphics Forum, 29(6):1934–1944, 2010. [39] B. Wilburn, H. Xu, and Y. Matsushita. Radiometric calibration using temporal irradiance mixtures. In Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), 2008. [40] X. Ying and H. Zha. Geometric interpretations of the relation between the image of the absolute conic and sphere images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12):2031–2036, 2006. [41] Y. Yu, D. Zhu, and W. A. P. Smith. Shape-from-polarisation: a nonlinear least squares approach. In Proceedings of International Conference on Computer Vision (ICCV), 2017. [42] Z. Zhan. Camera calibration based on liquid crystal display (LCD). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(1), 2008. [43] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330–1334, 2000. [44] Z. Zhang. Camera calibration with one-dimensional objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(7):892–899, 2004. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61761 | - |
dc.description.abstract | 準確校準偏振相機的偏振器角度和相機響應函數 (CRF) 對於偏振成像至關重要。 當將此偏振相機用於多視圖幾何成像時,通常也需要校准其內部和外部參數。張氏校準方法是最廣泛用於校準相機內外部參數的方法,使用一個物理棋盤格或者是螢幕上顯示的虛擬棋盤格即可完成校準。在本文中,我們提出使用在LCD螢幕上顯示的略微改進的虛擬棋盤格來同時校準偏振器角度和相機響應反函數 (ICRF)。得益於LCD螢幕的照明原理和行業標準,在根據棋盤格估計的外部參數的輔助下,此方法大大簡化了偏振器角度和相機響應函數的校準。我們的方法包含一個用於偏振器角度校準的簡單線性方法和一個用於相機響應函數校準的凸方法,這兩種方法可以在類似於bundle adjustment的過程中共同完善。通過實驗,我們驗證了所提出的校準方法的可行性和準確性。 | zh_TW |
dc.description.abstract | It is crucial for polarimetric imaging to accurately calibrate the polarizer angles and the camera response function (CRF) of a polarizing camera. When this polarizing camera is used in a setting of multiview geometric imaging, it is often required to calibrate its intrinsic and extrinsic parameters as well, for which Zhang's calibration method is the most widely used with either a physical checker board, or more conveniently a virtual checker pattern displayed on a monitor. In this paper, we propose to jointly calibrate the polarizer angles and the inverse CRF (ICRF) using a slightly adapted checker pattern displayed on a liquid crystal display (LCD) monitor. Thanks to the lighting principles and the industry standards of the LCD monitors, the polarimetric and radiometric calibration can be significantly simplified, when assisted by the extrinsic parameters estimated from the checker pattern. We present a simple linear method for polarizer angle calibration and a convex method for radiometric calibration, both of which can be jointly refined in a process similar to bundle adjustment. Experiments have verified the feasibility and accuracy of the proposed calibration method. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T13:12:10Z (GMT). No. of bitstreams: 1 U0001-2206202014321300.pdf: 3030594 bytes, checksum: 55b9616d41dffd2e49cf7349b7f4edda (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 誌謝 iii 摘要 v Abstract vii 1 Introduction 1 2 Related Work 5 2.1 Polarization Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Polarizer Angle Calibration . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Radiometric Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 Geometric Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.5 Miscellaneous Applications of Monitors . . . . . . . . . . . . . . . . . . 7 3 Characteristics of LCD Monitors 9 3.1 Typical Structure of LCDs . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 LCD Monitors Viewed by a Polarizing Camera . . . . . . . . . . . . . . 10 3.3 Gamma Characteristic of LCD Monitors . . . . . . . . . . . . . . . . . . 11 4 The Proposed Method 13 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2 Known Inverse CRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.3 Unknown Inverse CRF . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.3.1 Calibration pattern . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.3.2 Inverse CRF estimation . . . . . . . . . . . . . . . . . . . . . . . 17 4.3.3 Polarizer angle estimation . . . . . . . . . . . . . . . . . . . . . 18 4.3.4 Bundle adjustment . . . . . . . . . . . . . . . . . . . . . . . . . 18 5 Experiments 19 5.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.1.1 Known inverse CRF . . . . . . . . . . . . . . . . . . . . . . . . 19 5.1.2 Unknown inverse CRF . . . . . . . . . . . . . . . . . . . . . . . 20 5.1.3 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.2 Real-world Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.2.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.2.2 Environment illumination . . . . . . . . . . . . . . . . . . . . . 21 5.2.3 Effectiveness of using fewer polarizer angles . . . . . . . . . . . 22 5.2.4 Effectiveness of point selection . . . . . . . . . . . . . . . . . . 22 5.2.5 Benefits of the adapted checker pattern P3 . . . . . . . . . . . . . 23 5.2.6 Joint calibration vs. separate calibration . . . . . . . . . . . . . . 23 5.2.7 Comparison with the state-of-the-art methods . . . . . . . . . . . 24 6 Discussions 27 6.1 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.2 LCD Screens with a Touch Panel . . . . . . . . . . . . . . . . . . . . . . 27 6.3 Environment Illumination . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7 Conclusion 29 Bibliography 31 | |
dc.language.iso | en | |
dc.title | 使用LCD螢幕進行偏振相機的校準 | zh_TW |
dc.title | Polarimetric Camera Calibration Using an LCD Monitor | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 傅楸善(Chiou-Shann Fuh),葉正聖(Jeng-Sheng Yeh) | |
dc.subject.keyword | 相機校準,偏振相機,偏振成像, | zh_TW |
dc.subject.keyword | camera calibration,polarimetric camera,polarimetric imaging, | en |
dc.relation.page | 35 | |
dc.identifier.doi | 10.6342/NTU202001098 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-06-23 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 資訊網路與多媒體研究所 | zh_TW |
顯示於系所單位: | 資訊網路與多媒體研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2206202014321300.pdf 目前未授權公開取用 | 2.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。