Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61759
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱文英(Wen-Yen Chiu)
dc.contributor.authorChu-Hsuan Chenen
dc.contributor.author陳竹軒zh_TW
dc.date.accessioned2021-06-16T13:12:06Z-
dc.date.available2023-12-31
dc.date.copyright2013-08-06
dc.date.issued2013
dc.date.submitted2013-07-30
dc.identifier.citation1. Al-Salah, H.A., et al., Polyurethane cationomers. I. Structure–properties relationships. Journal of Polymer Science Part A: Polymer Chemistry, 1988. 26(6): p. 1609-1620.
2. Egboh, S.H.O., Grafting Vinyl Monomers onto Unsaturated Segmented Polyurethanes. 1. Graft Copolymerization of Acrylamide, Methacrylonitrile, and Methyl Methacrylate. Journal of Macromolecular Science: Part A - Chemistry, 1983. 19(7): p. 1041-1048.
3. K Noll, J.P., Water-dispersible polyurethanes, in US Patent1980.
4. O Lorenz, F.H., D Kleborn, Rubber elastic behavior of polyurethane ionomers. Angew. Makromol. Chem, 1973.
5. O Lorenz, H.H., Effect of solvents on particle diameter in anionic polyurethane ionomer dispersions. Angew. Makromol. Chem, 1978.
6. Dieterich, D., Aqueous emulsions, dispersions and solutions of polyurethanes; synthesis and properties. Progress in Organic Coatings, 1981. 9(3): p. 281-340.
7. Hirose, M., J. Zhou, and K. Nagai, The structure and properties of acrylic-polyurethane hybrid emulsions. Progress in Organic Coatings, 2000. 38(1): p. 27-34.
8. Chen, G.-N. and K.-N. Chen, Self-curing behaviors of single pack aqueous-based polyurethane system. Journal of Applied Polymer Science, 1997. 63(12): p. 1609-1623.
9. Chen, G.-n. and K.-n. Chen, Dual-curing of anionic aqueous-based polyurethanes at ambient temperature. Journal of Applied Polymer Science,
108
1998. 67(9): p. 1661-1671.
10. Hong, X., et al., Studies on Hybrid Polymerization of Hexamethoxymethyl Melamine-Polyol-Acrylate. Acta Polymerica Sinica, 2002(3): p. 265-270.
11. Li, M., et al., Polyurethane (urea)/polyacrylates interpenetrating polymer network (IPN) adhesives for low surface energy materials. Polymers for Advanced Technologies, 2012. 23(7): p. 1077-1083.
12. Lucas, P. and J.-J. Robin, Silicone-based polymer blends: an overview of the materials and processes, in Functional Materials and Biomaterials. 2007, Springer. p. 111-147.
13. Smith, T.L., Strength of elastomers. A perspective. Rubber Chemistry and Technology, 1978. 51(2): p. 225-252.
14. Yilgor, İ. and J.E. McGrath, Polysiloxane containing copolymers: a survey of recent developments, in Polysiloxane Copolymers/Anionic Polymerization. 1988, Springer. p. 1-86.
15. 徐斌, et al., 镀锌钢板的硅烷表面改性. 腐蚀科学与防护技术, 2008. 20(2): p. 130-134.
16. Witucki, G.L., The evolution of silicon-based technology in coating. Dow Corning Corporation, 2003.
17. Leir, C., et al., Telechelic siloxanes with hydrogen‐bonded polymerizable end groups. I. Liquid rubbers and elastomers. Journal of Applied Polymer Science, 2010. 117(2): p. 756-766.
18. Ma, M., et al., Electrospun poly (styrene-block-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity. Langmuir, 2005. 21(12): p. 5549-5554.
19. Holohan, A.T., et al., Polyhydroxyether-polydimethylsiloxane graft copolymers:
109
2. Properties and morphology. Polymer, 1994. 35(5): p. 977-982.
20. Furukawa, H. and A. Shirahata, Polyamide resin composition, 1997, EP Patent 0,581,224.
21. Hamurcu, E.E. and B.M. Baysal, Interpenetrating polymer networks of poly (dimethylsiloxane): 1. Preparation and characterization. Polymer, 1993. 34(24): p. 5163-5167.
22. Turner, J. and Y.-L. Cheng, Process for preparing interpenetrating polymer networks of controlled morphology, 2001, Google Patents.
23. Yilgor, I., et al., Influence of soft segment molecular weight on the mechanical hysteresis and set behavior of silicone-urea copolymers with low hard segment contents. Polymer, 2011. 52(2): p. 266-274.
24. Shibayama, M., et al., Structure and orientational behaviour of polyurethane containing polydimethylsiloxane. Polymer, 1990. 31(4): p. 749-757.
25. Choi, T., et al., Influence of soft segment composition on phase-separated microstructure of polydimethylsiloxane-based segmented polyurethane copolymers. Polymer, 2009. 50(10): p. 2320-2327.
26. Shi, X., B.D. Fernando, and S.G. Croll, Concurrent physical aging and degradation of crosslinked coating systems in accelerated weathering. Journal of Coatings Technology and Research, 2008. 5(3): p. 299-309.
27. Mikhailova, A.M., M. Tamboura, and M.Q. Jia, Heat-Resistant and Anti-Corrosion Urethane-Silicone-based Coatings. Silicon, 2012. 4(3): p. 197-208.
28. Hepburn, C., Elsevier Applied Science, 1991, Condon.
29. Abouzahr, S. and G.L. Wilkes, Structure property studies of polyester‐and polyether‐based MDI–BD segmented polyurethanes: Effect of one‐vs. two‐stage
110
polymerization conditions. Journal of applied polymer science, 1984. 29(9): p. 2695-2711.
30. Seymour, R.W. and S.L. Cooper, Viscoelastic properties of polyurethane block polymers. Rubber Chemistry and Technology, 1974. 47(1): p. 19-31.
31. Senich, G. and W. MacKnight, Fourier transform infrared thermal analysis of a segmented polyurethane. Macromolecules, 1980. 13(1): p. 106-110.
32. Hourston, D., et al., Structure–property study of polyurethane anionomers based on various polyols and diisocyanates. Journal of applied polymer science, 1997. 66(10): p. 2035-2044.
33. Lee, Y.M., J.C. Lee, and B.K. Kim, Effect of soft segment length on the properties of polyurethane anionomer dispersion. Polymer, 1994. 35(5): p. 1095-1099.
34. Lee, S.Y., J.S. Lee, and B.K. Kim, Preparation and properties of water-borne polyurethanes. Polymer International, 1997. 42(1): p. 67-76.
35. Kim, T. and B. Kim, Preparations and properties of polyurethane aqueous dispersion from uncatalyzed systems of H 12 MDI, PTAd/bisphenol A polyol, and DMPA. Colloid & Polymer Science, 1991. 269(9): p. 889-894.
36. Petrović, Z., I. Javni, and Ž. Jelčić, The effect of segment length and concentration on dielectric properties of polypropyleneoxide-based polyurethanes. Colloid & Polymer Science, 1989. 267(12): p. 1077-1086.
37. Kim, C., B. Kim, and H. Jeong, Aqueous dispersion of polyurethane ionomers from hexamethylene diisocyanate and trimellitic anhydride. Colloid & Polymer Science, 1991. 269(9): p. 895-900.
38. Rosthauser, J.W. and K. Nachtkamp, Waterborne polyurethanes. Advances in urethane science and technology, 1987. 10: p. 121-162.
111
39. Xiao, H., et al., Kinetic studies of the reactions between isocyanates and carboxylic acids. High Performance Polymers, 1994. 6(3): p. 235-239.
40. Wei, X. and X. Yu, Synthesis and properties of sulfonated polyurethane ionomers with anions in the polyether soft segments. Journal of Polymer Science Part B: Polymer Physics, 1997. 35(2): p. 225-232.
41. Register, R.A., X.-h. Yu, and S.L. Cooper, Effects of matrix polarity and ambient aging on the morphology of sulfonated polyurethane ionomers. Polymer Bulletin, 1989. 22(5): p. 565-571.
42. Yang, C., T. Grasel, and J. Bell, R. A. Register, and SL Cooper. J. Polym. Sci. Polym. Phys, 1991. 29: p. 581.
43. Oertel, G. and L. Abele, Polyurethane handbook: chemistry, raw materials, processing, application, properties. 1985: Hanser Publishers. Distributed in USA by Scientific and Technical Books, Macmillan.
44. Han, C.D., Multiphase flow in polymer processing. 1981: Academic Press New York.
45. Utracki, L.A., Polymer blends and alloys. Hanser, New York, 1989.
46. Bird, R.B., W.E. Stewart, and E.N. Lightfoot, Transport phenomena. 1960. Madison, USA, 1960.
47. Chen, Y. and Y.L. Chen, Aqueous dispersions of polyurethane anionomers: effects of countercation. Journal of applied polymer science, 1992. 46(3): p. 435-443.
48. Coutinho, F. and M. Delpech, Some properties of films cast from polyurethane aqueous dispersions of polyether-based anionomer extended with hydrazine. Polymer testing, 1996. 15(2): p. 103-113.
49. 王世杰, 陳博正, and 陳幹男, 水性 PU 樹脂之改質研究. CHEMISTRY
112
(THE CHINESE CHEM. SOC., TAIPEI), 2004. 62(4): p. 461-472.
50. Shao, C.-H., et al., Aqueous-based polyurethane with dual-functional curing agent. Journal of Polymer Research, 2000. 7(1): p. 41-49.
51. Chen, G.N. and K.N. Chen, Self‐curing behaviors of single pack aqueous‐based polyurethane system. Journal of applied polymer science, 1998. 63(12): p. 1609-1623.
52. Chen, G.-N., et al., Convenient post-curing reactions for aqueous-based polyurethane anionomers. Journal of Polymer Research, 1997. 4(3): p. 165-175.
53. Lai, J.Z., et al., New self‐curable, aqueous‐based polyurethane system by an isophorone diisocyanate/uretedione aziridinyl derivative process. Journal of applied polymer science, 2004. 94(3): p. 845-859.
54. Ling, H., et al., US Patent 6,077,960 (2000). European Patent, 2002. 1106613.
55. Pathak, S., A. Sharma, and A. Khanna, Value addition to waterborne polyurethane resin by silicone modification for developing high performance coating on aluminum alloy. Progress in Organic Coatings, 2009. 65(2): p. 206-216.
56. Pathak, S., A. Khanna, and T. Sinha, HMMM cured corrosion resistance waterborne ormosil coating for aluminum alloy. Progress in Organic Coatings, 2007. 60(3): p. 211-218.
57. Lai, J.Z., et al., A cross self‐curing system for an aqueous‐based PU hybrid. Journal of applied polymer science, 2005. 97(2): p. 550-558.
58. Subramani, S., et al., Synthesis and characterization of water‐borne crosslinked silylated polyurethane dispersions. Journal of applied polymer science, 2005. 98(2): p. 620-631.
113
59. Xiaojuan, L., et al., Synthesis and characterizations of waterborne polyurethane modified with 3-aminopropyltriethoxysilane. Polymer bulletin, 2010. 65(1): p. 45-57.
60. 彭俊儒, 紫外光可交聯型疏水性 PU 樹脂製備及其鋼材防蝕和撥水織物應用研究. 淡江大學化學學系碩士班學位論文, 2011(2011 年).
61. Huang, C.-Y., Synthesis and Properties of Poly (methyl methacrylate)/Montmorillonite Nanocomposite Materials Prepared by Emulsion Polymerization Technique. Chemistry, 2002.
62. Yeh, C.-W., Property studies of Poly (methyl methacrylate)-Silica Nanocomposite Materials prepared by Sol-Gel Approach with Aniline as Organic Base Catalyst. Chemistry, 2003.
63. 李曉宗, 超硬保護膜之抗腐蝕研究; Corrosion-resistant Research of Superhard Protective Coatings. 2000.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61759-
dc.description.abstract本研究是以水性聚胺酯的合成系統為骨幹,調整合成方法和配方並引入自行合成的壓克力型多元醇以製備不同種類的機能性加熱成膜型表面保護塗料。所合成的塗料分為外加架橋劑型和可自交聯型兩個種類;外加架橋劑型即先行合成水性PU乳液,再直接加入和親水離子基能夠在加熱後進行反應的架橋劑形成一液型水性塗料;使用的架橋劑共有兩種,一種是具有可快速成膜特性的多官能團碳化二亞胺型架橋劑XL-29SE;一種是可將無機SiO2引入膜中的有機矽烷GPTMS;可自交聯型則是改變合成方法將SiOH基團直接接在PU顆粒外圍,具有不須外加架橋劑即可自行交聯的特性。並對成型薄膜進行各式測試以評估表面保護能力。
實驗的第一部分合成壓克力型多元醇並引入水性PU之合成系統,製備須外加架橋劑的水性PU,討論壓克力多元醇引入對乳液分散粒徑和Zeta potential造成的改變,以及對薄膜硬度和接觸角造成的影響。
實驗的第二部分將兩種不同的架橋劑加入水性PU中形成一液型塗料,XL-29SE是以二亞胺官能基團和親水離子基反應交聯,可快速成膜;GPTMS則是先以矽烷官能基團之間在低溫進行sol-gel反應轉化成兩端為環氧基的具有架橋功能的單元,再升溫進行開環反應。之後對所成薄膜進行熱性質、硬度、接觸角和表面保護能力等測試,比較兩種架橋劑的不同表現並探討成因,以及討論以小分子架橋劑的方式將無機的SiO2引入高分子塗料中的可行性。
第三部分和前兩部分合成水性PU塗料的策略不同,在合成過程中使用過量的異氰酸鹽,預聚物乳化形成顆粒後再使用帶有一級胺基的有機矽烷和剩餘的異氰酸基反應,使合成的水性PU表面即帶有Si-OH基團。所成水性塗料塗佈完後再經過低溫sol-gel和高溫乾燥兩段式加熱成膜。之後對所成薄膜進行熱性質、硬度、接觸角和表面保護能力等測試,和前一部份結果比較兩種無機SiO2的引入方法所造成的差異。
zh_TW
dc.description.abstractIn this research, two kinds of water-borne polyurethane dispersion which can be applied as an anti-corrosion coating on galvanized steel sheets by thermal treatment have been prepared by adjusting the synthesis process and composition and introducing of polyacrylate. The paints can be divided into two types, the one need additive adding of crosslink agent before using and the one with the ability of self-crosslinking. The are two kinds of crosslinking agents been used in the first type, XL-29SE, a kind of carbodiimide with multi-functional group which has the advantage of fast curing and GPTMS, a kind of silane which can introduce the inorganic SiO2 group into coating. The second type with the ability of self-crossinking is prepared by changing the synthesis process to let SiOH group directly sticked to the surface of the particles.
The first part of my research is about the preparing and introducing into polyurethane system of polyacrylate , and the synthesis of water-borne polyurethane dispersion. By the characterizing of the particle size and zeta potential of the dispersion、the hardness and contact angle of the film to find out the effect of the introducing of polyacrylate.
In the second part of my research, two kinds of crosslinking agents were added into the WPU forming two different one-part paints. In XL-29SE series , the film was forming by the fast crosslink reaction of diimide group and carboxylic group, another end in GPTMS series the film was forming by two-stage thermo treating including low
V
temperature sol-gel reaction to form a unit with epoxy group on both end which indeed the crosslinkable part, and high temperature ring-opening crosslink reaction.
In the second section of this research, we develop new liquid coatings mixed by two various crosslink agents with WPU. XL-29SE, which can reduce the time for film formation, reacts with hydrophilic functional group via diimide group. By contrast, GPTMS, via silanol group, undertakes sol-gel reaction in low temperature and forms epoxy groups at both ends. The epoxy groups can serve as a crosslinker in high temperature by an ring-opening reaction. Therefore, we compare the characteristic (e.g., thermal property, hardness, contact angle, and protective ability) of thin films from two different mechanisms to demonstrate the effect of two crosslinkers, and discuss the possibility of the addition of inorganic part by small molecular crosslinker(i.e., SiO2) in polymer coating.
In the third section, we use excess NCO group to form the pre-polymer, after the emulsion process we add a kind silane with primary amine group in one end to react with the remained NCO group, forming a particle with silanol group on the surface. After the synthesis of the paint, we form thin films through two steps, sol-gel in low temperature and dry in high temperature. We test the characteristic of thin films and compare these two inorganic methods mentioned in the second section.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:12:06Z (GMT). No. of bitstreams: 1
ntu-102-R00524026-1.pdf: 2927318 bytes, checksum: e9a73f75d44e05a2d9afc2aa892503f0 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents中文摘要 ........................................................................................................................... I
Abstract ........................................................................................................................... IV
目錄 ............................................................................................................................... VI
圖目錄 ............................................................................................................................ IX
表目錄 ........................................................................................................................... XII
第一章 緒論 ..................................................................................................................... 1
1-1前言 .................................................................................................................... 1
1-2研究目的 ............................................................................................................ 1
第二章 文獻回顧 ............................................................................................................. 2
2-1聚胺基甲酸酯簡介與應用 ................................................................................ 2
2-1-1傳統型聚胺基甲酸酯 (Polyurethane,PU) .......................................... 2
2-1-2水性聚胺酯 (waterborne polyurethane, WPU) ..................................... 5
2-1-3水性PU的製備 ..................................................................................... 8
2-1-4水性PU的穩定機制 ........................................................................... 12
2-1-5水性PU和其他材料的混成應用 ....................................................... 13
2-1-5-1 壓克力 ....................................................................................... 13
2-1-5-2 矽有機樹酯 ............................................................................... 16
2-2水性聚胺酯的成膜性質 .................................................................................. 19
2-2-1影響成膜性質之因素 .......................................................................... 19
2-2-2架橋劑的使用 ...................................................................................... 23
2-2-2-1架橋劑 ........................................................................................ 24
2-2-2-2自交聯系統 ................................................................................ 25
VII
2-3腐蝕行為 .......................................................................................................... 26
2-3-1 腐蝕原理 ............................................................................................. 26
2-3-2 腐蝕發生之環境 ................................................................................. 26
2-3-3 腐蝕防制方法 ..................................................................................... 27
2-3-4 抗腐蝕測試 ......................................................................................... 28
第三章 實驗方法 ........................................................................................................... 34
3-1實驗藥品 .......................................................................................................... 34
3-2實驗儀器 .......................................................................................................... 38
3-3實驗步驟 .......................................................................................................... 40
3-3-1 壓克力多元醇製備 ............................................................................. 41
3-3-2 外加架橋劑之水性聚胺酯塗料 ......................................................... 42
3-3-2-1 實驗流程及架構 ....................................................................... 42
3-3-2-2含壓克力鏈段之水性聚胺酯合成 ............................................ 42
3-3-2-3乳液及膜性質分析 .................................................................... 44
3-3-3 有機矽改質之水性聚胺酯塗料 ......................................................... 45
3-3-3-1 實驗流程及架構 ....................................................................... 45
3-3-3-2合成方法 .................................................................................... 45
3-3-3-3 乳液性質分析 ........................................................................... 46
3-3-4 塗料配製及成膜性質分析 ................................................................. 47
3-3-4-1實驗流程 .................................................................................... 48
3-3-4-2成膜性質分析 ............................................................................ 52
3-3-4-3 表面保護能力測試 ................................................................... 54
第四章 結果與討論 ....................................................................................................... 56
4-1壓克力多元醇 .................................................................................................. 56
4-2 外加架橋劑之水性聚胺酯 ............................................................................. 58
VIII
4-2-1壓克力引入之影響 .............................................................................. 58
4-2-1-1分散粒徑、分子量及外觀 ........................................................ 58
4-2-1-2未交聯的成膜性質 .................................................................... 60
4-2-2架橋劑添加及膜性質分析 .................................................................. 64
4-2-3表面保護能力測試 .............................................................................. 74
4-3有機矽改質之水性聚胺酯 .............................................................................. 85
4-3-1分散粒徑及外觀 .................................................................................. 85
4-3-2交聯成膜性質測試 .............................................................................. 87
4-3-3 表面保護能力測試 ............................................................................. 94
第五章 結論及未來展望 ............................................................................................. 100
第六章 附錄 ................................................................................................................. 103
參考文獻 ....................................................................................................................... 107
dc.language.isozh-TW
dc.title以水性聚胺酯為基底引入壓克力多元醇及二氧化矽
合成可熱交聯之抗腐蝕塗料
zh_TW
dc.titleSynthesis of thermal-curable water-borne polyurethane acrylate reinforced with SiO2 and evaluation as anti-corrosion coatingen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝國煌(kuo-huang Hsieh),韓錦鈴(Jin-Lin Han),董崇民(trong-ming Don),戴宏哲(Hong-Je Tai)
dc.subject.keyword水性聚胺酯,壓克力,抗腐蝕薄膜,zh_TW
dc.subject.keywordwater-borne polyurethane,polyacrylate,anti-corrosion paint,en
dc.relation.page113
dc.rights.note有償授權
dc.date.accepted2013-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
2.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved