請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61758完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林正芳 | |
| dc.contributor.author | Yu-Ting HUANG | en |
| dc.contributor.author | 黃郁婷 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:12:04Z | - |
| dc.date.available | 2018-08-09 | |
| dc.date.copyright | 2013-08-09 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-30 | |
| dc.identifier.citation | Chynoweth, D.P., Fannin, K.F., Jerger, D.E., Srivastava, V.J., Biljetina, R., 1983. Anaerobic Digestion of Biomass: Status summary and R&D Needs. Gas Research Institute, Chicago, Illinois, USA.
Grady, C.P., Leslie, J.R., Daigger, G.T., Lim, H.C., 1999. Biological Wastewater Treatment, 2nd ed., Marcel Dekker, Inc. (Chap. 13, 21) Gujer, W. and Zehnder, A, J, B, 1983. Conversion Processes in Anaerobic Digestion. Water Science & Technology 15 (8-9), 127-167 Hammer, M.J., 1996. Water and Wastewater Technology, 3rd ed. Prentice Hall, Inc. (Chap. 15, 16) Ho, J.H., Sung S.W., 2009. Anaerobic Membrane Bioreactor Treatment of Synthetic Municipal Wastewater at Ambient Temperature. Water Environmental Research 81 (9), 922-928. Ho, J.H., Sung,. S.W., 2010. Methanogenic activities in anaerobic membrane bioreactors (AnMBR) treating synthetic municipal wastewater. Bioresource Technology 101 (7), 2191–2196. Hu, A.Y., Stuckey, D.C., 2006. Treatment of Dilute Wastewaters Using a Novel Submerged Anaerobic Membrane Bioreactor. Journal of Environmental Engineering 132 (2), 190–198. Hu, A.Y., Stuckey, D.C., 2007. Activated Carbon Addition to a Submerged Anaerobic Membrane Bioreactor: Effect on Performance, Transmembrane Pressure, and Flux. Journal of Environmental Engineering 133 (1), 73–80. Huang, Z., Ong, S.L., Ng, H.Y., 2011. Submerged anaerobic membrane bioreactor for low-strength wastewater treatment: Effect of HRT and SRT on treatment performance and membrane fouling. Water Research 45 (2), 705-713. Huang, Z., Ong, S.L., Ng, H.Y., 2013. Performance of submerged anaerobic membrane bioreactor at different SRTs for domestic wastewater treatment. Journal of Biotechnology 164 (1), 82–90. Kocadagistana, E., Topcub, N., 2007. Treatment investigation of the Erzurum City municipal wastewaters with anaerobic membrane bioreactors. Desalination 216 (1-3), 367–376. Lewa, B., Tarreb, S., Beliavskib, M., Dosoretzb, C., Greenb, M., 2009. Anaerobic membrane bioreactor (AnMBR) for domestic wastewater treatment. Desalination 243 (1-3), 251–257 Martinez-Sosa, D., Helmreich, B., Netter, T., Paris, S., Bischof, F., Horn, H., 2011. Anaerobic submerged membrane bioreactor (AnSMBR) for municipal wastewater treatment under mesophilic and psychrophilic temperature conditions. Bioresource Technology 102 (22), 10377–10385 Martinez-Sosa, D., Helmreich, B., Horn, H., 2012. Anaerobic submerged membrane bioreactor (AnSMBR) treating low-strength wastewater under psychrophilic temperature conditions. Process Biochemistry 47 (5), 792–798 McCarty, P. L., 1964. Anaerobic waste treatment fundamentals, Part One: chemistry and microbiology. Public Works 95 (9), 107-112 McCarty, P. L., 1964. Anaerobic waste treatment fundamentals, Part Two: environmental requirement and control. Public Works 95 (10), 123-126 McCarty, P. L., 1964. Anaerobic waste treatment fundamentals, Part Three: toxic materials and their control. Public Works 95 (11), 91-94 McCarty, P. L., 1964. Anaerobic waste treatment fundamentals, Part Four: process design. Public Works 95 (12), 95-99 McCarty, P.L., 2001. The development of anaerobic treatment and its future. Water Science and Technology 44 (8), 149–156. McCarty, P.L., Bae, J., Kim, J., 2011. Domestic Wastewater Treatment as a Net Energy Producer-Can This be Achieved? Environmental Science and Technology 45 (17), 7100–7106. Metcalf & Eddy, 2003. Wastewater Engineering: Treatment and Reuse, 4th ed. McGraw-Hill, Inc. (7-12, Chap.10) Rittmann, B.E., McCarty, P. L., 2001. Environmental Biotechnology: Principles and applications. McGraw-Hill, Inc. Skouteris, G., Hermosilla, D., Lopez, P., Negro, C., Blanco, A., 2012. Anaerobic membrane bioreactors for wastewater treatment: A review. Chemical Engineering Journal 198-199,138-148 Smith, A.L., Skerlos, S.J., Raskin, L., 2013. Psychrophilic anaerobic membrane bioreactor treatment of domestic wastewater. Water Research 47 (4), 1655-1665 Stuckey, D.C., 2012. Recent developments in anaerobic membrane reactors. Bioresource Technology 122, 137-148 Torres, P., Foresti, E. Domestic sewage treatment in a pilot system composed of UASB and SBR reactors. Water Science and Technology 44 (4), 247–253. 陳國誠 (1991),廢水生物處理學,茂昌圖書。 李中光、許鼎居、蕭薀華 (2004),水質分析,第五版,pp. 246~248。 歐陽嶠暉 (2005),下水道工程學,第四版,長松出版社,pp. 235~238。 行政院環保署(2009),飲用水水質標準。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61758 | - |
| dc.description.abstract | 本研究架設一組5L連續攪拌式厭氧生物反應槽結合1.2L旁流式薄膜槽之厭氧薄膜系統,在無限長之污泥停留時間下採序列式進出流方式處理低濃度合成廢水,觀察水力停留時間分別為2、1、0.5天及不同有機負荷及進流濃度下之處理效能。在啟動階段,縮短水力停留時間或提高進流有機物濃度以增加有機負荷可使甲烷菌易形成優勢族群而生質能源產量增多。提高有機負荷或進流有機物濃度供給足夠有機物總量使得產氣中甲烷含量和整體甲烷產量升高,也因此致使槽體中微生物有較佳之甲烷轉換率。在有機負荷為0.8 kg COD/ m3•d且水力停留時間為12小時之下,此系統之COD去除率高達98%,而出流水中COD含量約為8 mg/L,其平均甲烷轉換率為0.21 L CH4/ g COD。薄膜處裡單元能完全攔截生物污泥且進一步去除厭氧生物反應槽出流水中之溶解性COD,使得出流水質佳。在系統操作溫度 30 ± 5℃ 之下,約有40% 之COD因產生氣體溶解於水中或無法處理隨出流水放流而無法回收,而甲烷回收率隨水力停留時間由1天降至12小時而由76% 減少至60 %,顯示反應之水力停留時間越短則甲烷回收率越低。當進流COD濃度為400 mg/L時有最佳每日甲烷產量1.04 L。因操作時間不夠久且厭氧生物反應槽之出流水污泥濃度低,使得此系統在操作期間無明顯積垢問題產生,通量在4 到 4.2 L/ m2•h下透膜壓力一直保持於2 Kpa以內。以序列式方式操作此系統需要最少2小時之反應時間以確保完全混合及消耗有機物。 | zh_TW |
| dc.description.abstract | A 5L continuous stirred anaerobic bioreactor couple with a 1.2L crossflow membrane bioreactor (AnMBR) with solids retention time (SRT) infinite days were setup for treating synthetic low-strength wastewater at hydraulic retention times (HRTs) of 2, 1 and 0.5 days using sequencing batch reactor (SBR) processing. At startup condition, shorter HRT or higher influent COD concentation increased biogas production due to higher organic loading rate (OLR) or enhanced dominance of methanogenics. Higher OLR or higher influent COD concentration offer enough organic matters that lead to greater methane content and methane production, therefore, it can also result better methane yield. The chemical oxygen demand (COD) removal averaged 98 ± 2% corresponding to an average permeate COD of 8 ± 6 mg/L was achieved at 0.8 kg COD/ m3•d OLR and 12 hours HRT and averaged methane yield was 0.21 L CH4/ g COD. MF flat sheet membrane completely retain biomass as well as further remove soluble COD present after biological treatment to produce a high quality effluent. At temperature 30 ± 5℃, approximately 40% of COD was not available for methane recovery as a result of the COD loss by dissolved methane and untreated COD. The fraction of methane recovered decreased from 76 to 60%, with the decrease of HRT from 1 day to 12 hours. Optimal methane production is 1.04 L per day at 400 mg/L influent COD concentration. No obvious fouling happened during the operation because of short duration time and clean effluent from the anaerobic bioreactor. Transmembrane pressure (TMP) was below 2 Kpa while flux was between 4 to 4.2 L/ m2•h (LMH). Each cycle of SBR operation needs at least 2 hours for completed mixing and reaction in this system. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:12:04Z (GMT). No. of bitstreams: 1 ntu-102-R00541109-1.pdf: 2453768 bytes, checksum: 8292482dfe179bb47b187114dac42bcc (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii ABSTRACT iv 目錄 v 圖目錄 vii 表目錄 ix 第一章 前言 10 1.1 研究緣起 10 1.2 研究目的 11 第二章 文獻回顧 12 2.1 厭氧生物處理之基本原理 12 2.1.1 厭氧消化 12 2.1.2 厭氧生物處理之反應動力方程式 15 2.1.3 厭氧生物處理反應槽型式與特性 18 2.2 薄膜技術 23 2.2.1 薄膜種類與類型 23 2.2.2 薄膜積垢 26 2.3 厭氧薄膜生物處理都市廢污水 28 2.3.1 國內外廢污水處理廠現況 28 2.3.2 厭氧薄膜生物處理廢污水之技術原理 29 2.3.3影響厭氧處理之廢污水特性 30 2.3.4 厭氧薄膜生物處理廢污水之優缺點 31 2.3.3 國內外相關研究與應用 33 第三章 材料與方法 36 3.1 實驗內容 36 3.2 實驗方法 37 3.3 實驗設備與材料 40 3.4 分析方法 44 3.4.1 水質分析 44 3.4.2 氣體成分分析 45 3.4.3 效能評估 46 第四章 結果與討論 47 4.1 厭氧薄膜系統架設 47 4.2微生物馴養 48 4.2.1 固定進流之有機物濃度 49 4.2.2 固定有機負荷 52 4.2.3 綜合比較 55 4.3 穩定與最佳化試驗 58 4.3.1 不同水力停留時間及反應時間 60 4.3.2不同有機負荷 61 4.3.3最佳化試驗 63 第五章 結論與建議 68 5.1 結論 68 5.2 建議 69 參考文獻 71 附錄 75 | |
| dc.language.iso | zh-TW | |
| dc.subject | 有機負荷 | zh_TW |
| dc.subject | 甲烷轉換率 | zh_TW |
| dc.subject | 水力停留時間 | zh_TW |
| dc.subject | 厭氧薄膜生物反應系統 | zh_TW |
| dc.subject | 低濃度合成廢水 | zh_TW |
| dc.subject | 甲烷產量 | zh_TW |
| dc.subject | anaerobic membrane bioreactor | en |
| dc.subject | methane yield | en |
| dc.subject | organic loading rate | en |
| dc.subject | hydraulic retention time | en |
| dc.subject | methane production | en |
| dc.subject | synthetic low-strength wastewater | en |
| dc.title | 厭氧薄膜生物處理低濃度廢污水 | zh_TW |
| dc.title | Anaerobic Membrane Bioreactor for Treatment of
Low Strength Wastewater | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 康佩群,吳忠信,林郁真,黃國權 | |
| dc.subject.keyword | 厭氧薄膜生物反應系統,低濃度合成廢水,甲烷產量,水力停留時間,有機負荷,甲烷轉換率, | zh_TW |
| dc.subject.keyword | anaerobic membrane bioreactor,synthetic low-strength wastewater,methane production,hydraulic retention time,organic loading rate,methane yield, | en |
| dc.relation.page | 96 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 2.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
