Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61755
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭斯彥
dc.contributor.authorChia-Hung Chienen
dc.contributor.author簡嘉宏zh_TW
dc.date.accessioned2021-06-16T13:11:57Z-
dc.date.available2018-08-06
dc.date.copyright2013-08-06
dc.date.issued2013
dc.date.submitted2013-07-30
dc.identifier.citation[1] Thomas G. Draper, Samuel A. Kutin, Eric M. Rains, and Krysta M. Svore. A
logarithmic-depth quantum carry-lookahead adder. Quantum Information and Computation,
6(4):351--369, July 2006.
[2] Ronald L. Rivest, Leonard M. Adleman, and Michael L. Dertouzos. On data banks
and privacy homomorphisms. Foundations of Secure Computation, pages 169--179,
1978.
[3] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, STOC '09, pages 169--
178, New York, NY, USA, May 31 - June 2 2009.
[4] Anne Broadbent, Joseph Fitzsimons, and Elham Kashefi. Universal blind quantum
computation. In Proceedings of the 50th Annual IEEE Symposium on Foundations of
Computer Science, FOCS '09, pages 517--526, Los Alamitos, CA, 25-27 Oct. 2009.
IEEE Computer Society.
[5] Lov K. Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing,
STOC '96, pages 212--219, 1996.
[6] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer. SIAM Journal on Computing, 26(5):1484--1509,
October 1997.
68
[7] Rodney Van Meter, Thaddeus D. Ladd, Austin G. Fowler, and Yoshihisa Yamamoto.
Distributed quantum computation architecture using semiconductor nanophotonics.
International Journal of Quantum Information, 8:295--323, 2010.
[8] N. Cody Jones, Rodney Van Meter, Austin G. Fowler, Peter L. McMahon, Jungsang
Kim, Thaddeus D. Ladd, and Yoshihisa Yamamoto. Layered architecture for quantum
computing. Physical Review X, 2, July 2012.
[9] Chia-Hung Chien, Nai-Hui Chia, Rodney Van Meter, and Sy-Yen Kuo. A distributed
architecture for universal blind quantum computation. In Proceedings of the 12th
Asian Quantum Information Science Conference, AQIS '12, page 100, August 2012.
[10] Chia-Hung Chien, Tein-Sheng Lin, Ting-Hsu Chang, Shih-Yi Yuan, and Sy-Yen
Kuo. Quantum authentication protocol using entanglement swapping. In Proceedings
of the 11th IEEE International Conference on Nanotechnology, IEEE-NANO
'11, pages 1533--1537, August 2011.
[11] Tin-Hsu Chang, Chia-Hung Chien, Wei-Ho Chung, and Sy-Yen Kuo. Path selection
in quantum repeater networks. In Proceedings of the 12th Asian Quantum Information
Science Conference, AQIS '12, page 100, August 2012.
[12] Rodney Van Meter, Takahiko Satoh, Thaddeus D. Ladd, William J. Munro, and Kae
Nemoto. Path selection for quantum repeater networks. arXiv, June 2012.
[13] Nai-Hui Chia, Chia-Hung Chien, Wei-Ho Chung, and Sy-Yen Kuo. Quantum blind
computation with teleportation-based computation. In Proceedings of the Ninth International
Conference on Information Technology: New Generations, ITNG '12,
pages 769--774, Los Alamitos, CA, 16-18 Apr. 2012 2012. IEEE Computer Society.
[14] Chia-Hung Chien, Rodney Van Meter, and Sy-Yen Kuo. Fault-tolerant operations
for universal blind quantum computation. arXiv, June 2013.
69
[15] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge, UK, 10th anniversary edition
edition, 2010.
[16] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien.
Quantum computers. Nature, 464:45--53, March 2010.
[17] Robert Raussendorf and Hans J. Briegel. A one-way quantum computer. Physical
Review Letter, 86(22):5188--5191, May 2001.
[18] Robert Raussendorf, Daniel E. Browne, and Hans J. Briegel. Measurement-based
quantum computation on cluster states. Physical Review A, 68(2), August 2003.
[19] Vincent Danos and Elham Kashefi. Determinism in the one-way model. Physical
Review A, 74(5), November 2006.
[20] Daniel Gottesman. An introduction to quantum error correction and fault-tolerant
quantum computation. arXiv, April 2009.
[21] Simon J. Devitt, Kae Nemoto, and William J. Munro. Quantum error correction for
beginners. arXiv, September 2011.
[22] Barbara M. Terhal. Quantum error correction for quantum memories. arXiv, February
2013.
[23] Andrew M. Steane. Multiple-particle interference and quantum error correction.
Proceedings of the Royal Society A, 452(1954):2551--2577, November 1996.
[24] Daniel Gottesman. Stabilizer Codes and Quantum Error Correction. PhD thesis,
California Institute of Technology, May 1997.
[25] Michele Mosca. Quantum algorithms. arXiv, August 2008.
[26] Dave Bacon and Wim van Dam. Recent progress in quantum algorithms. Communications
of the ACM, 53(2):84--93, February 2010.
70
[27] Ivan Kassal, James D. Whitfield, Alejandro Perdomo-Ortiz, Man-Hong Yung, and
Alan Aspuru-Guzik. Simulating chemistry using quantum computers. Annual Review
of Physical Chemistry, 62:185--207, May 2011.
[28] Chia-Hung Chien, Tein-Sheng Lin, Chin-Yung Lu, Shih-Yi Yuan, and Sy-Yen Kuo.
Quantum circuit and byzantine generals problem. In Proceedings of the 12th IEEE
International Conference on Nanotechnology, IEEE-NANO '12, pages 1--4, August
2012.
[29] N. Cody Jones, James D. Whitfield, Peter L. McMahon, Man-Hong Yung, Rodney
Van Meter, Alan Aspuru-Guzik, and Yoshihisa Yamamoto. Faster quantum chemistry
simulation on fault-tolerant quantum computers. New Journal of Physics, 14,
November 2012.
[30] Stefanie Barz, Elham Kashefi, Anne Broadbent, Joseph F. Fitzsimons, Anton
Zeilinger, and Philip Walther. Demonstration of blind quantum computing. Science,
335(6066):303--308, January 2012.
[31] W. Dür, H.-J. Briegel, J. I. Cirac1, and P. Zoller. Quantum repeaters based on entanglement
purification. Physical Review A, 59:169--181, January 1999.
[32] Nicolas Gisin and Rob Thew. Quantum communication. Nature Photonics, 1:165--
171, March 2007.
[33] H. J. Kimble. The quantum internet. Nature Photonics, 453:1023--1030, June 2008.
[34] Rodney Van Meter. Quantum networking and internetworking. IEEE Network,
26(4):59--64, July 2012.
[35] Andrew M. Childs. Secure assisted quantum computation. Quantum Information
and Computation, 5(6):456--466, September 2005.
[36] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University,
2009. crypto.stanford.edu/craig.
71
[37] Craig Gentry and Shai Halevi. Implementing gentry's fully-homomorphic encryption
scheme. Advances in Cryptology -- CRYPTO 2011, pages 169--179, 1978.
[38] Pablo Arrighi and Louis Salvail. Blind quantum computation. International Journal
of Quantum Information, 04(05):883--898, October 2006.
[39] Vedran Dunjko, Elham Kashefi, and Anthony Leverrier. Blind quantum computing
with weak coherent pulses. Physical Review Letter, 108(20), May 2012.
[40] Tomoyuki Morimae and Keisuke Fujii. Blind topological measurement-based quantum
computation. Nature Communications, 3, September 2012.
[41] Takahiro Sueki, Takeshi Koshiba, and Tomoyuki Morimae. Ancilla-driven universal
blind quantum computation. Physical Review A, 87(6), June 2013.
[42] Vlatko Vedral, Adriano Barenco, and Artur Ekert. Quantum networks for elementary
arithmetic operations. Physical Review A, 54(1):147--153, July 1996.
[43] David Beckman, Amalavoyal N. Chari, Srikrishna Devabhaktuni, and John Preskill.
Efficient networks for quantum factoring. Physical Review A, 54(2):1034--1063,
August 1996.
[44] Vivek V. Shende and Igor L. Markov. On the cnot-cost of toffoli gates. Quantum
Information and Computation, 9(5):461--486, May 2009.
[45] Balachandra R. Kandukuri, Ramakrishna Paturi V., and Atanu Rakshit. Cloud security
issues. In Proceedings of the International Conference on Service Computing,
SCC '09, pages 517--520. IEEE Computer Society, 2009.
[46] Ymir Vigfusson and Gregory Chockler. Clouds at the crossroads: research perspectives.
Crossroads - Plugging Into the Cloud, 16(3):10--13, March 2010.
[47] Daniel Gottesman and Isaac L. Chuang. Demonstrating the viability of universal
quantum computation using teleportation and single-qubit operations. Nature,
402:390--393, November 1999.
72
[48] Michael A. Nielsen. Quantum computation by measurement and quantum memory.
Physics Letters A, 308(2-3):96--100, February 2003.
[49] Debbie W. Leung. Quantum computation by measurements. International Journal
of Quantum Information, 02(01):33--43, March 2004.
[50] Michael A. Nielsen. Cluster-state quantum computation. Reports on Mathematical
Physics, 57(1):147--161, February 2006.
[51] Richard Jozsa. An introduction to measurement based quantum computation. arXiv,
September 2005.
[52] Vincent Danos, Ellie D'Hondt, Elham Kashefi, and Prakash Panangaden. Distributed
measurement-based quantum computation. Electronic Notes in Theoretical Computer
Science, 170:73--94, March 2007.
[53] Samuel J. Lomonaco. Distributed quantum computing. University Lecture, 2006.
[54] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum private queries.
Physical Review Letter, 100(23), June 2008.
[55] Dik Bouwmeester, Jian-Wei Pan, Klaus Mattle, Manfred Eibl, Harald Weinfurter,
and Anton Zeilinger. Experimental quantum teleportation. Nature, 390:575--579,
December 1997.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61755-
dc.description.abstract通用盲量子計算是量子資訊領域中很吸引人的技術,因為它可以讓具龐大量子計算能力的伺服器運行客戶端指定的任意量子計算,同時可以保護客戶端的隱私,不讓伺服器知道計算的輸入和輸出資料,甚至是計算本身的過程。客戶端可以透過具備有限量子計算能力的小型裝置和量子傳輸通道在量子計算伺服器上進行量子計算,而同時隱藏私密的資料和有價值的量子演算法,其保密性是理論上完美的。然而,錯誤更正及容錯對於盲量子計算系統的實作上是非常重要的。
將量子錯誤更正應用到盲量子計算系統上會帶來很大的負擔。客戶端需要準備更多量子位元也同時消耗更多能源。本文發現將量子錯誤更正實行在通用盲量子計算協定的下層比將量子錯誤更正實行在通用盲量子計算協定的上層可以使用更少的計算資源來完成,只需要客戶端具備小型量子計算的能力。本論文中也提出改良的通用盲量子計算協定,讓客戶端可以不具備量子計算能力,只需要量子位元暫存的能力也可以完成。此外,本文也分析了所提出的容錯通用盲量子計算協定的計算與通訊的成本。
為了突破盲量子計算在計算大小的限制,本文中提出盲量子計算的分散式架構,使一個盲量子計算可以被拆成數個小的計算區塊,再由數個伺服器來進行計算。另外本論文也提出進行通用盲量子計算的另一種方法,基於量子遙傳的方法。這方法在分散式盲量子計算很有幫助,因為它可同時完成量子遙傳和盲量子計算,此外其計算是由多個小計算單位組成。
zh_TW
dc.description.abstractBlind quantum computation is an appealing use of quantum information technology because it can make the server with large computational capability perform an arbitrary quantum computation assigned by the client and protect client's privacy by concealing the input, output, and even the computation itself from the server. The client can use a small device with limited quantum computing capacity and quantum communication channel to perform a quantum computation on a quantum computing server while concealing the private data and the valuable quantum algorithm with theoretically perfect security. However, error-correction and fault-tolerance are very important to the practical implementation of the blind quantum computation system.
Applying quantum error correction to the blind quantum computation system brings both the client and the server a lot of overhead. The client needs to prepare more qubits and cost more energy. Applying quantum error correction in the bottom of the blind quantum computation protocol costs less qubits than applying quantum error correction on top of the blind quantum computation protocol. In this paper, a new blind quantum computation protocol which costs the client less computational effort is proposed. On the other hand, the server's computational effort is increased when performing fault-tolerant blind quantum computation.
To break the limit of the computational size in the blind quantum computation, a distributed architecture for blind quantum computation is proposed in this paper. A whole blind quantum computation can be divided into multiple smaller computation parts, which can be performed by multiple server. This paper also shows a different kind of universal blind quantum computation protocol based on quantum teleportation. It is useful in a distributed blind quantum computation because quantum communication and blind quantum computation are performed at the same time and the computation is composed of small computation units.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:11:57Z (GMT). No. of bitstreams: 1
ntu-102-F94921039-1.pdf: 1789577 bytes, checksum: e5d9c8057688a75942aa2524d7c7ffe9 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書i
摘要ii
Abstract iii
Contents v
List of Figures vii
List of Tables ix
1 Introduction 1
2 Preliminaries 4
2.1 Basic Quantum Computation . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Measurement-based Quantum Computation . . . . . . . . . . . . . . . . 6
2.3 Universal Blind Quantum Computation . . . . . . . . . . . . . . . . . . 9
2.4 Steane Code and Fault-tolerant Quantum Computation . . . . . . . . . . 12
3 Fault-tolerant Blind Quantum Computation 19
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 BFK Fault-tolerant Blind Quantum Computation . . . . . . . . . . . . . 24
3.4 Blind Quantum Computation Using Fault-tolerant Circuits . . . . . . . . 25
v
3.5 Buffer Shuffle Alice Protocol . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6 Resource Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4 A Distributed Architecture for Universal Blind Quantum Computation 43
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Distributed Blind Quantum Computation . . . . . . . . . . . . . . . . . . 44
4.3 Proof of Universality and Blindness . . . . . . . . . . . . . . . . . . . . 47
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5 Blind Quantum Computation Using Quantum Teleportation 49
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Related Work and Contribution . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Teleportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 Teleportation-based computation . . . . . . . . . . . . . . . . . . . . . . 54
5.5 Adaptive Entanglement Pairs and Measurement . . . . . . . . . . . . . . 56
5.6 Adaptive Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.7 Outline of Protocols for Classical Input and Output . . . . . . . . . . . . 59
5.8 Protocol for Quantum Input and Output . . . . . . . . . . . . . . . . . . 61
5.9 Discussion on Privacy for Known Size . . . . . . . . . . . . . . . . . . . 63
5.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6 Conclusions and Future Work 65
Bibliography 68
dc.language.isoen
dc.subject量子計算zh_TW
dc.subject量子加密zh_TW
dc.subject量子錯誤更正及容錯zh_TW
dc.subject分散式架構zh_TW
dc.subject量子遙傳zh_TW
dc.subjectQuantum error correction and fault-toleranceen
dc.subjectQuantum Teleportationen
dc.subjectDistributed Architectureen
dc.subjectQuantum cryptographyen
dc.subjectQuantum computingen
dc.title通用盲量子計算的分散式架構與容錯zh_TW
dc.titleDistributed Architecture and Fault-tolerant Operations for Universal Blind Quantum Computationen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.oralexamcommittee顏嗣鈞,雷欽隆,陳英一,呂學坤,陳俊良
dc.subject.keyword量子計算,量子加密,量子錯誤更正及容錯,分散式架構,量子遙傳,zh_TW
dc.subject.keywordQuantum computing,Quantum cryptography,Quantum error correction and fault-tolerance,Distributed Architecture,Quantum Teleportation,en
dc.relation.page73
dc.rights.note有償授權
dc.date.accepted2013-07-31
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
1.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved