Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61727
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊台鴻(Tai-Horng Young)
dc.contributor.authorPo-Chun Wangen
dc.contributor.author王柏鈞zh_TW
dc.date.accessioned2021-06-16T13:10:58Z-
dc.date.available2020-07-20
dc.date.copyright2020-07-20
dc.date.issued2020
dc.date.submitted2020-07-08
dc.identifier.citation[1] James S. Wolffsohn et al. Presbyopia: Effectiveness of correction strategies. Progress in Retinal and Eye Research 68 (2019) 124–143
[2] Weidling, P., Jaschinski, W., 2015. The vertical monitor position for presbyopic computer users with progressive lenses: how to reach clear vision and comfortable head posture. Ergonomics 58, 1813–1829.
[3] Elliott, D.B., 2014. The Glenn A. Fry award lecture 2013: blurred vision, spectacle correction, and falls in older adults. Optom. Vis. Sci. 91, 593–601.
[4] Timothy R. Fricke et al. Global Prevalence of Presbyopia and Vision Impairment from Uncorrected Presbyopia. Ophthalmology 2018; 125:1492-1499 by the American Academy of Ophthalmology.
[5] Garner WH, Garner MH. Protein disulfide levels and lens elasticity modulation: applications for presbyopia. Invest Ophthalmol Vis Sci. 2016;57:2851–2863. DOI:10.1167/iovs.15-18413
[6] Heys KR, Cram SL, Truscott RJW. Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia? Mol Vis. 2004; 10:956–963.
[7] Fisher RF, Pettet BE. Presbyopia and the water content of the human crystalline lens. J Physiol. 1973; 234:443–447.
[8] Hermans E, Dubbelman M, van der Heijde R, Heethaar R. The shape of the human lens nucleus with accommodation. J Vis. 2007;7(10):16.
[9] Marie Joan Therese D. Balgos et al. Correction of presbyopia: An integrated update for the practical surgeon. Taiwan J Ophthalmol 2018; 8:121‑140.
[10] Durrie DS, Moshifar M. “Dysfunctional lens syndrome,” in Proceedings of the Annual Meeting of ISRS. Pursuit of Perfection. Section II: Intraocular Refractive Surgery Topics, Chicago, IL, USA; 2016.
[11] Durrie D. Dysfunctional lens syndrome, a New Way to Educate Patients. Available at https://www.aao.org/eyenet/academylive/detail/dysfunctional-lens-syndrome-educate-patients. [Last accessed 2018 Mar 10].
[12] Kehao Wang et al. Biomechanics of the human lens and accommodative system: Functional relevance to physiological states. Progress in Retinal and Eye Research 71 (2019) 114–131
[13] von Helmholtz, H., 1855. Uber die Akkommodation des Auges. Arch. Ophthalmol. 1, 1–74.
[14] Schachar, R.A., Huang, T., Huang, X., 1993. Mathematic proof of Schachar's hypothesis of accommodation. Ann. Ophthalmol. 25, 5–9.
[15] Sharon L. Jick et al. Basic and Clinical Science Course. American Academy of Ophthalmology, 2019-2020; section 11 Lens and Cataract: 12
[16] Anderson RE, ed. Biochemistry of the Eye. San Francisco: American Academy of Ophthalmology; 1983; 6: 112.
[17] Zongbo Wei et al. Reduced Glutathione Level Promotes Epithelial-Mesenchymal Transition in Lens Epithelial Cells via a Wnt/β-Catenine Mediated Pathway
[18] Leonid M. Zukin et al. Aldose Reductase Inhibition Prevents Development of Posterior Capsular Opacification in an In Vivo Model of Cataract Surgery. Invest Ophthalmol Vis Sci. 2018;59:3591–3598. https://doi.org/10.1167/iovs.18-23935
[19] de Iongh RU, Wederell E, Lovicu FJ, McAvoy JW. Transforming growth factor-β-induced epithelial-mesenchymal transition in the lens: a model for cataract formation. Cells Tissues Organs. 2005; 179:43–55.
[20] Mahalingaiah PK, Ponnusamy L, Singh KP: Chronic oxidative stress leads to malignant transformation along with acquisition of stem cell characteristics, and epithelial to mesenchymal transition in human renal epithelial cells. J Cell Physiol 2015, 230:1916-1928
[21] Droge W: Free radicals in the physiological control of cell function. Physiol Rev 2002, 82:47-95
[22] Jaffer OA, Carter AB, Sanders PN, Dibbern ME, Winters CJ, Murthy S, Ryan AJ, Rokita AG, Prasad AM, Zabner J, Kline JN, Grumbach IM, Anderson ME: Mitochondrial-targeted antioxidant therapy decreases transforming growth factor-β-mediated collagen production in a murine asthma model. Am J Respir Cell Mol Biol 2015, 52:106-115
[23] Jarman ER, Khambata VS, Cope C, Jones P, Roger J, Ye LY, Duggan N, Head D, Pearce A, Press NJ, Bellenie B, Sohal B, Jarai G: An inhibitor of NADPH oxidase-4 attenuates established pulmonary fibrosis in a rodent disease model. Am J Respir Cell Mol Biol 2014, 50:158-169
[24] Liu RM, Vayalil PK, Ballinger C, Dickinson DA, Huang WT, Wang S, Kavanagh TJ, Matthews QL, Postlethwait EM: Transforming growth factor β suppresses glutamate-cysteine ligase gene expression and induces oxidative stress in a lung fibrosis model. Free Radic Biol Med 2012, 53:554e563
[25] Cui Y, Robertson J, Maharaj S, Waldhauser L, Niu J, Wang J, Farkas L, Kolb M, Gauldie J: Oxidative stress contributes to the induction and persistence of TGF-β1 induced pulmonary fibrosis. Int J Biochem Cell Biol 2011, 43:1122-1133
[26] Bellocq A, Azoulay E, Marullo S, Flahault A, Fouqueray B, Philippe C, Cadranel J, Baud L: Reactive oxygen and nitrogen intermediates increase transforming growth factor-β1 release from human epithelial alveolar cells through two different mechanisms. Am J Respir Cell Mol Biol 1999, 21:128-136
[27] Barcellos-Hoff MH, Dix TA: Redox-mediated activation of latent transforming growth factor-β1. Mol Endocrinol 1996, 10: 1077-1083
[28] W. Neil Charman (2018) Non-surgical treatment options for presbyopia, Expert Review of Ophthalmology, 13:4, 219-231, DOI: 10.1080/17469899.2018.1506330
[29] Hickenbotham A, Triveedshula P, Roorda A. Comparison of spherical aberration and small-pupil profiles in improving depth of focus for presbyopic corrections. J Cataract Refract Surg. 2012; 38:2071–2079.
[30] Xu R, Gill D, Dibas M, et al. The effect of light level and small pupils on presbyopic reading performance. Invest Ophthalmol Vis Sci. 2016; 57:5656–5664.
[31] Abdelkader A. Improved presbyopic vision with miotics. Eye Cont Lens. 2015; 41:323–327.
[32] Feyza Çalis Karanfil et al. Update on Presbyopia-correcting Drops. European Ophthalmic Review, 2017;11(2)
[33] Crawford KS, Garner WH, Burns W (2014) Dioptin™: A novel pharmaceutical formulation for restoration of accommodation in presbyopes, Invest Ophthalmol Vis Sci, 2014;55:3765.
[34] Takemoto L, Increase in the intramolecular disulfide bonding of alpha-a crystallin during aging of the human lens, Exp Eye Res, 1996;63:585–90.
[35] EncoreHealth LLC, Choline esters, 2014, Patent publication number: US9326970 B2. Available at: http://bit.ly/cholineesters (accessed 14 October 2017).
[36] Burns B, Encore Vision Reports Positive Phase I/II Results, 2016. Available at: http://bit.ly/EV06presbyopia (accessed 14 October 2017).
[37] Novartis AG, Novartis bolsters ophthalmology pipeline though the acquisition of Encore Vision, Inc, 2016. Available at: http://bit.ly/encorenovartis (accessed 14 October 2017).
[38] Novartis Pharmaceuticals, A Study of Safety and Efficacy of UNR844 Chloride (UNR844-Cl) Eye Drops in Subjects With Presbyopia.
[39] Naphtali et al. S-Allylmercapro-N-Acetylcysteine Attenuates the Oxidation-Induced Lens Opacification and Retinal Pigment Epithelial Cell Death In Vitro. Antioxidants 2019, 8, 25; doi:10.3390/antiox8010025
[40] Packer L, Witt EH, Tritschler HJ. Alpha-lipoic acid as a biological antioxidant. Free Radic Biol Med. 1995;19: 227–250.
[41] Khanna S, Atalay M, Laaksonen DE, Gul M, Roy S, Sen CK. Alpha-lipoic acid supplementation: tissue glutathione homeostasis at rest and after exercise. J Appl Physiol. 1999;86: 1191–1196.
[42] Shay KP, Moreau RF, Smith EJ, Smith AR, Hagen TM. Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. Biochim Biophys Acta. 2009;1790: 1149–1160.
[43] Cremer DR, Rabeler R, Roberts A, Lynch B. Safety evaluation of alpha-lipoic acid (ALA). Regul Toxicol Pharmacol. 2006;46: 29–41.
[44] Henriksen EJ, Diamond-Stanic MK, Marchionne EM. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic Biol Med. 2011;51:993–999.
[45] Hiltunen JK, Schonauer MS, Autio KJ, Mittelmeier TM, Kastaniotis AJ, Dieckmann CL. Mitochondrial fatty acidsynthesis type ii: more than just fatty acids. J Biol Chem. 2009; 284:9011–9015.
[46] Morikawa T, Yasuno R, Wada H. Do mammalian cells synthesize lipoic acid? Identification of a mouse cDNA encoding a lipoic acid synthase located in mitochondria. FEBS Lett. 2001;498:16–21.
[47] Fujiwara K, Takeuchi S, Okamura-Ikeda K, Motokawa Y. Purification, characterization, and cDNA cloning of lipoate activating enzyme from bovine liver. J Biol Chem. 2001;276: 28819–28823.
[48] Jordan SW, Cronan JE. A new metabolic link. The acyl carrier protein of lipid synthesis donates lipoic acid to the pyruvate dehydrogenase complex in Escherichia coli and mitochondria. J Biol Chem. 1997; 272: 17903–17906.
[49] Witkowski A, Joshi AK, Smith S. Coupling of the de novo fatty acid biosynthesis and lipoylation pathways in mammalian mitochondria. J Biol Chem. 2007; 282: 14178–14185.
[50] Efstathios et al. Evaluation of iridociliary and lenticular elasticity using shear-wave elastography in rabbit eyes. ACTA MEDICA (Hradec Králové) 2014; 57(1):9–14
[51] Wells PN, Liang HD. Medical ultrasound: imaging of soft tissue strain and elasticity. J R Soc Interface. 2011; 8: 1521–49. Review.
[52] Detorakis ET, Drakonaki EE, Tsilimbaris MK, Pallikaris IG, Giarmenitis S. Real-Time Ultrasound Elastographic Imaging of Ocular and Periocular Tissues: A Feasibility Study. Ophthalmic Surgery, Lasers, Imaging. 2010; 41: 135–41.
[53] Hoyt K, Hah Z, Hazard C, Parker KJ. Experimental validation of acoustic radiation force induced shear wave interference patterns. Phys Med Biol. 2012; 57: 21–30.
[54] Xinyu Zhang et al. Noninvasive assessment of age‑related stiffness of crystalline lenses in a rabbit model using ultrasound elastography. BioMed Eng OnLine (2018) 17:75. https://doi.org/10.1186/s12938-018-0509-1
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61727-
dc.description.abstract老花眼為退化性的屈光疾患,致中老年人無法有良好的調視能力,尤其無法使水晶體維持其聚焦的功能,妨礙近距離閱讀的視力。在現今高/老齡化社會與慢性疾病盛行率逐漸攀升的發展中與已開發國家,甚或在全球資源分配不均,資源匱乏的第三世界國家,相關藥物治療發展有其在預防與老人醫學的角色。
由於參酌過去學者對於老花眼、白內障的發展有水晶體失能症候群 (dysfunctional lens syndrome) 的說法,本研究沿用過去人眼水晶體表皮細胞株 (Human lens epithelial cell-B3, HLE-B3) 的後囊性白內障研究模型,以轉化生長因子-β [Transforming Growth Factor-β (TGF-β)] 細胞因子(cytokines)為表皮間質化 (Epithelial-Mesenchymal Transition, EMT) 的誘導因子。另外,受測開發中藥物的選擇以機制相仿的兩種藥物,首以2019年4-12月進入二期臨床試驗用藥的硫辛酸 (alpha-lipoic acid) 為主軸,乙醯半胱氨酸 (N-Acetylcysteine) 為輔,因兩者均有使細胞生長於穀胱甘肽 (GSH) 增加之環境,抑制晶體表皮細胞間質化與減緩水晶體失能發展之機制。
本研究以細胞(in vitro)及器官(ex vivo)兩層面探討藥物作用;細胞層級上,在TGF-β濃度為2 ng/ml時,硫辛酸較乙醯半胱氨酸能抑制表皮間質化的波形蛋白(vimentin) 螢光染色表現。器官層級上,本研究參酌過去學者嘗試以超音波-剪力波彈性造影量測不同年紀兔眼水晶體彈性度,測試發現硫辛酸亦較乙醯半胱氨酸能抑制TGF-β誘導水晶體退化模型。藥物水/脂溶性與帶電性可為影響藥效的因素,未來研究可考慮進一步接枝/包覆等增加正電性、脂溶性,以增加細胞膜與角膜穿透度等。期望未來本研究測試藥物的方法可資日後老花眼藥物發展的基石,能為第三世界國家提供替代/預防性醫療,並對於預防醫學與老人醫學有些許貢獻。
zh_TW
dc.description.abstractPresbyopia is a degenerative disorder that hinders accommodation, which compromises near vision. In recent aging/aged society, increasing chronic medical conditions, and third-world countries where lack of medical resource, presbyopia medication development has its role in preventive and geriatric medicine.
According to previous studies, dysfunctional lens syndrome contains the spectrum of presbyopia and cataract, therefore, our study followed posterior capsular opacity (cataract) model which cytokine TGF-β induces epithelial-mesenchymal transition. The developing medications tested in our study involves alpha-lipoic acid (which had entered stage 2 clinical trial on April through December 2019) and N-Acetylcysteine. Both of their mechanism increases Glutathione (GSH) in cellular micro-environment, therefore, which suppresses epithelial-mesenchymal transition and slower the development of dysfunctional lens syndrome.
The in vitro study presented that HLE-B3 cell line under 2 ng/ml TGF-β, initially treated alpha lipoic acid suppressed vimentin immunofluorescence expression better than N-Acetylcysteine. In ex-vivo porcine lens organ culture, we reviewed previous studies used ultrasound shear-wave elastography for evaluation of lens elasticity in rabbits’ eyes at different ages, and ocular medication (pilocarpine and atropine) effect on ocular tissues. We had found alpha-lipoic acid suppresses TGF-β induced lens stiffness (which is correlated with group velocity) better than N-acetylcysteine. Medication hydrophilicity may be the factor hinders effectiveness, further studies on chemical grafting and encapsulating for increasing drug positivity, lipophilicity may achieve better membrane and corneal permeability. We hope the drug testing methods this study presented would trigger further presbyopia drug development, which may provide preventive measures/ alternative medical treatment for third world countries, and further contributes to preventive and geriatric medicine.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:10:58Z (GMT). No. of bitstreams: 1
U0001-2206202015273400.pdf: 4306798 bytes, checksum: c85966a3034c557b4cb8d04c9cc20226 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES vii
Chapter 1 Introduction 1
1.1 Presbyopia 1
1.2 Lenticular structures 5
1.3 Lens Epithelial Cell with Epithelial-Mesenchymal Transition 8
1.4 Current Medical Treatment on Presbyopia and Development 12
1.5 Ultrasound Elastography Measurement for Lens Elasticity 14
Chapter 2 Materials and Methods 17
2.1 Materials 17
2.2 Methods 19
2.2.1 Human Lens Epithelial Cell Line (HLE-B3) Culture 19
2.2.2 Alamar Blue Assay (Cell Viability Test) 20
2.2.3 Immunofluorescence 20
2.2.4 Porcine Lens ex vivo Culture 22
2.2.5 Ultrasound Shear-wave Elastography on Porcine Lens Elasticity 22
2.2.6 Statistical Analysis 23
Chapter 3 Results 24
3.1 HLE-B3 Culture Medication Treatment Cell Viability 24
3.2 Immunofluorescence 24
3.3 Porcine Lens ex vivo Organ Culture Degenerative Model Establishment 25
3.4 Porcine Lens ex vivo Organ Culture Degenerative Model Under Treatment 26
Chapter 4 Discussion 27
Chapter 5 Conclusion and Perspective 32
Figures and Tables 33
References 46
dc.language.isoen
dc.subject乙醯半胱氨酸zh_TW
dc.subject硫辛酸zh_TW
dc.subject轉化生長因子-βzh_TW
dc.subject超音波-剪力波彈性造影zh_TW
dc.subject人眼水晶體表皮細胞株B3zh_TW
dc.subject水晶體失能症候群zh_TW
dc.subject老花眼zh_TW
dc.subject表皮間質化zh_TW
dc.subjectN-Acetylcysteineen
dc.subjectDysfunctional lens syndromeen
dc.subjectHuman lens epithelial cell-B3en
dc.subjectEpithelial-mesenchymal transitionen
dc.subjectTransforming growth factor-βen
dc.subjectAlpha lipoic aciden
dc.subjectPresbyopiaen
dc.subjectUltrasound shear-wave elastographyen
dc.title開發中老花眼藥物對於晶體表皮細胞間質化與晶體彈性度影響之探討zh_TW
dc.titleComparison of Current Developing Medication on Suppression of Presbyopia Development-Lens Epithelial Cell Epithelial-Mesenchymal Transition and Lens Capsular Elasticity
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.author-orcid0000-0002-1847-3581
dc.contributor.advisor-orcid楊台鴻(0000-0001-5338-4747)
dc.contributor.oralexamcommittee王一中(I-Jong Wang),蔡景耀(Ching-Yao Tsai)
dc.contributor.oralexamcommittee-orcid王一中(0000-0002-3045-0614)
dc.subject.keyword老花眼,水晶體失能症候群,人眼水晶體表皮細胞株B3,表皮間質化,轉化生長因子-β,硫辛酸,乙醯半胱氨酸,超音波-剪力波彈性造影,zh_TW
dc.subject.keywordPresbyopia,Dysfunctional lens syndrome,Human lens epithelial cell-B3,Epithelial-mesenchymal transition,Transforming growth factor-β,Alpha lipoic acid,N-Acetylcysteine,Ultrasound shear-wave elastography,en
dc.relation.page52
dc.identifier.doi10.6342/NTU202001102
dc.rights.note有償授權
dc.date.accepted2020-07-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2206202015273400.pdf
  未授權公開取用
4.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved