請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61707完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林?輝(Feng-Huei (Double) | |
| dc.contributor.author | Indra Oliver Candra Hadyiswanto | en |
| dc.contributor.author | 關金東 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:10:17Z | - |
| dc.date.available | 2018-08-06 | |
| dc.date.copyright | 2013-08-06 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-31 | |
| dc.identifier.citation | 1. Cancer. 2012 [cited 2011 24 October]; Available from: http://www.who.int/mediacentre/factsheets/fs297/en/.
2. Health, United States, 2010: with Specia Feature on Death and Dying, 2011: Washington. 3. Jemal, A., et al., Global cancer statistics. CA Cancer J Clin, 2011. 61(2): p. 69-90. 4. Alcamo, C.F.I.E., Lung Cancer Deadly Diseases and Epidemics2007, New York: Chelse House. 5. Nikon MicroscopyU - The Source for Microscopy Education. 2012 [cited 2012 20 September]; Available from: http://www.microscopyu.com/staticgallery/pathology/adenocarcinomaoflung40x01.html. 6. Gaur, D.C. Hope To Treat Squamous Cell Lung Cancer | TopNews New Zealand. 2012 [cited 2012 20 September]; Available from: http://topnews.net.nz/content/224243-hope-treat-squamous-cell-lung-cancer. 7. Carcinoma polmonare a grandi cellule. 2012; Available from: http://it.wikipedia.org/wiki/Carcinoma_polmonare_a_grandi_cellule. 8. The Best Oncologist. 2010 [cited 2011 10 October]; Available from: http://www.thebestoncologist.com/Cancer_Diseases/lung_cancer.html. 9. Webb, N.S.A., Introduction to Medical Imaging: Physics, Engineering and Clinical Applications2011, Cambridge, UK: Cambirdge University Press. 10. Desai, S., Lung Cancer. Contemporary Issues in Cancer Imaging2007, Cambridge, UK: Cambirdge University Press. 11. Massoud, T.F. and S.S. Gambhir, Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev, 2003. 17(5): p. 545-80. 12. Cheon, J. and J.-H. Lee, Synergistically Integrated Nanoparticles as Multimodal Probes for Nanobiotechnology. Accounts of Chemical Research, 2008. 41(12): p. 1630-1640. 13. Contrast medium. 2012 [cited 2012 30 September]; Available from: http://en.wikipedia.org/wiki/Contrast_medium. 14. Goldenberg, I. and S. Matetzky, Nephropathy induced by contrast media: pathogenesis, risk factors and preventive strategies. CMAJ, 2005. 172(11): p. 1461-71. 15. Rich, M.W. and C.A. Crecelius, Incidence, risk factors, and clinical course of acute renal insufficiency after cardiac catheterization in patients 70 years of age or older. A prospective study. Arch Intern Med, 1990. 150(6): p. 1237-42. 16. Barrett, B.J. and P.S. Parfrey, Prevention of nephrotoxicity induced by radiocontrast agents. N Engl J Med, 1994. 331(21): p. 1449-50. 17. McCullough, P.A., et al., Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality. Am J Med, 1997. 103(5): p. 368-75. 18. Rihal, C.S., et al., Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention. Circulation, 2002. 105(19): p. 2259-64. 19. Ueda, J., et al., Effect of intravenous contrast media on proximal and distal tubular hydrostatic pressure in the rat kidney. Acta Radiol, 1993. 34(1): p. 83-7. 20. Berns, A.S., Nephrotoxicity of contrast media. Kidney Int, 1989. 36(4): p. 730-40. 21. Barrett, B.J., Contrast nephrotoxicity. J Am Soc Nephrol, 1994. 5(2): p. 125-37. 22. JP, C.C.T., Preventing contrast nephropathy: what is the best strategy A review of the literature. The Journal Of Clinical Pharmacology, 2004. 44(4): p. 10. 23. Radiocontrast agent. 2012 [cited 2012 28 September]; Available from: http://en.wikipedia.org/wiki/Radiocontrast_agent. 24. Lee, J.K. and P. Vadas, Anaphylaxis: mechanisms and management. Clin Exp Allergy, 2011. 41(7): p. 923-38. 25. Brockow, K., et al., Management of hypersensitivity reactions to iodinated contrast media. Allergy, 2005. 60(2): p. 150-8. 26. Trcka, J., et al., Anaphylaxis to iodinated contrast material: nonallergic hypersensitivity or IgE-mediated allergy? AJR Am J Roentgenol, 2008. 190(3): p. 666-70. 27. Ettinger, J.F.K.J.R.B.D.S., Johns Hopkins Medicine Patients' Guide to Lung Cancer2011, Sudbury, MA: Jones & Bartlett Learning. 28. Stewart, D.J., Lung cancer: Prevention, Management, and Emerging therapies2010, New York: Humana Press. 29. Hotta, K., et al., Meta-analysis of randomized clinical trials comparing Cisplatin to Carboplatin in patients with advanced non-small-cell lung cancer. J Clin Oncol, 2004. 22(19): p. 3852-9. 30. Effects of vinorelbine on quality of life and survival of elderly patients with advanced non-small-cell lung cancer. The Elderly Lung Cancer Vinorelbine Italian Study Group. J Natl Cancer Inst, 1999. 91(1): p. 66-72. 31. Winton, T., et al., Vinorelbine plus cisplatin vs. observation in resected non-small-cell lung cancer. N Engl J Med, 2005. 352(25): p. 2589-97. 32. Visbal, A.L., et al., Adjuvant Chemotherapy for Early-Stage Non-small Cell Lung Cancer. Chest, 2005. 128(4): p. 2933-43. 33. Depierre, A., et al., Preoperative chemotherapy followed by surgery compared with primary surgery in resectable stage I (except T1N0), II, and IIIa non-small-cell lung cancer. J Clin Oncol, 2002. 20(1): p. 247-53. 34. Pisters, K.V., E.; Bunn, P.; et al., S9900: A phase III trial of surgery alone or surgery plus preoperative paclitaxel/carboplatin chemotherapy in early-stage non-small cell lung cancer: preliminary results. Journal of Clinical Oncology, 2005. 23(16S). 35. Sumer, B. and J. Gao, Theranostic nanomedicine for cancer. Nanomedicine (Lond), 2008. 3(2): p. 137-40. 36. Ahmed, N., H. Fessi, and A. Elaissari, Theranostic applications of nanoparticles in cancer. Drug Discov Today, 2012. 17(17-18): p. 928-34. 37. Bagalkot, V., et al., Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett, 2007. 7(10): p. 3065-70. 38. Melancon, M.P., et al., Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer. Biomaterials, 2011. 32(30): p. 7600-8. 39. Shackelford, J.F., Bioceramics. Advanced Ceramics. Vol. 1. 1999, Amsterdam, The Netherlands: Gordon and Breach Science. 40. Uskokovic, V. and D.P. Uskokovic, Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents. J Biomed Mater Res B Appl Biomater, 2011. 96(1): p. 152-91. 41. Verbeeck, R.M.H., E.A.P. De Maeyer, and F.C.M. Driessens, Stoichiometry of Potassium- and Carbonate-Containing Apatites Synthesized by Solid State Reactions. Inorg Chem, 1995. 34(8): p. 2084-2088. 42. Liu, H.S., et al., Hydroxyapatite synthesized by a simplified hydrothermal method. Ceramics International, 1997. 23(1): p. 19-25. 43. Nayak, A.K., Hydroxyapatite Synthesis Methodologies: An Overview. International Journal of ChemTech Research, 2010. 2(2): p. 4. 44. Shepherd, J.H., D.V. Shepherd, and S.M. Best, Substituted hydroxyapatites for bone repair. J Mater Sci Mater Med, 2012. 23(10): p. 2335-47. 45. Liu, H., et al., Size-controlled synthesis of dendrimer-stabilized silver nanoparticles for X-ray computed tomography imaging applications. Polymer Chemistry, 2010. 1(10): p. 1677-1683. 46. Monteiro, D.C., et al., Enhanced cytotoxicity of silver complexes bearing bidentate N-heterocyclic carbene ligands. Dalton Trans, 2012. 41(13): p. 3720-5. 47. Ziani, S., S. Meski, and H. Khireddine, Characterization of Magnesium-Doped Hydroxyapatite Prepared by Sol-Gel Process. International Journal of Applied Ceramic Technology, 2013: p. 1-9. 48. Pilcer, G. and K. Amighi, Formulation strategy and use of excipients in pulmonary drug delivery. International Journal of Pharmaceutics, 2010. 392(1–2): p. 1-19. 49. Wu, H., Development of Magnetic Hydroxyapatite Nanoparticles as a Non-viral Gene Carrier, in Graduate Institute of Biomedical Engineering2009, National Taiwan University: Republic of China. 50. AshaRani, P.V., et al., Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 2009. 3(2): p. 279-90. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61707 | - |
| dc.description.abstract | 肺癌是世界上最致命的疾病之一,每年造成至少1.3萬人死亡。肺癌之生物醫學影像目前仍無法精確的成像。另一方面,肺癌的治療方法只能針對於較小範圍的區域進行治療,並有許多副作用。許多研究證實了同時具有診斷及治療功能之奈米藥物是具有潛力成為未來治療癌症的工具。而目前許多研究皆已利用同時具有診斷及治療之奈米藥物成功改善了生醫影像之靈敏度及增進治療癌症之效用。在本研究中,我們將製備摻銀之氫氧基磷灰石奈米粒子,並使之成為治療肺癌上之電腦斷層掃描(CT scan)顯影劑以及化療藥物。
在本研究中,我們利用共沉澱法製備摻銀之氫氧基磷灰石奈米粒子。在合成過程中,不同濃度之銀離子被摻入氫氧基磷灰石當中。在材料定性分析實驗當中使用X光繞射儀(XRD)譜進行鑑定晶體結構並計算其晶體參數,而藉由掃描式電子顯微鏡(SEM)及穿透式電子顯微鏡(TEM)進行確認材料之粒徑大小及形態,除此之外,高解析度之穿透式電子顯微鏡影像與電子繞射圖譜可分析其晶體結構,於粒徑分析中,藉由粒徑分析儀(DLS)可以確認材料於水相中之粒徑大小,而傅立葉轉換紅外光譜儀(FTIR)可分析材料表面之官能基。為了確認銀離子於氫氧基磷灰石內之數量,我們使用了ICP-MS來進行其元素分析,斷層掃描成像實驗是為了得知材料之X射線衰減係數。在細胞實驗當中,使用WST-1、LDH 及Live/Death細胞染色實驗分別進行摻銀之氫氧基磷灰石奈米粒子之癌細胞毒殺測試。 由實驗結果得知,我們成功的使用共沉澱法合成了摻銀之氫氧基磷灰石奈米粒子。 而由XRD, FTIR, SEM和TE實驗結果可以得知,相較於氫氧機磷灰石奈米粒子,摻銀之氫氧基磷灰石奈米粒子在於大小、形狀、表面之官能基及形態上並無明顯變化,但其繞射峰之位置有些微的改變且其晶體參數較高,證實了其銀離子確實可以置換出鈣離子, ICP-MS的結果可以定量出銀離子在於氫氧基磷灰石晶格內濃度。此外,Micro-CT成像與癌細胞毒殺測試結果證實了摻銀之氫氧基灰石奈米粒子同時具有顯影以及治療癌症的功能,因此,摻銀之氫氧基灰石奈米粒子相當具有潛力成為肺癌治療上之一種theranostic agent。 | zh_TW |
| dc.description.abstract | Lung cancer is one of the deadliest diseases in the world, causing at least 1.3 million people to die every year. Recent biomedical imaging modalities for lung cancer sometimes fail to carry out a precisely correct action since each of them lacks particular attributes. On the other hand, treatments for lung cancers are only effective to a small extent and have numerous side effects. Theranostics nanomedicine has been studied, proposed and proven to be the future tool in cancer treatment. Nanoparticles were successfully employed in previous studies so as to improve biomedical imaging sensitivity and / or cancer treatment efficacy. In this study, we are going to use silver-doped hydroxyapatite nanoparticle as a theranostics agent that acts as both CT contrast agent as well as chemotherapeutic agent for lung cancer management.
The nanoparticles were prepared through co-precipitation process. During the process, hydroxyapatite was doped with various amount of silver. The crystal structure and lattice parameters were evaluated by XRD. The morphology and size of the nanoparticles were evaluated by using SEM and DLS. FTIR spectroscopy was performed to determine functional groups in the synthesized particles. TEM experiment was also carried out to examine crystallite size, shape and structure. In order to track and quantify silver ion inside silver-doped hydroxyapatite, ICP-MS experiment was carried out. Micro-CT scan imaging experiment was conducted in order to investigate the X-ray attenuation coefficient of the synthesized particles. After material analyses, in-vitro experiments through WST-1, LDH and Live/Dead cell viability assays were performed to determine the effects of silver hydroxyapatite on lung cancer cell. Results showed that the AgHAP nanoparticles were successfully synthesized through co-precipitation method. XRD, FTIR, SEM and TEM results revealed that the substitution of calcium by silver in HAP did not change the size, functional groups, shape and morphology of the nanoparticles. However, substitution was proved through change in lattice parameters and shift in XRD spectra. In addition, ICP-MS results proved that Ag ion in AgHAP could be quantified. Micro-CT imaging results and in-vitro experiment results both indicated that AgHAP nanoparticles have the potential as theranostic agent for lung cancer management. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:10:17Z (GMT). No. of bitstreams: 1 ntu-102-R00548059-1.pdf: 6149661 bytes, checksum: 54d5761a2526ec21038ebfca7b2f4b7e (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENTS i
ABSTRACT ii 摘要 iii TABLE OF CONTENTS iv LIST OF FIGURES vii LIST OF TABLES ix INTRODUCTION 1 1.1 Prologue 1 1.2 Lung cancer 2 1.2.1 Staging of lung cancer 5 1.3 Diagnosis of Lung Cancer 6 1.3.1 Chest X-ray 7 1.3.2 Computed Tomography Scan (CT scan) 8 1.3.3 Magnetic Resonance Imaging (MRI) 9 1.3.4 Positron Emission Tomography (PET) 11 1.3.5 Ultrasound Imaging 12 1.3.6 Comparison between CT, MRI and PET 13 1.4 Contrast Agent 14 1.4.1 MRI Contrast Agents [9] 14 1.4.2 X-ray Contrast Agents [9] 15 1.5 Lung Cancer Treatment 19 1.5.1 Surgery 20 1.5.2 Radiation Therapy [27] 21 1.5.3 Gene Therapy 23 1.5.4 Immunotherapy 24 1.5.5 Chemotherapy 24 1.6 Theranostics 28 1.7 Motivation of Study 31 1.8 Purpose of Study 31 1.9 Thesis Organization 32 LITERATURE REVIEW 33 2.1 Hydroxyapatite 33 2.1.1 Preparations of Hydroxyapatite 34 2.1.2 Apatite Compounds and Ion Substitutions 35 2.2 Silver 36 2.2.1 Silver as a Novel Contrast Agent 37 2.2.2 Silver as a Novel Chemotherapeutic Agent 39 MATERIALS AND METHODOLOGY 40 3.1 Raw Materials 40 3.2 Equipment 40 3.3 Preparation of Hydroxyapatite and Silver-doped Hydroxyapatite Nanoparticles 40 3.4 Material Analyses of Hydroxyapatite and Silver-doped Hydroxyapatite 41 3.4.1 X-ray Diffractometry (XRD) 41 3.4.2 Dynamic Light Scattering (DLS) 42 3.4.3 Fourier Transform Infrared Spectroscopy (FTIR) 42 3.4.4 Scanning Electron Microscopy (SEM) 42 3.4.5 Transmission Electron Microscopy (TEM) 43 3.4.6 Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 43 3.4.7 Silver Ion Release Test 43 3.4.8 Micro CT Imaging 44 3.5 In-vitro Biocompatibility Test of Silver-doped Hydroxyapatite 44 3.5.1 Cell Culture 44 3.5.2 WST-1 assay 45 3.5.3 Lactate Dehydrogenase (LDH) Assay 46 3.5.4 Live/Dead Cell Viability Assay by Fluorescence Microscope 47 RESULTS AND DISCUSSIONS 48 4.1 Material Analyses of Hydroxyapatite and Silver-doped Hydroxyapatite 48 4.1.1 Crystallographic analysis by X-ray Diffraction (XRD) 48 4.1.2 Hydrodynamic Size and Size Distribution by Dynamic Light Scattering (DLS) 50 4.1.3 Functional Groups Analysis by Fourier Transform Infrared Spectroscopy (FTIR) 51 4.1.4 Morphology by Scanning Electron Microscope (SEM) 52 4.1.5 Morphology by Transmission Electron Microscope (TEM) 54 4.1.6 Image of the Crystallographic Structure at Atomic Scale by High Resolution Transmission Electron Microscope (HRTEM) 55 4.1.7 Composition Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 57 4.1.8 Ion Release Test by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 58 4.1.9 X-Ray Attenuation Determination by Micro CT Imaging 59 4.2 In-vitro Experiment Results 61 4.2.1 In-vitro Biocompatibility Test by Water Soluble Tetrazolium Salts-1 Assay (WST-1) 61 4.2.2 In-vitro Biocompatibility Test by Lactate Dehydrogenase Assay (LDH) 62 4.2.3 Live/Dead Cell Viability Assay by Fluorescence Microscope 63 CONCLUSION 66 BIBLIOGRAPHY 67 | |
| dc.language.iso | en | |
| dc.subject | 化療 | zh_TW |
| dc.subject | 治療診斷 | zh_TW |
| dc.subject | 氫氧基磷灰石 | zh_TW |
| dc.subject | 肺癌 | zh_TW |
| dc.subject | 銀 | zh_TW |
| dc.subject | 顯影劑 | zh_TW |
| dc.subject | CT掃描 | zh_TW |
| dc.subject | theranostics | en |
| dc.subject | hydroxyapatite | en |
| dc.subject | silver | en |
| dc.subject | chemotherapy | en |
| dc.subject | CT scan | en |
| dc.subject | contrast agent | en |
| dc.subject | lung cancer | en |
| dc.title | 摻銀之氫氧基磷灰石奈米粒子做為肺癌的診斷學治療 | zh_TW |
| dc.title | Development of Ag-doped Hydroxyapatite Nanoparticle as Theranostics Agent for Lung Cancer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊禎明(Jen-Ming Yang),陳克紹(Ko-Shao, Chen),姚俊旭(Chun-Hsu Yao),吳嘉文(Chia-Wen (Kevin) | |
| dc.subject.keyword | 肺癌,氫氧基磷灰石,銀,化療,CT掃描,顯影劑,治療診斷, | zh_TW |
| dc.subject.keyword | lung cancer,hydroxyapatite,silver,chemotherapy,CT scan,contrast agent,theranostics, | en |
| dc.relation.page | 81 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 6.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
