請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61685
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖英志(Ying-Chih Liao) | |
dc.contributor.author | Chun-Chih Huang | en |
dc.contributor.author | 黃竣志 | zh_TW |
dc.date.accessioned | 2021-06-16T13:09:34Z | - |
dc.date.available | 2018-08-14 | |
dc.date.copyright | 2013-08-14 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-07-31 | |
dc.identifier.citation | 1. VanCleave, J., Janice VanCleave's A+ Projects in Chemistry: Winning Experiments for Science Fairs and Extra Credit. 1993: John Wiley & Sons, Inc. . 240.
2. Courbat, J., et al. Inkjet printing on paper for the realization of humidity and temperature sensors. in Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International. 2011. 3. Kong, D., et al., Temperature-dependent electrical properties of graphene inkjet-printed on flexible materials. Langmuir, 2012. 28(37): p. 13467-13472. 4. Xue, Z. and H. Qiu, Integrating micromachined fast response temperature sensor array in a glass microchannel. Sensors and Actuators A: Physical, 2005. 122(2): p. 189-195. 5. Han, I.Y. and S.J. Kim, Diode temperature sensor array for measuring micro-scale surface temperatures with high resolution. Sensors and Actuators a-Physical, 2008. 141(1): p. 52-58. 6. Binghe, M., et al. Flexible thermal sensor array on PI film substrate for underwater applications. in Micro Electro Mechanical Systems (MEMS), 2010 IEEE 23rd International Conference on. 2010. 7. Liu, H.X., et al., Towards on-chip time-resolved thermal mapping with micro-/nanosensor arrays. Nanoscale Research Letters, 2012. 7: p. 1-6. 8. Le, H.P., Progress and trends in ink-jet printing technology. Journal of Imaging Science and Technology, 1998. 42(1): p. 49-62. 9. Wijshoff, H., The dynamics of the piezo inkjet printhead operation. Physics Reports, 2010. 491(4–5): p. 77-177. 10. Lee, D.H., et al., Functional porous tin oxide thin films fabricated by inkjet printing process. Electrochemical and Solid State Letters, 2007. 10(11): p. K51-K54. 11. Perelaer, J., B.J. de Gans, and U.S. Schubert, Ink-jet printing and microwave sintering of conductive silver tracks. Advanced Materials, 2006. 18(16): p. 2101-+. 12. Perelaer, J., et al., Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. Journal of Materials Chemistry, 2010. 20(39): p. 8446-8453. 13. Van Herwaarden, A.W. and P.M. Sarro, Thermal sensors based on the seebeck effect. Sensors and Actuators, 1986. 10(3–4): p. 321-346. 14. Feteira, A., Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective. Journal of the American Ceramic Society, 2009. 92(5): p. 967-983. 15. Kimura, M. and K. Toshima, Thermistor-like pn junction temperature-sensor with variable sensitivity and its combination with a micro-air-bridge heater. Sensors and Actuators A: Physical, 2003. 108(1–3): p. 239-243. 16. Korosec, R.C. and P. Bukovec, Sol-gel prepared NiO thin films for electrochromic applications. Acta Chimica Slovenica, 2006. 53(2): p. 136-147. 17. deSouza, S., S.J. Visco, and L.C. DeJonghe, Thin-film solid oxide fuel cell with high performance at low-temperature. Solid State Ionics, 1997. 98(1-2): p. 57-61. 18. Shih, F.Y., et al., Low-temperature synthesis of nanocrystalline NiO-YSZ powders by succinic acid-assisted combustion. Journal of Power Sources, 2006. 160(1): p. 148-154. 19. Pan, Q.M. and J. Liu, Facile fabrication of porous NiO films for lithium-ion batteries with high reversibility and rate capability. Journal of Solid State Electrochemistry, 2009. 13(10): p. 1591-1597. 20. Wang, H.B., et al., Improving electrochemical performance of NiO films by electrodeposition on foam nickel substrates. Journal of Applied Electrochemistry, 2009. 39(9): p. 1597-1602. 21. Chan, I.M. and F.C. Hong, Improved performance of the single-layer and double-layer organic light emitting diodes by nickel oxide coated indium tin oxide anode. Thin Solid Films, 2004. 450(2): p. 304-311. 22. Shin, W., et al., Thermoelectric thick-film hydrogen gas sensor operating at room temperature. Japanese Journal of Applied Physics Part 2-Letters, 2001. 40(11B): p. L1232-L1234. 23. Hagelin-Weaver, H.A.E., et al., Electron energy loss spectroscopic investigation of Ni metal and NiO before and after surface reduction by Ar+ bombardment. Journal of Electron Spectroscopy and Related Phenomena, 2004. 134(2-3): p. 139-171. 24. Ohshima, N., M. Nakada, and Y. Tsukamoto, Structural and magnetic properties of Ni-O/Ni-Fe bilayer films. Japanese Journal of Applied Physics Part 2-Letters, 1996. 35(12A): p. L1585-L1588. 25. Kohmoto, O., et al., Ni-defective value and resistivity of sputtered NiO films. Journal of Magnetism and Magnetic Materials, 2001. 226: p. 1627-1628. 26. Hotovy, I., et al., Characterization of NiO thin films deposited by reactive sputtering. Vacuum, 1998. 50(1-2): p. 41-44. 27. Adler, D. and J. Feinleib, Electrical and optical properties of narrow-band materials. Physical Review B-Solid State, 1970. 2(8): p. 3112-3134. 28. Park, K. and D.Y. Bang, Electrical properties of Ni-Mn-Co-(Fe) oxide thick-film NTC thermistors prepared by screen printing. Journal of Materials Science-Materials in Electronics, 2003. 14(2): p. 81-87. 29. Sasi, B., et al., Preparation of transparent and semiconducting NiO films. Vacuum, 2002. 68(2): p. 149-154. 30. Dutta, T., et al., Effect of Li doping in NiO thin films on its transparent and conducting properties and its application in heteroepitaxial p-n junctions. Journal of Applied Physics, 2010. 108(8). 31. Ko, S.W., et al., Low Temperature Crystallization of Metastable Nickel Manganite Spinel Thin Films. Journal of the American Ceramic Society, 2012. 95(8): p. 2562-2567. 32. Kang, J.E., et al., LaNiO3 conducting particle dispersed NiMn2O4 nanocomposite NTC thermistor thick films by aerosol deposition. Journal of Alloys and Compounds, 2012. 534: p. 70-73. 33. Schulze, H., et al., Synthesis, phase characterization, and properties of chemical solution-deposited nickel manganite thermistor thin films. Journal of the American Ceramic Society, 2009. 92(3): p. 738-744. 34. Ryu, J., et al., Highly dense and nanograined NiMn2O4 negative temperature coefficient thermistor thick films fabricated by aerosol-deposition. Journal of the American Ceramic Society, 2009. 92(12): p. 3084-3087. 35. Kadam, L.D. and P.S. Patil, Studies on electrochromic properties of nickel oxide thin films prepared by spray pyrolysis technique. Solar Energy Materials and Solar Cells, 2001. 69(4): p. 361-369. 36. Hotovy, I., et al., Deposition and properties of nickel oxide films produced by DC reactive magnetron sputtering. Vacuum, 1998. 51(2): p. 157-160. 37. Urbano, A., et al., Electrochromism in lithiated nickel oxide films deposited by rf sputtering. Electrochimica Acta, 2001. 46(13-14): p. 2269-2273. 38. Rubin, M., et al., Electrochromic lithium nickel oxide by pulsed laser deposition and sputtering. Solar Energy Materials and Solar Cells, 1998. 54(1-4): p. 59-66. 39. Barboux, P., J.M. Tarascon, and F.K. Shokoohi, The use of acetates as precursors for the low-temperature synthesis of LiMn2O4 and LiCoO2 intercalation compounds. Journal of Solid State Chemistry, 1991. 94(1): p. 185-196. 40. Lin, S.P., et al., Crystallization mechanism of LiNiO2 synthesized by Pechini method. Journal of Crystal Growth, 2001. 226(1): p. 148-157. 41. Patterson, A.L., The Scherrer formula for x-ray particle size determination. Physical Review, 1939. 56(10): p. 978-982. 42. Gao, B., et al., Nickel oxide coated on ultrasonically pretreated carbon nanotubes for supercapacitor. Journal of Solid State Electrochemistry, 2009. 13(8): p. 1251-1257. 43. Ahn, B.Y., et al., Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science, 2009. 323(5921): p. 1590-1593. 44. Hernandez, N., et al., Surface behavior of nickel powders in aqueous suspensions. Journal of Physical Chemistry B, 2005. 109(10): p. 4470-4474. 45. Kanungo, J., H. Saha, and S. Basu, Pd sensitized porous silicon hydrogen sensor-Influence of ZnO thin film. Sensors and Actuators B-Chemical, 2010. 147(1): p. 128-136. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61685 | - |
dc.description.abstract | 首先以有機金屬分解墨水噴製鋰鎳氧化物薄膜。將前驅物氫氧化鎳與氫氧化鋰溶解於醋酸水溶液中,並使用壓電式噴墨印機將墨水沉積在石英基材上。液膜在經過500 °C高溫燒結後,所形成的氧化物薄膜中含有Ni2O3,這使得薄膜電阻率降低許多。此外,鋰鎳氧化物薄膜的電阻率對溫度的變化會遵循Arrhenius關係式,其中的活化能約為0.38 eV,非常適合用作溫度感測的材料。不過,製程中的液膜燒結程序,溫度高達500°C,限制了基材的選擇。若要在低溫下進行薄膜製程,便得先出氧化鎳粉末。
接著,為了避免繁複的參雜程序,改以碳黑作為摻雜物來降低氧化鎳的電阻率。利用化學沉澱形成的Ni(OH)2/CB粉前驅物僅需經過300°C的燒結程序便能夠製備出NiO/CB複合物,在溫度範圍50至200°C之間,其B值大於4000 K,對溫度的敏感度極高,也十分適合用作溫度感測材料,與溶劑混合成膠即可進行塗佈作業。不過,由於合成的複合物粉末是經由人工研磨而得,其粒徑過大,無法用於噴墨印刷系統。 最終則是以奈米粒子墨水噴製氧化鎳薄膜。藉由pH值的調整將市售的氧化鎳奈米粒子穩定地懸浮於10 vol%的乙二醇水溶液,再利用壓電式噴墨印機將墨水沉積在玻璃基材上。液膜僅需經過200°C的後續熱處理,便會於玻璃基材上沉積成氧化鎳薄膜,因此,相較於有機金屬分解墨水的製程,此方法能夠應用至更廣泛的基材。此研究所製作的溫度感測元件不僅具有極高的敏感度(於溫度範圍50至200°C之間的B值為4544 K),同時還具有極短的反應時間(<1秒鐘)。 | zh_TW |
dc.description.abstract | In this research, the negative temperature coefficients (NTC) of resistance of nickel oxide and nickel oxide based materials were investigated and nickel oxide micro temperature sensing arrays were fabricated via inkjet printing technology.
First, to create conductive nickel oxide micro patterns with metal-organic decomposition inks, nickel/lithium hydroxides dissolved in acetic acid were printed on quartz plates. After thermal pyrolysis at 500°C, the existence of Ni2O3 was observed in the synthesized thin films and contributes to better electrical conductivity. The synthesized thin films are promising materials for temperature sensing applications due to the high activation energy of 0.38 eV for conduction. However, the 500°C sintering process limited the choice of substrates. In order to fabricate nickel oxide thin films at lower temperature, nickel oxide based powders supposed to be synthesized on priority. To prevent complicated dopant formulations and sintering processes, carbon black was used as the dopant to increase the conductivity of nickel oxide. The NiO/CB composites with a large temperature coefficient of resistance (TCR) were prepared by a chemical precipitation followed by thermal annealing. After dispersed in solvents, the NiO/CB composite gels can be applied to thin film deposition. In the range of 50 to 200°C, the deposit composites possessed high temperature sensitivity with B-values more than 4000 K. Nevertheless, the composite powders can’t be used in inkjet printing system because of micro scale sizes. Finally, micro NiO thermistor arrays for temperature sensing applications were fabricated with nanoparticle inks. The NiO nanoparticles were well suspended in 10 vol% EG aqueous solution by adjusting the pH value and inkjet-printed on glass substrates. Nickel oxide thin films were deposited on the glass substrate after a thermal treatment only at 200°C. Compared to processes with metal-organic decomposition inks, this process can be applied to more substrates. The fabricated temperature sensing elements not only have a great temperature sensitivity with B-values of 4544 K but also a short response time less than 1 second. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T13:09:34Z (GMT). No. of bitstreams: 1 ntu-102-R00524055-1.pdf: 2800419 bytes, checksum: b025704c8af9ddbbc454b6bc7c064d18 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 誌謝 I
摘要 II 英文摘要 III 目錄 V 圖目錄 VII 表目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究目的 1 1.3 論文架構 2 第二章 理論基礎與文獻回顧 4 2.1 溫度感測陣列 4 2.2 噴墨印刷技術 5 2.2.1 噴墨印刷機 6 2.2.2 墨水 7 2.3 溫度感測器 8 2.4 氧化鎳 11 第三章 以有機金屬分解墨水噴塗摻雜鋰的氧化物薄膜 15 3.1 實驗方法 15 3.1.1 墨水的製備與其性質的量測 15 3.1.2 液膜的噴塗與燒結 15 3.1.3 特性分析 16 3.2 實驗結果與討論 16 3.2.1 液膜的燒結溫度 16 3.2.2 薄膜的表面型態 17 3.2.3 薄膜的結構與組成 17 3.2.4 薄膜的電性分析 18 3.3 結論 18 第四章 氧化鎳/碳黑─複合物粉末 25 4.1 實驗方法 25 4.1.1 粉末的製備 25 4.1.2 樣品的製備 26 4.1.3 特性分析 26 4.2 實驗結果與討論 27 4.2.1 前驅物的燒結溫度 27 4.2.2 粉末的結構與組成 27 4.2.3 粉末的表面型態 28 4.2.4 粉末的電性分析 29 4.3 結論 30 第五章 以奈米粒子墨水噴製氧化鎳微溫度感測陣列 38 5.1 實驗方法 38 5.1.1 墨水的製備與其性質的量測 38 5.1.2 溫度感測元件的 39 5.1.3 特性分析 39 5.2 實驗結果與討論 40 5.2.1 氧化鎳墨水的穩定度 40 5.2.2 液膜的燒結溫度 40 5.2.3 溫度感測元件的 41 5.2.4 表面型態 41 5.2.5 電性分析 42 5.3 結論 42 第六章 總結與未來展望 51 6.1 總結 51 6.2 未來展望 52 參考文獻 53 | |
dc.language.iso | zh-TW | |
dc.title | 氧化鎳熱敏電阻於溫度感測微陣列之應用 | zh_TW |
dc.title | Micro-arrays For Temperature Sensing Application With Nickel Oxide Thermistors | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳立仁(Li-Jen Chen),徐振哲(Cheng-Che(Jerry),盧彥文(Yen-Wen Lu),李貫銘(Kuan-Ming Li) | |
dc.subject.keyword | 氧化鎳,熱敏電阻,溫度感測陣列, | zh_TW |
dc.subject.keyword | Nickel Oxide,Thermistor,Temperature Sensing Array, | en |
dc.relation.page | 56 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-07-31 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 2.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。