請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61674完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳瑞北 | |
| dc.contributor.author | Han-Yun Tsai | en |
| dc.contributor.author | 蔡涵昀 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:09:13Z | - |
| dc.date.available | 2013-08-07 | |
| dc.date.copyright | 2013-08-07 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-31 | |
| dc.identifier.citation | [1] W. Heinrich, A. Jentzsch, and G. Baumann, 'Millimeterwave characteristics of flip-chip interconnects for multichip modules,' IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, 1998, pp. 1083–1086.
[2] Jentzsch and W. Heinrich, 'Theory and measurement of flip-chip interconnects for frequencies up to 100GHz,' IEEE Trans. Microwave Theory Tech., vol. 49, pp. 871-877, May, 2001. [3] C. L. Wang, C. T. Hwang, R. B. Wu, and C. H. Chen, 'A resonant flip-chip design with controllable transition band,' IEEE MTT-S Int. Symp. Dig.,vol. 4, Anaheim, CA, USA, Jun. 1999, pp.1423-1426. [4] H. H. M. Ghouz, EL-Badawy EL-Sharawy, 'Finite-difference time-domain analysis in flip chip interconnects with staggered bumps,' IEEE Trans. Microwave Theory Tech., vol. 44, no. 6, June 1996, pp. 960-963. [5] W. Heinrich and A. Jentzsch, 'Optimization of flip-chip interconnects for millimeterwave frequencies,' IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, 1999, pp. 637–640. [6] C. L. Wang and R. B. Wu, 'Modeling and Design for Electrical Performance of Wideband Flip-Chip Transition,' IEEE Transactions on Advanced Packaging, vol. 26, no. 4, November 2003 [7] W. D. Guo, W. N. Chine, C. L. Wang, G. H. Shiue, and R. B. Wu, 'Design of wideband impedance matching for through-hole via transition using ellipse-shaped anti-pad,' IEEE 15th Topical Meeting on Electrical Performance of Electronic Packaging, pp. 245-248, Phoenix, Arizona, USA, October 23-25, 2006 [8] H. H. Jhuang, T. W. Huang, 'Design for electrical performance of wideband multilayer LTCC microstrip-to-stripline transition,' Proceedings of 6th Electronics Packaging Technology Conference EPTC 2004, pp. 506 - 509 [9] J. P. Raskin, G. Gauthier, L. P. Katehi, and G. M. Rebeiz, 'W-Band single-layer vertical transitions,' IEEE Transactions on Microwave Theory and Techniques, vol. 48, pp. 161-164, January 2000. [10] K. Herrick, J. G. Yook, and L. Katehi, 'Microtechnology in the development of three-dimensional circuits,' IEEE Trans. Microwave Theory Tech., vol. 46, pp.1832 -1844 , 1998 [11] C. Ho, L. Fan and K. Chang, 'Slot-Coupled Double-Sided Microstrip Interconnects and Couplers,' IEEE MTT-S Int. Microwave Symp. Dig., pp.1321 -1324 1993 [12] N. E. S. Farrington and S. Iezekiel, 'Design of a non-contact vertical transition for a 3D MM-wave multi-chip module based on shielded membrane supported interconnects,' Progress In Electromagnetics Research B, Vol. 32, 405-423, 2011. [13] R. W. Jackson and D. W. Matolak, 'Surface-to-surface transition via electromagnetic coupling of coplanar waveguide,' IEEE Trans. Microw. Theory Tech., vol. MTT-35, no. 11, pp.1027 -1032 1987 [14] M. Davidovitz, R. A. Sainati, and S. J. Fraasch, 'A noncontact interconnection through an electrically thick ground plate common to two microstrip lines,' IEEE Trans. Microw. Theory Tech., vol. 43, no. 4, pp.753 -759 ,1995 [15] W. Byun, B. S Kim, K. S. Kim, K. C. Eun, M. S. Song, R. Kulke, O. Kersten, G. Mollenbeck, and M. Rittweger, 'Design of vertical transition for 40GHz transceiver module using LTCC technology,' 37th Eur. Microw. Conf., Oct. 2007, pp. 1353-1356 [16] W. J. Byun, B. S. Kim, K. S. Kim, K. C. Eun, M. S. Song, R. Kulke, O. Kersten, G. Mollenbeck, and M. Rittweger, '40 GHz Vertical Transition with a Dual-Mode Cavity for a Low-Temperature Co-fired Ceramic Transceiver Module,' ETRI Journal, vol. 32, no. 2, pp. 195-203, April 2010. [17] B. Noble and J. W. Daniel, Applied Linear Algebra. Englewood Cliffs, NJ: Prentice=Hall, 1988. [18] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc., 2001 [19] 沈澤旻,多層矩型波導帶通濾波器的研製,國立台灣大學碩士論文,2006年6月 [20] H. Uchimura, T. Takenoshita, and M. Fujii, 'Development of a laminated waveguide,' IEEE Trans. Microwave Theory Tech., vol.46, no. 12, pp.2438-2443, Dec. 1998 [21] F. Xu and K. Wu, 'Guided-wave and leakage characteristics of substrate integrated waveguide,' IEEE Trans. Microwave Theory Tech., vol.53, no. 1, pp.66-73, Jan. 2005 [22] D. M. Pozar, Microwave Engineering, 2nd ed., New York: Wiley, 1998. [23] M. J. Hill, R. W. Ziolkowski, and J. Papapolymerou, 'Simulated and measured results from a duroid-based planar MBG cavity resonator filter', IEEE Microw. Guided Wave Lett., vol. 10, no. 12, pp.528 -530, 2000 [24] J. H. Lee, S. Pinel , J. Papapolymerou , J. Laskar and M. M. Tentzeris, 'Low-loss LTCC cavity filters using system-on-package technology at 60 GHz', IEEE Trans. Microw. Theory Tech., vol. 53, no. 12, pp.3817 -3824 , 2005 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61674 | - |
| dc.description.abstract | 本篇論文中提出了三種不同基板間的轉接設計,分別應用於77GHz汽車防撞雷達系統以及60GHz無線通訊系統,在77GHz汽車防撞雷達系統中,轉接設計是在低溫共燒陶瓷基板以及鐵氟龍基板間,而60GHz無線通訊系統則是使用兩種不同的平面電路板進行設計。轉接設計皆是用覆晶結構。
第一種轉接屬於傳統的轉接設計,兩個基板上的微帶線利用錫球直接連接,並使用局部阻抗匹配的方式進行補償設計,此種設計方式的插入損耗大約為1dB並具有寬頻轉接的特性。 第二種則是以微帶線耦合濾波器的概念設計轉接,以微帶線作為共振器,分別放置於兩個基板上,並使用覆晶的方式,讓微帶線產生垂直耦合,達到微帶線耦合濾波器的設計。 第三種轉接是以矩形共振腔及基板合成波導的方式進行濾波器設計,兩個基板分別使用連通柱形成矩形共振腔,而兩基板間的空氣部分為另一矩形共振腔,以三階柴比雪夫濾波器來設計,以開槽的方式進行耦合。利用矩形共振器提高品質因子,使濾波器響應之插入損耗降低,即改善轉接部分的損耗。由於利用濾波器的概念結合轉接的功能,使整個結構具有濾波器的響應,也具有轉接的功能,而且僅剩下濾波器的損耗,亦達到降低轉接損耗的目的。 | zh_TW |
| dc.description.abstract | This thesis proposes three types of transitions between different substrates, applied separately for 77GHz automotive collision avoidance radar systems and 60GHz wireless communication systems. The 77GHz automotive collision avoidance radar system is developed using LTCC and Teflon substrates, while 60GHz wireless communication system is realized in two different printed circuit boards. The transitions are all designed with flip-chip structures.
The first design adopts the traditional flip-chip structure, with the microstrip lines on the substrates directly connected by bumps. Using the idea of locally matching, the method achieves a wideband transition with about 1 dB insertion loss. The second type of transition is designed by the concept of the microstrirp coupled-resonator filter. The microstirp resonators are located on the two types of substrates, while the transition is implemented by the vertically coupling with the coupling coefficients according to the design specification. The third transition is developed by substrate integrated waveguide and the side walls of the cavities are realized by vias. There are three cavities: two different substrates implement two cavities resonators, respectively, while the air between two substrates forms the third resonator. A 3rd-order Chebyshev bandpass response is chosen to validate the design concept, using slots between the cavities as the coupled mechanism. The design further decreases the loss by using the high-Q cavity resonators. Since the design combines transitions and the filter function using the coupled-resonator concept, it can achieve the filtering responses and decrease the overall loss of the system. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:09:13Z (GMT). No. of bitstreams: 1 ntu-102-R00942025-1.pdf: 2061378 bytes, checksum: 2b3e76bde5ee9285c488c8964e3ec3fd (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii ABSTRACT iv 第一章 緒論 1 1.1. 研究動機 1 1.2. 文獻回顧 2 1.3. 章節內容概述 8 第二章 理論 9 2.1. 局部阻抗匹配 9 2.1.1. 局部阻抗匹配補償方式介紹 10 2.1.2. 局部阻抗匹配補償方式設計流程 12 2.2. 濾波器基本理論 13 2.2.1. 柴比雪夫響應 13 2.2.2. 基本耦合理論 14 2.2.3. 外部品質因子理論 20 2.3. 基板合成波導理論 23 2.3.1. 介質矩型波導 24 2.3.2. 介質矩型波導共振腔 26 第三章 不同基板間之微帶線錫球轉接 30 3.1. 設計結構 30 3.1.1. 原始結構 30 3.1.2. 等效電路 31 3.2. 應用於77GHZ汽車防撞雷達系統 31 3.2.1. 設計規格 32 3.2.2. 設計結構與等效電路 33 3.2.3. 設計參數分析 34 3.2.4. 設計結果 41 3.3. 應用於60GHZ無線通訊系統 45 3.3.1. 設計規格 45 3.3.2. 設計結構與等效電路 46 3.3.3. 設計參數分析 47 3.3.4. 設計結果 50 第四章 不同基板間之微帶線耦合濾波轉接 52 4.1. 設計結構 52 4.1.1. 柴比雪夫低通濾波器原型 52 4.1.2. 耦合結構 55 4.1.3. 饋入結構 56 4.2. 應用於77GHZ汽車防撞雷達系統 57 4.2.1. 設計規格 57 4.2.2. 二階微帶線耦合濾波轉接 58 4.2.3. 三階微帶線耦合濾波轉接 62 4.3. 應用於60GH無線通訊系統 65 4.3.1. 設計規格 66 4.3.2. 二階微帶線耦合濾波轉接 66 4.3.3. 三階微帶線耦合濾波轉接 69 4.3.4. 三階微帶線耦合濾波轉接之實作與量測 72 第五章 不同基板間之基板合成波導濾波轉接 77 5.1. 設計結構 77 5.1.1. 耦合結構 79 5.1.2. 饋入結構 80 5.2. 設計參數分析 82 5.2.1. 設計規格 82 5.2.2. 耦合係數與外部品質因子 83 5.2.3. 設計結果 85 5.2.4. 無負載品質因子 86 第六章 結論 88 參考文獻 92 | |
| dc.language.iso | zh-TW | |
| dc.subject | 基板合成波導 | zh_TW |
| dc.subject | 濾波轉接 | zh_TW |
| dc.subject | 耦合濾波器 | zh_TW |
| dc.subject | 覆晶 | zh_TW |
| dc.subject | 低溫共燒陶瓷 | zh_TW |
| dc.subject | Low-Temperature Co-fire Ceramic | en |
| dc.subject | Coupled-resonator filter | en |
| dc.subject | Flip-chip | en |
| dc.subject | Substrate integrated waveguide | en |
| dc.subject | Filtering transition | en |
| dc.title | 使用局部阻抗匹配及濾波器設計之毫米波頻段覆晶轉接 | zh_TW |
| dc.title | Millimeter wave flip-chip transitions by locally matching and filtering design | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王蒼容,洪子聖,涂文化,盧信嘉 | |
| dc.subject.keyword | 覆晶,耦合濾波器,濾波轉接,基板合成波導,低溫共燒陶瓷, | zh_TW |
| dc.subject.keyword | Flip-chip,Coupled-resonator filter,Filtering transition,Substrate integrated waveguide,Low-Temperature Co-fire Ceramic, | en |
| dc.relation.page | 93 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-01 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 2.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
