請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61673完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 管希聖(Hsi-Sheng Goan) | |
| dc.contributor.author | Yi Chou | en |
| dc.contributor.author | 周宜 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:09:11Z | - |
| dc.date.available | 2015-08-09 | |
| dc.date.copyright | 2013-08-09 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-01 | |
| dc.identifier.citation | [1] Presentation file of viatcheslav dobrovitski: downloaded from
http : //www.google.com.tw/url?sa = t&rct = j&q = Dobrovitski_QEC11source = web&cd = 1&cad = rja&ved = 0CCwQFjAA&url = http%3A%2F%2Fqserver. usc.edu%2Fqec11%2Fslides%2FDobrovitski_QEC11.ppt&ei = 9QjYUbH1GsP 4kAWJ84HYAQ&usg = AFQjCNFQ − a9LyS1tropYGNGJ52vTe70onw. [2] M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science, 316(5829):1312--1316, 2007. [3] J. H. Shim, I. Niemeyer, J. Zhang, and D. Suter. Room-temperature high-speed nuclear-spin quantum memory in diamond. Phys. Rev. A, 87:012301, Jan 2013. [4] Gopalakrishnan Balasubramanian, Philipp Neumann, Daniel Twitchen, Matthew Markham, Roman Kolesov, Norikazu Mizuochi, Junichi Isoya, Jocelyn Achard, Johannes Beck, Julia Tissler, Vincent Jacques, Philip R. Hemmer, Fedor Jelezko, and Jorg Wrachtrup. Ultralong spin coherence time in isotopically engineered diamond. Nat Mater, 8(5):383--387, May 2009. [5] A. Sporl, T. Schulte-Herbruggen, S. J. Glaser, V. Bergholm, M. J. Storcz, J. Ferber, and F. K. Wilhelm. Optimal control of coupled josephson qubits. Phys. Rev. A, 75:012302, Jan 2007. [6] Simone Montangero, Tommaso Calarco, and Rosario Fazio. Robust optimal quantum gates for josephson charge qubits. Phys. Rev. Lett., 99:170501, Oct 2007. [7] P. Rebentrost, I. Serban, T. Schulte-Herbruggen, and F. K. Wilhelm. Optimal control of a qubit coupled to a non-markovian environment. Phys. Rev. Lett., 102:090401, Mar 2009. [8] Bin Hwang and Hsi-Sheng Goan. Optimal control for non-markovian open quantum systems. Phys. Rev. A, 85:032321, Mar 2012. [9] Ignacio R. Sola, Jesus Santamaria, and David J. Tannor. Optimal control of multiphoton excitation:??a black box or a flexible toolkit? The Journal of Physical Chemistry A, 102(23):4301--4309, 1998. [10] Shlomo E. Sklarz and David J. Tannor. Loading a bose-einstein condensate onto an optical lattice: An application of optimal control theory to the nonlinear schrodinger equation. Phys. Rev. A, 66:053619, Nov 2002. [11] Reuven Eitan, Michael Mundt, and David J. Tannor. Optimal control with accelerated convergence: Combining the krotov and quasi-newton methods. Phys. Rev. A, 83:053426, May 2011. [12] Jose P. Palao and Ronnie Kosloff. Optimal control theory for unitary transformations. Phys. Rev. A, 68:062308, Dec 2003. [13] H.J. Carmichael. Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations. Physics and Astronomy Online Library. Springer, 1998. [14] H.P. Breuer and F. Petruccione. The Theory of Open Quantum Systems. Oxford University Press on Demand, 2002. [15] Tatsuro Yuge, Susumu Sasaki, and Yoshiro Hirayama. Measurement of the noise spectrum using a multiple-pulse sequence. Phys. Rev. Lett., 107:170504, Oct 2011. [16] M. Wenin and W. Potz. Minimization of environment-induced decoherence in quantum subsystems and application to solid-state-based quantum gates. Phys. Rev. B, 78:165118, Oct 2008. [17] Rogerio Sousa. Electron spin as a spectrometer of nuclear-spin and other fluctuations. In Marco Fanciulli, editor, Electron Spin Resonance and Related Phenomena in Low-Dimensional Structures, volume 115 of Topics in Applied Physics, pages 183--220. Springer Berlin Heidelberg, 2009. [18] Christoph Meier and David J. Tannor. Non-markovian evolution of the density operator in the presence of strong laser fields. The Journal of Chemical Physics, 111:3365, 1999. [19] Sven Welack, Michael Schreiber, and Ulrich Kleinekathofer. The influence of ultrafast laser pulses on electron transfer in molecular wires studied by a non-markovian density-matrix approach. The Journal of Chemical Physics, 124(4):044712, 2006. [20] Ulrich Kleinekathofer. Non-markovian theories based on a decomposition of the spectral density. The Journal of Chemical Physics, 121(6):2505--2514, 2004. [21] R. Roloff, M. Wenin, and W. Potz. Optimal control for open quantum systems: Qubits and quantum gates. Journal of Computational and Theoretical Nanoscience, 6(8):1837--1863, 2009. [22] O. Astafiev, Yu. A. Pashkin, Y. Nakamura, T. Yamamoto, and J. S. Tsai. Quantum noise in the josephson charge qubit. Phys. Rev. Lett., 93:267007, Dec 2004. [23] L. Hartmann, J. Calsamiglia, W. Dur, and H.-J. Briegel. Spin gases as microscopic models for non-markovian decoherence. Phys. Rev. A, 72:052107, Nov 2005. [24] Robert Roloff and Walter Potz. Time-optimal performance of josephson charge qubits: A process tomography approach. Phys. Rev. B, 79:224516, Jun 2009. [25] Frederik F Floether, Pierre de Fouquieres, and Sophie G Schirmer. Robust quantum gates for open systems via optimal control: Markovian versus non-markovian dynamics. New Journal of Physics, 14(7):073023, 2012. [26] Matthew Grace, Constantin Brif, Herschel Rabitz, Ian A Walmsley, Robert L Kosut, and Daniel A Lidar. Optimal control of quantum gates and suppression of decoherence in a system of interacting two-level particles. Journal of Physics B: Atomic, Molecular and Optical Physics, 40(9):S103, 2007. [27] Matthew D. Grace, Constantin Brif, Herschel Rabitz, Daniel A. Lidar, Ian A. Walmsley, and Robert L. Kosut. Fidelity of optimally controlled quantum gates with randomly coupled multiparticle environments. Journal of Modern Optics, 54(16-17): 2339--2349, 2007. [28] Ruixue Xu, YiJing Yan, Yukiyoshi Ohtsuki, Yuichi Fujimura, and Herschel Rabitz. Optimal control of quantum non-markovian dissipation: Reduced liouville-space theory. The Journal of Chemical Physics, 120(14):6600--6608, 2004. [29] Constantin Brif Herschel Rabitz Robert L. Kosut, Matthew Grace. On the distance between unitary propagators of quantum systems of differing dimensions. 2006. [30] G. de Lange, Z. H. Wang, D. Riste, V. V. Dobrovitski, and R. Hanson. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science, 330(6000): 60--63, 2010. [31] R. Hanson, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom. Coherent dynamics of a single spin interacting with an adjustable spin bath. Science, 320(5874):352--355, 2008. [32] Zhi-Hui Wang, G. de Lange, D. Riste, R. Hanson, and V. V. Dobrovitski. Comparison of dynamical decoupling protocols for a nitrogen-vacancy center in diamond. Phys. Rev. B, 85:155204, Apr 2012. [33] Zhi-Hui Wang and Susumu Takahashi. Spin decoherence and electron spin bath noise of a nitrogen-vacancy center in diamond. Phys. Rev. B, 87:115122, Mar 2013. [34] Gijs de Lange, Toeno van der Sar, Machiel Blok, Zhi-Hui Wang, Viatcheslav Dobrovitski, and Ronald Hanson. Controlling the quantum dynamics of a mesoscopic spin bath in diamond. Sci. Rep., 2:--, April 2012. [35] N. Bar-Gill, L.M. Pham, C. Belthangady, D. Le Sage, P. Cappellaro, J.R. Maze, M.D. Lukin, A. Yacoby, and R. Walsworth. Suppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems. Nat Commun, 3:858--, May 2012. [36] L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science, 314(5797):281--285, 2006. [37] P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin. Room-temperature quantum bit memory exceeding one second. Science, 336(6086): 1283--1286, 2012. [38] Abdelghani Laraoui, Jonathan S. Hodges, Colm A. Ryan, and Carlos A. Meriles. Diamond nitrogen-vacancy center as a probe of random fluctuations in a nuclear spin ensemble. Phys. Rev. B, 84:104301, Sep 2011. [39] Nan Zhao, Zhen-Yu Wang, and Ren-Bao Liu. Anomalous decoherence effect in a quantum bath. Phys. Rev. Lett., 106:217205, May 2011. [40] Nan Zhao, Sai-Wah Ho, and Ren-Bao Liu. Decoherence and dynamical decoupling control of nitrogen vacancy center electron spins in nuclear spin baths. Phys. Rev. B, 85:115303, Mar 2012. [41] Nan Zhao, Jian-Liang Hu, Sai-Wah Ho, Jones T. K. Wan, and LiuR. B. Atomic-scale magnetometry of distant nuclear spin clusters via nitrogen-vacancy spin in diamond. Nat Nano, 6(4):242--246, April 2011. [42] Wen Yang and Ren-Bao Liu. Quantum many-body theory of qubit decoherence in a finite-size spin bath. Phys. Rev. B, 78:085315, Aug 2008. [43] Wen Yang and Ren-Bao Liu. Quantum many-body theory of qubit decoherence in a finite-size spin bath. ii. ensemble dynamics. Phys. Rev. B, 79:115320, Mar 2009. [44] W. M. Witzel and S. Das Sarma. Quantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quantum computer architectures: Spectral diffusion of localized electron spins in the nuclear solid-state environment. Phys. Rev. B, 74:035322, Jul 2006. [45] C. A. Ryan, J. S. Hodges, and D. G. Cory. Robust decoupling techniques to extend quantum coherence in diamond. Phys. Rev. Lett., 105:200402, Nov 2010. [46] Wayne M. Witzel, Malcolm S. Carroll, Łukasz Cywiński, and S. Das Sarma. Quantum decoherence of the central spin in a sparse system of dipolar coupled spins. Phys. Rev. B, 86:035452, Jul 2012. [47] Łukasz Cywiński, Wayne M. Witzel, and S. Das Sarma. Pure quantum dephasing of a solid-state electron spin qubit in a large nuclear spin bath coupled by long-range hyperfine-mediated interactions. Phys. Rev. B, 79:245314, Jun 2009. [48] T. Carle, H. J. Briegel, and B. Kraus. Decoherence of many-body systems due to many-body interactions. Phys. Rev. A, 84:012105, Jul 2011. [49] J. R. Maze, J. M. Taylor, and M. D. Lukin. Electron spin decoherence of single nitrogen-vacancy defects in diamond. Phys. Rev. B, 78:094303, Sep 2008. [50] Emmanuel I. Rashba. Theory of electric dipole spin resonance in quantum dots: Mean field theory with gaussian fluctuations and beyond. Phys. Rev. B, 78:195302, Nov 2008. [51] V. V. Dobrovitski, A. E. Feiguin, R. Hanson, and D. D. Awschalom. Decay of rabi oscillations by dipolar-coupled dynamical spin environments. Phys. Rev. Lett., 102:237601, Jun 2009. [52] A. Bermudez, F. Jelezko, M. B. Plenio, and A. Retzker. Electron-mediated nuclear-spin interactions between distant nitrogen-vacancy centers. Phys. Rev. Lett., 107:150503, Oct 2011. [53] J-M Cai, B Naydenov, R Pfeiffer, L P McGuinness, K D Jahnke, F Jelezko, M B Plenio, and A Retzker. Robust dynamical decoupling with concatenated continuous driving. New Journal of Physics, 14(11):113023, 2012. [54] T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski. Decoherenceprotected quantum gates for a hybrid solid-state spin register. Nature, 484(7392): 82--86, April 2012. [55] Shimon Kolkowitz, Quirin P. Unterreithmeier, Steven D. Bennett, and Mikhail D. Lukin. Sensing distant nuclear spins with a single electron spin. Phys. Rev. Lett., 109:137601, Sep 2012. [56] Hsi-Sheng Goan, Chung-Chin Jian, and Po-Wen Chen. Non-markovian finitetemperature two-time correlation functions of system operators of a pure-dephasing model. Phys. Rev. A, 82:012111, Jul 2010. [57] P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup. Multipartite entanglement among single spins in diamond. Science, 320(5881):1326--1329, 2008. [58] F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett., 93:130501, Sep 2004. [59] V. Jacques, P. Neumann, J. Beck, M. Markham, D. Twitchen, J. Meijer, F. Kaiser, G. Balasubramanian, F. Jelezko, and J. Wrachtrup. Dynamic polarization of single nuclear spins by optical pumping of nitrogen-vacancy color centers in diamond at room temperature. Phys. Rev. Lett., 102:057403, Feb 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61673 | - |
| dc.description.abstract | 量子邏輯閘(Quantum Gate)能驅使一系列完備的量子態基底作期望的轉換,並且是實現量子計算在真實物理上的基本
元件之一。 許多量子裝置被考慮用來實現量子計算的執行。,其中有鑽石中氮原子空缺中心(Nitrogen-Vacancy Center)的自旋(Spin),其相干性(Coherence)是很長的時間,即使在室溫下也可完成量子操作。所以,它成為可信賴在實際上執行量子計算的候選之一。然而與環境耦合所造成的去相干性(Decoherence)妨礙實現高精確度(Fidelity)的量子邏輯閘,故如何去克服其去相干性是現今主要的課題之一。最佳化控制方法(Optimal Control Method)是其中一個有效地抑止去相干性的工具,並且完成高精準度的量子邏輯閘。在本論文中,我們先介紹科羅多夫的最佳化控制方法( Krotov Optimization Method),它是一個最有效率且恆定的計算方法用於求解最佳化控制問題。再來,我們會呈現含時變外加控制的非馬可夫開放系統(Non-Markovian Open Quantum System)的主運動方程(Quantum Master Equation)。接著利用科羅多夫的最佳化控制方法來實行鑽石中氮原子空缺中心量子邏輯閘,我們得到的控制脈衝可實現高精準度X-gate,Z-gate以及CNOT-gate,其誤差約為10^{-4}。 | zh_TW |
| dc.description.abstract | The ability to steer a complete set of basis quantum states towards a desired transformation, often referred to as a quantum gate, is one of the essentiality for physical implementation of quantum computing. Many quantum devices are considered and implemented to realize quantum gates. The spin of a nitrogen-vacancy (NV) center in diamond has long coherence times and reliability of quantum operations even at room temperature. Therefore, it becomes a promising candidate for a practical implementation of quantum computing. One of the key challenges now is to overcome the decoherence induced by the uncontrolled couplings to the surrounding environment, preventing high-fidelity gate performance. Optimal control method is one of the effective strategy to dynamically suppress decoherence and to achieve the high-fidelity quantum gates. In this thesis, we first introduce the Krotov optimization method which is one of the most effective and universal computation methods for solving optimal control problems. Then we present the quantum master equation approach for non-Markovian open quantum systems with time-dependent external control. The Krotov based optimal method is then used to implement quantum logical gates for spins of a NV center in diamond, interacting with nearby noise qubits and a Non-Markovian bath. We find the control pulses to achieve high-fidelity X,Z and CNOT gates with errors about 10^{-4} for the NV center. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:09:11Z (GMT). No. of bitstreams: 1 ntu-102-R00222008-1.pdf: 2442908 bytes, checksum: 7e5898722f049409e0b4e3723bba0dc5 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 致謝i
中文摘要ii Abstract iii Contents iv List of Figures vii 1 Introduction 1 2 Krotov method of optimization 4 2.1 Description of problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Definition of utility constructs . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Iterative algorithm to improve the objective . . . . . . . . . . . . . . . . 6 2.3.1 An iterative algorithm of Krotov method . . . . . . . . . . . . . 6 2.3.2 Monotonically convergence of Krotov method . . . . . . . . . . 7 2.4 Construction of . to first order in x . . . . . . . . . . . . . . . . . . . . . 8 2.5 Example of Krotov method . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.5.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.5.2 A linear problem . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 The dynamics of open quantum system 13 3.1 Master equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.1 Density matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.2 Derivation of the master equation . . . . . . . . . . . . . . . . . 14 3.1.3 Born and Markov Approximation . . . . . . . . . . . . . . . . . 16 3.2 Technique of auxiliary density matrices . . . . . . . . . . . . . . . . . . 19 3.2.1 Model and noise spectrum . . . . . . . . . . . . . . . . . . . . . 19 3.2.2 Time-nonlocal master equation . . . . . . . . . . . . . . . . . . . 21 3.2.3 Time-local Master equation . . . . . . . . . . . . . . . . . . . . 23 4 Optimal control for quantum gate 26 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 The closed composite-system . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2.1 The model system . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2.2 The measure of gate error . . . . . . . . . . . . . . . . . . . . . 29 4.2.3 Optimal control . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2.4 The case of one noise qubit . . . . . . . . . . . . . . . . . . . . . 33 4.2.5 The case of two noise qubits . . . . . . . . . . . . . . . . . . . . 34 4.3 The open composite-system . . . . . . . . . . . . . . . . . . . . . . . . 36 4.3.1 The model system . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.3.2 Modified measure of gate error . . . . . . . . . . . . . . . . . . . 38 4.3.3 The result of optimal control . . . . . . . . . . . . . . . . . . . . 39 5 The nitrogen-vacancy center in diamond 42 5.1 Decoherence of an NV spin caused by the spin bath . . . . . . . . . . . . 42 5.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.1.2 Model system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.1.3 Simulation of the decoherence . . . . . . . . . . . . . . . . . . . 45 5.2 Single-qubit gates with the NV center . . . . . . . . . . . . . . . . . . . 48 5.2.1 Closed composite-system . . . . . . . . . . . . . . . . . . . . . . 48 5.2.2 Optimal control for single-qubit gates . . . . . . . . . . . . . . . 49 5.2.3 Discussion of performing Z-gate and X-gate . . . . . . . . . . . . 50 5.3 Two-qubit gate with a NV center in diamond . . . . . . . . . . . . . . . 53 5.3.1 Open Composite-system . . . . . . . . . . . . . . . . . . . . . . 53 5.3.2 Radio frequency π pulse . . . . . . . . . . . . . . . . . . . . . . 55 5.3.3 Optimal control for CNOT gate . . . . . . . . . . . . . . . . . . 57 5.3.4 Result and discussion . . . . . . . . . . . . . . . . . . . . . . . . 58 6 Conclusion 66 Appendix A: The explicit form of dK/dU 68 Bibliography 71 | |
| dc.language.iso | en | |
| dc.subject | 非馬可夫開放系統 | zh_TW |
| dc.subject | 最佳化控制 | zh_TW |
| dc.subject | 科羅多夫 | zh_TW |
| dc.subject | 量子邏輯閘 | zh_TW |
| dc.subject | 氮原子空缺中心 | zh_TW |
| dc.subject | 去相干性 | zh_TW |
| dc.subject | Krotov | en |
| dc.subject | Non-Markovian Open Quantum System | en |
| dc.subject | Decoherence | en |
| dc.subject | Nitrogen-Vacancy Center | en |
| dc.subject | Quantum Gate | en |
| dc.subject | Optimal Control Method | en |
| dc.title | 鑽石中氮原子空缺中心量子邏輯閘的最佳化控制 | zh_TW |
| dc.title | Optimal Control of Quantum Gates for the NV-center in Diamond | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡政達(Jeng-Da Chai),周忠憲(Chung-Hsien Chou) | |
| dc.subject.keyword | 最佳化控制,科羅多夫,量子邏輯閘,氮原子空缺中心,去相干性,非馬可夫開放系統, | zh_TW |
| dc.subject.keyword | Optimal Control Method,Krotov,Quantum Gate,Nitrogen-Vacancy Center,Decoherence,Non-Markovian Open Quantum System, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-01 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 2.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
