請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61665完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 傅立成(Li-Chen Fu) | |
| dc.contributor.author | Ting-En Tseng | en |
| dc.contributor.author | 曾廷恩 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:08:56Z | - |
| dc.date.available | 2018-08-06 | |
| dc.date.copyright | 2013-08-06 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-01 | |
| dc.identifier.citation | [1] X. Zhang, J. Yan, S. Feng, L. Zhen, Y. Dong, and S. Z. Li, 'Water Filling: Unsupervised People Counting via Vertical Kinect Sensor,' in Ninth IEEE International Conference on Advanced Video and Signal-Based Surveillance, 2012, pp. 215-220.
[2] X. Jia, H. Lu, and M.-H. Yang, 'Visual tracking via adaptive structural local sparse appearance model,' in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 1822-1829. [3] S. Hare, A. Saffari, and P. H. S. Torr, 'Struck: Structured output tracking with kernels,' in IEEE International Conference on Computer Vision (ICCV), 2011, pp. 263-270. [4] B. Babenko, M.-H. Yang, and S. Belongie, 'Robust Object Tracking with Online Multiple Instance Learning,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, pp. 1619-1632, 2011. [5] S. Wang, H. Lu, F. Yang, and M.-H. Yang, 'Superpixel tracking,' in IEEE International Conference on Computer Vision (ICCV), 2011, pp. 1323-1330. [6] D. B. Yang, H. H. Gonzalez-Banos, and L. J. Guibas, 'Counting people in crowds with a real-time network of simple image sensors,' in Ninth IEEE International Conference on Computer Vision, 2003, pp. 122-129 vol.1. [7] A. F. Bobick and J. W. Davis, 'The recognition of human movement using temporal templates,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, pp. 257-267, 2001. [8] R. Kelley, M. Nicolescu, A. Tavakkoli, C. King, and G. Bebis, 'Understanding human intentions via Hidden Markov Models in autonomous mobile robots,' in 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI), 2008, pp. 367-374. [9] X. Lu, C.-C. Chen, and J. K. Aggarwal, 'View invariant human action recognition using histograms of 3D joints,' in IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2012, pp. 20-27. [10] M. Cristani, V. Murino, and A. Vinciarelli, 'Socially intelligent surveillance and monitoring: Analysing social dimensions of physical space,' in IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2010, pp. 51-58. [11] C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland, 'Pfinder: real-time tracking of the human body,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, pp. 780-785, 1997. [12] W. Hu, T. Tan, L. Wang, and S. Maybank, 'A survey on visual surveillance of object motion and behaviors,' IEEE Transactions on Systems, Man, and Cybernetics, vol. 34, pp. 334-352, 2004. [13] B. Benfold and I. Reid, 'Stable multi-target tracking in real-time surveillance video,' in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 3457-3464. [14] X. Lu, C.-C. Chen, and J. K. Aggarwal, 'Human detection using depth information by Kinect,' in IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2011, pp. 15-22. [15] O. Arif, W. Daley, P. Vela, J. Teizer, and J. Stewart, 'Visual tracking and segmentation using Time-of-Flight sensor,' in 17th IEEE International Conference on Image Processing (ICIP), 2010, pp. 2241-2244. [16] S. Ikemura and H. Fujiyoshi, 'Real-Time Human Detection Using Relational Depth Similarity Features,' in Computer Vision – ACCV 2010. vol. 6495, ed, 2011, pp. 25-38. [17] L. Snidaro, C. Micheloni, and C. Chiavedale, 'Video security for ambient intelligence,' IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 35, pp. 133-144, 2005. [18] V. Reilly, H. Idrees, and M. Shah, 'Detection and Tracking of Large Number of Targets in Wide Area Surveillance,' in Computer Vision – ECCV. vol. 6313, ed, 2010, pp. 186-199. [19] A. Bevilacqua, L. Di Stefano, and P. Azzari, 'People Tracking Using a Time-of-Flight Depth Sensor,' in IEEE International Conference on Video and Signal Based Surveillance, 2006, pp. 89-89. [20] R. Tanner, M. Studer, A. Zanoli, and A. Hartmann, 'People Detection and Tracking with TOF Sensor,' in IEEE Fifth International Conference on Advanced Video and Signal Based Surveillance, 2008, pp. 356-361. [21] Y.-S. Chen, 'Efficient Consistent Labeling in Visual Surveillance System with Multiple Cameras,' Master Thesis, Institute of Electrical Engineering, National Taiwan University, R.O.C., 2010 [22] C.-M. Huang and L.-C. Fu, 'Multitarget Visual Tracking Based Effective Surveillance With Cooperation of Multiple Active Cameras,' IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 41, pp. 234-247, 2011. [23] Z. Licong, J. Sturm, D. Cremers, and L. Dongheui, 'Real-time human motion tracking using multiple depth cameras,' in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2012, pp. 2389-2395. [24] S.-I. Yu, Y. Yang, and A. Hauptmann, 'Harry Potter's Marauder's Map Localizing and Tracking Multiple Persons-of-Interest by Nonnegative Discretization,' IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2013. [25] Z. Wu, N. I. Hristov, T. L. Hedrick, T. H. Kunz, and M. Betke, 'Tracking a large number of objects from multiple views,' in IEEE 12th International Conference on Computer Vision, 2009, pp. 1546-1553. [26] R. B. Rusu and S. Cousins, '3D is here: Point Cloud Library (PCL),' in IEEE International Conference on Robotics and Automation (ICRA), 2011, pp. 1-4. [27] F. Pomerleau, M. Liu, F. Colas, and R. Siegwart, 'Challenging data sets for point cloud registration algorithms,' The International Journal of Robotics Research, vol. 31, pp. 1705-1711, 2012. [28] M. Isard and A. Blake, 'CONDENSATION—Conditional Density Propagation for Visual Tracking,' International Journal of Computer Vision, vol. 29, pp. 5-28, 1998. [29] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, 'Novel approach to nonlinear/non-Gaussian Bayesian state estimation,' Radar and Signal Processing, IEE Proceedings F, vol. 140, pp. 107-113, 1993. [30] S. Maskell and N. Gordon, 'A tutorial on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking,' in Target Tracking: Algorithms and Applications (Ref. No. 2001/174), IEE, 2001, pp. 2/1-2/15 vol.2. [31] A. Doucet, S. Godsill, and C. Andrieu, 'On sequential Monte Carlo sampling methods for Bayesian filtering,' Statistics and Computing, vol. 10, pp. 197-208, 2000. [32] J. Liu and R. Chen, 'Sequential Monte Carlo Methods for Dynamic Systems,' Journal of the American Statistical Association, vol. 93, pp. 1032-1044, 1998. [33] N. Gordon, 'Bayesian methods for tracking,' Ph. D. Thesis, Imperial College, University London, 1994. [34] P. Felzenszwalb and D. Huttenlocher, 'Efficient Graph-Based Image Segmentation,' International Journal of Computer Vision, vol. 59, pp. 167-181, 2004/09/01 2004. [35] L. Haibin and K. Okada, 'Diffusion Distance for Histogram Comparison,' in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006, pp. 246-253. [36] L. Haibin and K. Okada, 'An Efficient Earth Mover's Distance Algorithm for Robust Histogram Comparison,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, pp. 840-853, 2007. [37] C. Stauffer and W. E. L. Grimson, 'Adaptive background mixture models for real-time tracking,' in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999, p. 252 Vol. 2. [38] Y. Jian and J. Odobez, 'Multi-Layer Background Subtraction Based on Color and Texture,' in IEEE Conference on Computer Vision and Pattern Recognition, 2007, pp. 1-8. [39] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati, 'Detecting objects, shadows and ghosts in video streams by exploiting color and motion information,' in 11th International Conference on Image Analysis and Processing, 2001, pp. 360-365. [40] Y. Benezeth, P. M. Jodoin, B. Emile, H. Laurent, and C. Rosenberger, 'Review and evaluation of commonly-implemented background subtraction algorithms,' in 19th International Conference on Pattern Recognition, 2008, pp. 1-4. [41] D. Lowe, 'Distinctive Image Features from Scale-Invariant Keypoints,' International Journal of Computer Vision, vol. 60, pp. 91-110, 2004/11/01 2004. [42] H. Bay, T. Tuytelaars, and L. Gool, 'SURF: Speeded Up Robust Features,' in Computer Vision – ECCV 2006. vol. 3951, ed, 2006, pp. 404-417. [43] C. Harris and M. Stephens, 'A combined corner and edge detector,' In Proc. of Fourth Alvey Vision Conference, pp. 147-151, 1988. [44] L. A. Schwarz, A. Mkhitaryan, D. Mateus, and N. Navab, 'Human skeleton tracking from depth data using geodesic distances and optical flow,' Image and Vision Computing, vol. 30, pp. 217-226, 2012. [45] Y.-F. Kao, Y.-M. Chan, L.-C. Fu, P.-Y. Hsiao, S.-S. Huang, C.-E. Wu, and M.-F. Luo, 'Comparison of granules features for pedestrian detection,' in 15th International IEEE Conference on Intelligent Transportation Systems (ITSC), 2012, pp. 1777-1782. [46] N. Dalal and B. Triggs, 'Histograms of oriented gradients for human detection,' in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, pp. 886-893 vol. 1. [47] S. Belongie, J. Malik, and J. Puzicha, 'Shape Matching and Object Recognition Using Shape Contexts,' IEEE Transaction on Pattern Analyze and Machine Intelligence, vol. 24, pp. 509-522, 2002. [48] A. Mian, M. Bennamoun, and R. Owens, 'On the Repeatability and Quality of Keypoints for Local Feature-based 3D Object Retrieval from Cluttered Scenes,' International Journal of Computer Vision, vol. 89, pp. 348-361, 2010. [49] P. Scovanner, S. Ali, and M. Shah, 'A 3-dimensional sift descriptor and its application to action recognition,' presented at the Proceedings of the 15th international conference on Multimedia, 2007. [50] R. B. Rusu, N. Blodow, and M. Beetz, 'Fast Point Feature Histograms (FPFH) for 3D registration,' in IEEE International Conference on Robotics and Automation, 2009, pp. 3212-3217. [51] D. Comaniciu and P. Meer, 'Mean shift: a robust approach toward feature space analysis,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, pp. 603-619, 2002. [52] Y. Wu, J. Lim, and M.-H. Yang, 'Online Object Tracking: A Benchmark ' Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61665 | - |
| dc.description.abstract | 在這篇論文中,我們提出了創新的理論,硬體設計,以及演算法來描述一個大型的室內監控系統,在天花板上架設多台俯視的深度相機,進而大幅解決傳統監視系統上遮蔽、劇烈燈光變化、相似外觀以及嚴重形變的問題。
我們首先利用影像拼接,同時整合多台相機之間的資訊以及相互地理位置,可適用於大型室內環境。另外,我們也提出了新的背景相減架構,來修正相機中的物體形變,以及得到室內場景中之前景物體。 接下來,我們提出了一個新的人型偵測及追蹤架構。利用圖形的切割法、頭形半球模型以及人型地圖即時偵測人形;此外,我們使用新的影像特徵,基於三維形狀相似度,利用推論之重要性取樣的粒子濾波器追蹤人形。這個架構總共有三項優點 1) 偵測器可以透過一系列的有效過濾,即時挑選出正確的人型,2) 追蹤器和偵測器可以互相補足彼此的缺點,達到系統的強健性以及即時性,3) 追蹤器可以抵抗劇烈的形變以及高度變化。 最後,實驗結果中展示了系統的即時效率以及強健性,我們就人型偵測和影像追蹤兩方面與最先進的演算法比較,就偵測上的準確率及精確度、追蹤上的誤差及追蹤物覆蓋率而言,驗證了整個系統的有效性。 | zh_TW |
| dc.description.abstract | In this thesis, we propose an indoor surveillance system which installs multiple vertical top-view depth cameras to track human shape. This new system leads to a novel framework to solve the traditional challenge of surveillance such as severe pcclusion, similar appearance, illumination change and deformation.
In the first part of the thesis, we analyze the geometric relation between cameras using image stitching and show that our system can better be applied in large indoor surveillance scene. We also propose new background subtraction approach to calibrate camera distortion and extract the foreground objects in the cluttering environment. Second, we propose a new detection and tracking scheme. Several processes including graph-based segmentation, head hemisphere model, and geodesic distance map are cascaded to detect human shape. Moreover, a new shape feature based on 3D diffusion distance is utilized to track human by SIR particle filter. There are three advantages of our framework: 1) The detector can recognize the human shape by a series of strong detector, 2). The detector and tracker can compensate disadvantage of each other to achieve robustness, 3). The tracker can tolerate severe distortion and appearance change. At last, experimental results demonstrate the real-time performance and robustness of our surveillance system. State-of-the-art detection and tracking methods are compared with our detection and tracking algorithm. The precision rate, location error and occlusion rate with respect to ground truth show our algorithms outperform other methods. In summary, this thesis presents several novel and important solutions to track, detect human, and efficiently utilize the high dimension depth data. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:08:56Z (GMT). No. of bitstreams: 1 ntu-102-R00921009-1.pdf: 4042582 bytes, checksum: 8b9225d9c4a0cbc6e5f8e7c94d79f5bf (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 III ABSTRACT IV CONTENTS VI LIST OF FIGURES VIII LIST OF TABLES X CHAPTER 1 INTRODUCTION 1 1.1 Motivation 1 1.2 Related Works 2 1.2.1 Surveillance System 2 1.2.2 Multiple Camera Surveillance 6 1.3 Contribution 8 1.4 Thesis Organization 8 CHAPTER 2 PRELIMINARIES 10 2.1 Bayesian Filter 10 2.1.1 Minimum mean squared error (MMSE) 13 2.1.2 Maximum a posteriori (MAP) 14 2.1.3 Maximum likelihood (ML) 14 2.2 Particle Filter 15 2.2.1 Sequential Importance Sampling (SIS) Particle Filter 16 2.2.2 Resampling and Degeneracy Problem 18 2.2.3 Sampling Importance Resampling (SIR) Particle Filter 19 2.3 Graph-based Segmentation 20 2.4 Diffusion Distance 21 CHAPTER 3 SYSTEM DESIGN AND IMAGE PREPROCESSING 23 3.1 Camera Environment Setting and Initialization 24 3.2 World coordinate mapping 25 3.3 Background Subtraction 26 3.4 Image Stitching using Controlling Points 29 CHAPTER 4 HUMAN DETECTION AND TRACKING METHODOLOGY 33 4.1 Graph-based Segmentation and Head Hemisphere model 34 4.2 Human Detection Using Geodesic Distance 38 4.3 3D Shape Likelihood from Depth Distribution 42 4.4 Human Tracking System 44 4.5 Tracking-by-detection Scheme 48 4.6 System Flow Chart 50 CHAPTER 5 EXPERIMENTAL RESULT 51 5.1 Environmental Description 51 5.1.1 Hardware Specification 52 5.1.2 Software Parameters 52 5.2 Results of Human Detection 54 5.3 Results of Human Tracking 57 5.3.1 Single Person Comparison with RGB camera 59 5.3.2 Single Person Comparison with depth sensor 61 5.3.3 Multiple People Comparison 67 CHAPTER 6 CONCLUSION AND FUTURE WORK 73 6.1 Conclusion 73 6.2 Future Work 74 REFERENCES 76 | |
| dc.language.iso | en | |
| dc.subject | 監控系統 | zh_TW |
| dc.subject | 粒子濾波器 | zh_TW |
| dc.subject | 人型偵測 | zh_TW |
| dc.subject | 影像追蹤 | zh_TW |
| dc.subject | Human Detection | en |
| dc.subject | Particle Filter | en |
| dc.subject | Visual Tracking | en |
| dc.subject | Surveillance System | en |
| dc.title | 利用多台俯視之深度相機進行即時人型偵測與追蹤之大型室內監視系統 | zh_TW |
| dc.title | Real-time People Detection and Tracking for Large Indoor Surveillance Using Multiple Top-view Depth Cameras | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳永耀(Yung-Yaw Chen),連豊力(Feng-Li Lian),陸敬互(Ching-Hu Lu),范欽雄(Chin-Shyurng Fahn) | |
| dc.subject.keyword | 影像追蹤,粒子濾波器,人型偵測,監控系統, | zh_TW |
| dc.subject.keyword | Particle Filter,Visual Tracking,Human Detection,Surveillance System, | en |
| dc.relation.page | 80 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-01 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
