Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61649
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝銘鈞
dc.contributor.authorHung-Jen Huangen
dc.contributor.author黃弘仁zh_TW
dc.date.accessioned2021-06-16T13:08:26Z-
dc.date.available2016-08-09
dc.date.copyright2013-08-09
dc.date.issued2013
dc.date.submitted2013-08-01
dc.identifier.citation[1] Hamouda. Current perspectives of nanoparticles in medical and dental biomaterials. Journal of Biomedical Research. 2012;26.
[2] Qu T, Wang A, Yuan J, Shi J, Gao Q. Preparation and characterization of thermo-responsive amphiphilic triblock copolymer and its self-assembled micelle for controlled drug release. Colloids and surfaces B, Biointerfaces. 2009;72:94-100.
[3] Talelli M, Morita K, Rijcken CJ, Aben RW, Lammers T, Scheeren HW, et al. Synthesis and characterization of biodegradable and thermosensitive polymeric micelles with covalently bound doxorubicin-glucuronide prodrug via click chemistry. Bioconjugate chemistry. 2011;22:2519-30.
[4] Zhang JX, Wang K, Mao ZF, Fan X, Jiang DL, Chen M, et al. Application of liposomes in drug development - focus on gastroenterological targets. International journal of nanomedicine. 2013;8:1325-34.
[5] Mohan P, Rapoport N. Doxorubicin as a molecular nanotheranostic agent: effect of doxorubicin encapsulation in micelles or nanoemulsions on the ultrasound-mediated intracellular delivery and nuclear trafficking. Molecular pharmaceutics. 2010;7:1959-73.
[6] Zhang R, Xiong C, Huang M, Zhou M, Huang Q, Wen X, et al. Peptide-conjugated polymeric micellar nanoparticles for Dual SPECT and optical imaging of EphB4 receptors in prostate cancer xenografts. Biomaterials. 2011;32:5872-9.
[7] Maeda H. The link between infection and cancer: Tumor vasculature, free radicals, and drug delivery to tumors via the EPR effect. Cancer science. 2013.
[8] Wang Z, Humphries B, Xiao H, Jiang Y, Yang C. Epithelial to mesenchymal transition in arsenic-transformed cells promotes angiogenesis through activating beta-catenin-vascular endothelial growth factor pathway. Toxicology and applied pharmacology. 2013.
[9] Ocal H, Arica-Yegin B, Vural I, Goracinova K, Calis S. 5-Fluorouracil-loaded PLA/PLGA PEG-PPG-PEG polymeric nanoparticles: formulation, in vitro characterization and cell culture studies. Drug development and industrial pharmacy. 2013.
[10] Etrych T, Strohalm J, Chytil P, Rihova B, Ulbrich K. Novel star HPMA-based polymer conjugates for passive targeting to solid tumors. Journal of drug targeting. 2011;19:874-89.
[11] Shi X, Gong H, Li Y, Wang C, Cheng L, Liu Z. Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials. 2013;34:4786-93.
[12] Chen Z, Wang Q, Wang H, Zhang L, Song G, Song L, et al. Ultrathin PEGylated W18 O49 Nanowires as a New 980 nm-Laser-Driven Photothermal Agent for Efficient Ablation of Cancer Cells In Vivo. Adv Mater. 2013;25:2095-100.
[13] Gutwein LG, Singh AK, Hahn MA, Rule MC, Knapik JA, Moudgil BM, et al. Fractionated photothermal antitumor therapy with multidye nanoparticles. International journal of nanomedicine. 2012;7:351-7.
[14] Lim CK, Shin J, Lee YD, Kim J, Oh KS, Yuk SH, et al. Phthalocyanine-aggregated polymeric nanoparticles as tumor-homing near-infrared absorbers for photothermal therapy of cancer. Theranostics. 2012;2:871-9.
[15] Yanina IY, Tuchin VV, Navolokin NA, Matveeva OV, Bucharskaya AB, Maslyakova GN, et al. Fat tissue histological study at indocyanine green-mediated photothermal/photodynamic treatment of the skin in vivo. Journal of biomedical optics. 2012;17:058002.
[16] Zhang C, Liu T, Su Y, Luo S, Zhu Y, Tan X, et al. A near-infrared fluorescent heptamethine indocyanine dye with preferential tumor accumulation for in vivo imaging. Biomaterials. 2010;31:6612-7.
[17] Peng CL, Lai PS, Lin FH, Yueh-Hsiu Wu S, Shieh MJ. Dual chemotherapy and photodynamic therapy in an HT-29 human colon cancer xenograft model using SN-38-loaded chlorin-core star block copolymer micelles. Biomaterials. 2009;30:3614-25.
[18] Tang Y, McGoron AJ. Combined effects of laser-ICG photothermotherapy and doxorubicin chemotherapy on ovarian cancer cells. Journal of photochemistry and photobiology B, Biology. 2009;97:138-44.
[19] Shin HC, Cho H, Lai TC, Kozak KR, Kolesar JM, Kwon GS. Pharmacokinetic study of 3-in-1 poly(ethylene glycol)-block-poly(D, L-lactic acid) micelles carrying paclitaxel, 17-allylamino-17-demethoxygeldanamycin, and rapamycin. Journal of controlled release : official journal of the Controlled Release Society. 2012;163:93-9.
[20] Chang C, Wei H, Quan C-Y, Li Y-Y, Liu J, Wang Z-C, et al. Fabrication of thermosensitive PCL-PNIPAAm-PCL triblock copolymeric micelles for drug delivery. Journal of Polymer Science Part A: Polymer Chemistry. 2008;46:3048-57.
[21] Peng CL, Tsai HM, Yang SJ, Luo TY, Lin CF, Lin WJ, et al. Development of thermosensitive poly(n-isopropylacrylamide-co-((2-dimethylamino) ethyl methacrylate))-based nanoparticles for controlled drug release. Nanotechnology. 2011;22:265608.
[22] McClements DJ, Dungan SR. Factors that affect the rate of oil exchange between oil-in-water emulsion droplets stabilized by a nonionic surfactant: droplet size, surfactant concentration, and ionic strength. The Journal of Physical Chemistry. 1993;97:7304-8.
[23] Peng C-L, Shih Y-H, Lee P-C, Hsieh TM-H, Luo T-Y, Shieh M-J. Multimodal Image-Guided Photothermal Therapy Mediated by 188Re-Labeled Micelles Containing a Cyanine-Type Photosensitizer. ACS Nano. 2011;5:5594-607.
[24] Boyer C, Boutevin G, Robin JJ, Boutevin B. Study of the telomerization of dimethylaminoethyl methacrylate (DMAEMA) with mercaptoethanol. Application to the synthesis of a new macromonomer. Polymer. 2004;45:7863-76.
[25] Chidambaram N, Burgess DJ. A novel in vitro release method for submicron sized dispersed systems. AAPS pharmSci. 1999;1:E11.
[26] Saeki S, Kuwahara N, Nakata M, Kaneko M. Upper and lower critical solution temperatures in poly (ethylene glycol) solutions. Polymer. 1976;17:685-9.
[27] Aguiar J, Carpena P, Molina-Bolı́var JA, Carnero Ruiz C. On the determination of the critical micelle concentration by the pyrene 1:3 ratio method. Journal of Colloid and Interface Science. 2003;258:116-22.
[28] Egger H, McGrath KM. Aging of oil-in-water emulsions: The role of the oil. Journal of Colloid and Interface Science. 2006;299:890-9.
[29] Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods. 1983;65:55-63.
[30] Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer research. 2010;70:440-6.
[31] Bijnsdorp IV, Giovannetti E, Peters GJ. Analysis of drug interactions. Methods Mol Biol. 2011;731:421-34.
[32] Liu Y, Li C, Wang HY, Zhang XZ, Zhuo RX. Synthesis of thermo- and pH-sensitive polyion complex micelles for fluorescent imaging. Chemistry. 2012;18:2297-304.
[33] Guo S, Qiao Y, Wang W, Xing J, Deng L, Dong A, et al. Synthesis and properties of Polycaprolactone-graft-poly(2-(dimethylamino)ethyl methacrylate-co-methoxy polyethylene glycol monomethacrylate) as non-viral gene vector. Polymers for Advanced Technologies. 2011;22:1925-30.
[34] Robeson JL, Tilton RD. Effect of concentration quenching on fluorescence recovery after photobleaching measurements. Biophysical Journal. 1995;68:2145-55.
[35] Zhang C, Wang S, Xiao J, Tan X, Zhu Y, Su Y, et al. Sentinel lymph node mapping by a near-infrared fluorescent heptamethine dye. Biomaterials. 2010;31:1911-7.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61649-
dc.description.abstract惡性腫瘤已蟬聯國人十大死因之首數年,而大腸癌位於惡性腫瘤好發率之前三名,治療的重要性不言而喻。為了體現更良好的大腸癌治療,奈米級高分子載體被廣泛運用在藥物傳輸系統來治療癌症,利用雙親性高分子包覆光感藥物或化療藥物,進行癌細胞毒殺並減少藥物對正常細胞之毒性與副作用產生。然而現今之藥物載體並非僅應用於化學治療,光動力治療與光熱燒灼等也於近年來蓬勃發展。藥物使用奈米載體搭載之優點為,可利用其包覆藥物減低非作用目標之細胞攝取,再者,奈米級載體可藉由其粒徑極小之特性產生增強通透性與延遲效應(EPR effects)進而達成在腫瘤組織之被動標靶(passive targeting)的特性,增強藥物累積量與減少藥物之使用量。除此之外,利用雷射去針對病灶作熱燒灼治療,對於某些特定淺層疾病具有良好的治癒效果,合併光熱燒灼與化學治療於癌症治癒上可以達到加成效應也為現今熱門研究的課題。將光感藥物及化療藥物同時包埋於奈米藥物載體內部,形成多功能之藥物載體,能同時針對腫瘤作藥物傳輸及光熱燒灼的雙重效果。
本篇研究利用熱敏感性之高分子p(NIPAAM-co-PEGMEA)-b-PCL製備奈米微胞載體,利用疏水核心包覆化療藥物17-AAG及光敏藥物IR-780 iodide,成為同時具有化學治療與光熱燒灼能力之多功能型奈米藥物,並且可利用光熱燒灼的溫度變化達到控制藥物釋放的效果。在物理性質方面,粒徑大小位於170 nm左右,兩種藥物包覆率可同時達到近35%。在臨界微胞濃度值方面,表現出此奈米載體在大量稀釋環境中穩定性甚佳。此外,在細胞毒性與動物實驗等觀察,可發現結合光熱燒灼與化學治療較單一藥物治療有著較佳之治療效果及具有協同作用(synergism),為一高潛力之多功能奈米藥物,並期望本研究能對生物醫學領域稍具貢獻。
zh_TW
dc.description.abstractUntil now, cancer has been the top causes of death. Among all different types of cancers, colorectal cancer is the most common type. As a result, anti-cancer therapies against colorectal cancers are very important. Polymeric nanoparticles have already been widely used in the research field of drug delivery systems. For instance, amphiphilic micelles could be designed to encapsulate hydrophobic anticancer agents or photosensitizers, to reduce cytotoxicities and side effects to normal cells during treatment. So far, researched in anti-cancer therapy not only include better drug delivery systems but better photodynamic therapy and photothermal ablation therapy modalities. There are many advantages for nano-carriers such as that nano-sized vectors could induce enhanced permeability and retention (EPR) effects in tumor cells. The passive targeting could cause higher drug accumulations at tumor sites while decreasing the amount of anticancer agents used.
In this study, thermo-sensitive polymers, p(NIPAAM-co-PEGMEA)-b-PCL, were synthesized and developed as nano-micelle. Hydrophobic anticancer agents, 17-AAG and photosensitizer IR-780 iodide, were loaded in the core of micelles both chemo-therapies and photothermal ablation therapies were reached simultaneously using this new micelle. The release of the micelle could be controlled by temperature variation. Regarding to the physical and chemical properties, its sizes was about 170 nm, the drug encapsulated efficiency would approximately 35 %. The critical micelles concentrations (CMC) were all small enough to allow the micelle to be stable in dilutions. From the data of cell viabilities and animal experiments, the combination treatment of photothermal ablation and chemo-therapy had more treatment efficacy and synergistic effect than treatments using single drugs. Overall, the micelle developed here would hopefully help in the field of biomedical engineering.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:08:26Z (GMT). No. of bitstreams: 1
ntu-102-R99548060-1.pdf: 2188516 bytes, checksum: 841812128ca6958cb98a8913574e2cf1 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 #
致謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF SCHEMES vii
LIST OF TABLES viii
LIST OF FIGURES ix
Chapter 1 Introduction 1
Chapter 2 Experiments procedure 3
2.1 Materials 4
2.2 Synthesis of copolymer CPPA-PCL (Macro-CPPA) by ring opening polymerization 4
2.3 Syntheses of p(NIPAAM-co-PEGMEA)-b-PCL by RAFT polymerization 5
2.4 Characterizations of polymers 5
2.5 Preparations of micelles with 17-AAG loaded, IR-780 iodide loaded, IR-780/17-AAG co-loaded and measurement of drug encapsulation efficiency 6
2.6 In vitro drug release profile of 17-AAG from the micelles as a function of temperature 7
2.7 LCST behavior 8
2.8 Critical micelle concentration 8
2.9 Cell culture and in vitro cytotoxicity 9
2.10 Temperature measurements and photothermal ablation toxicity 10
2.11 In vivo antitumor effect of IR-780 loaded, 17-AAG loaded and IR-780/17-AAG co-loaded micelles upon NIR irradiation 10
2.12 Statistical analysis 11
Chapter 3 Results and discussions 12
3.1 Characterizations of p(NIPAAM-co-PEGMEA)-b-PCL and Macro-CPPA 12
3.2 Drug release profiles 15
3.3 Critical micelle concentration and thermo-sensitivity 15
3.4 In vitro photothermal toxicity and synergistic effect 16
3.5 In vivo antitumor effect of IR-780 loaded, 17-AAG loaded and IR-780/17-AAG co-loaded micelles upon NIR irradiation 18
Chapter 4 Conclusions 20
REFERENCE 21
SCHEME 26
TABLE 28
FIGURE 31
dc.language.isozh-TW
dc.subject光熱燒灼zh_TW
dc.subject奈米藥物載體zh_TW
dc.subject控制釋放zh_TW
dc.subject協同作用zh_TW
dc.subject熱敏感性zh_TW
dc.subject化療藥物zh_TW
dc.subjectsynergistic effecten
dc.subjectchemo drugen
dc.subjectthermo-sensitiveen
dc.subjectnano-carrieren
dc.subjectcontrol releaseen
dc.subjectPhotothermalen
dc.title製備溫感性奈米微胞載體針對癌症做藥物傳輸及光熱治療zh_TW
dc.titlePreparation of Thermosensitive Micelles for Drug Delivery and Photothermal Ablation Therapyen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee駱俊良,賴秉杉,蕭仲凱
dc.subject.keyword光熱燒灼,化療藥物,熱敏感性,奈米藥物載體,控制釋放,協同作用,zh_TW
dc.subject.keywordPhotothermal,chemo drug,thermo-sensitive,nano-carrier,control release,synergistic effect,en
dc.relation.page48
dc.rights.note有償授權
dc.date.accepted2013-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
2.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved