Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61635
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖運炫
dc.contributor.authorFang-Yu Liangen
dc.contributor.author梁芳瑜zh_TW
dc.date.accessioned2021-06-16T13:08:00Z-
dc.date.available2016-08-06
dc.date.copyright2013-08-06
dc.date.issued2013
dc.date.submitted2013-08-01
dc.identifier.citation1. Z.B. Yu, T. Jun and K. Masanori, “Dry electrical discharge machining of cemented carbide,” Journal of Materials Processing Technology vol. 149, 2004, pp. 353–357.
2. H. Takeuchi and M. Kunieda, “Effects of volume fraction of bubbles in discharge gap on machining phenomena of EDM,” Proc. of 15th International Symposium on Electro-machining, 2007, pp. 63-68.
3. B. M. Schumacher, “About the Role of Debris in the Gap During Electrical Discharge Machining,” CIRP Annals Manufacturing Technology vol. 39, 1990, pp. 197-199.
4. M. Kunieda, B. Lauwers, K. P. Rajurkar and B. M. Schumacher, “Advancing EDM through Fundamental Insight into the Process,” CIRP Annals Manufacturing Technology vol. 54, 2005, pp. 64-87.
5. M. Kunieda and M. Mori, “Relation between Debris Concentration and Discharge Gap Length in EDM Process,” Proc. of Asian Electrical-Machining Symposium, 1995, pp. 1-6.
6. S. Hayakawa, T. Doke, F. Itoigawa and T. Nakamura, “Observation of Bubble Expansion and Flying Debris in Parallel Flat Gap Space in Electrical Discharge Machining,” International Journal of Electrical Machining vol. 14, 2009, pp. 29-35.
7. J. Wang, F. Hana, G. Cheng and F. Zhao, “Debris and bubble movements during electrical discharge machining,” International Journal of Machine Tools & Manufacture vol. 58, 2012, pp. 11–18.
8. S. Hayakawa, Y. Sasaki, F. Itoigawa and T. Nakamura, “Relationship between occurrence of material removal and bubble expansion in electrical discharge machining,” Proc. of 17th International Symposium on Electro-machining, 2013, pp. 175-180.
9. F.Q. Hu, F.Y. Cao, B.Y. Song, P.J. Hou, Y. Zhang, K. Chen and J.Q. Wei, “Surface properties of SiCp/Al composite by powder-mixed EDM,” Proc. of 17th International Symposium on Electro-machining, 2013, pp. 101-106.
10. W.S. Zhao, Q.G. Meng and Z.L. Wang, “The application of research on powder mixed EDM in rough machining,” Journal of Materials Processing Technology vol. 129, 2002, pp. 30-33.
11. K.P. Rajurkar and S.M. Pandit, “Formation and ejection of EDM debris,” Transactions of the ASME vol. 108, 1988, pp. 22–26.
12. T. Masuzawa, X. Cui and N. Taniguchi, “Improved jet flushing for EDM,” CIRP Annals Manufacturing Technology vol. 41, 1992, p.p. 239–242.
13. P.M. Lonardo and A.A. Bruzzone, “Effect of flushing and electrode material on die sinking EDM,” CIRP Annals Manufacturing Technology vol. 48, 1999, pp. 123–126.
14. L. Li, L. Gu, X. C. Xi and W. S. Zhao, “Influence of flushing on performance of EDM with bunched electrode,” The International Journal of Advanced Manufacturing Technology vol. 58, 2012,pp. 187-194.
15. Z.Y. YU, K.P. Rajurkar and H. Shen, “High aspect ratio and complex shaped blind micro holes by micro EDM,” CIRP Annals Manufacturing Technology vol. 51, 2002, pp. 359-362.
16. J.A. Sanchez, L.N. Lopez, A. Lamikiz and U. Bravo, “Study on gap variation in multi-stage planetary EDM,” International Journal of Machine Tools & Manufacture vol. 46, 2006, pp. 1598–1603.
17. J .S. Soni and G. Chakraverti, “Machining characteristics of titanium with rotary electro-discharge machining ,” Wear vol. 171 , 1994, pp. 51-58.
18. Y. H. Gu and H. Cheng, “Effects of workpiece rotation on machinability during electrical discharge machining,” Materials and Manufacturing Processes vol. 16, 2001, pp. 91-101.
19. H.E.De Bruijn, T.H.Delft and A.J.Pekelaring, “Effect of a magnetic field on the gap cleaning in EDM,” CIRP Annals Manufacturing Technology vol. 27, 1978, pp. 93-95.
20. Y. C. Lin and H. S. Lee, “Machining characteristics of magnetic force-assisted EDM,” International Journal of Machine Tools and Manufacture vol. 48, 2008, pp. 1179-1186.
21. V.S.R. Murti and P.K.Philip, “Comparative analysis of machining characteristics in ultrasonic assisted EDM by the response surface methodology,” International Journal of Production Research vol. 25, 1987, pp. 259-272.
22. S. Enache, C. Opran, C. I. Stoica and E. Strajescu, “The study of EDM with forced vibration of tool-electrode,” CIRP Annals Manufacturing Technology vol. 39, 1999, pp. 167-170.
23. Y.C.Lin, B.H.Yan and Y.S.Chang, “Machining characteristics of titanium alloy (Ti-6Al-4V) using combination process of EDM with USM,” Journal of Materials Processing Technology vol. 104, 2000, pp. 171-177.
24. D. Kremer, J. L. Lebrun, B. Hosari and A. Moisan, “Effects of the Ultrasonic Vibration on the Performances in EDM,” CIRP Annals vol. 38, 1989, pp. 199–202.
25. Z.Y. Yu, Y. Zhang, J. Li, J. Luan, F. Zhao and D. Guo, “High aspect ratio micro-hole drilling aided with ultrasonic vibration and planetary movement of electrode by micro-EDM,” CIRP Annals Manufacturing Technology vol. 58, 2009, pp. 213–216.
26. 丁純乾,添加界面活性劑對放電加工特性的影響,國立中央大學機械工程學系碩士論文,民國九十三年六月。
27. 陳世昌,對工具鋼放電加工面之改善效果,國立中央大學機械工程學系碩士論文,民國九十二年六月。
28. Y. Kaneko, H. Yamada, T. Toyohaga and K. Shoda, “Performance of linear motor equipped die-sinking EDM,” International Journal of Electrical Machining vol. 5, 2000, pp. 59-64.
29. SODICK’s US Patent no.:US 6,459,063 B1.
30. SODICK’s US Patent no.:US 6,353,199 B1.
31. Y. Zhao, X. Zhang, X. Liu and K. Yamazaki, , “Geometric modeling of the linear motor driven electrical discharge machining (EDM) die-sinking process,” International Journal of Machine Tools & Manufacture vol. 44, 2004 pp. 1–9.
32. S. Cetin, A. Okada and Y. Uno, “Electrode jump motion in linear motor equipped die-sinking EDM,” Journal of Manufacturing Science and Engineering vol. 125, 2003, pp. 809-815.
33. S. Cetin, A. Okada, and Y. Uno, “Effect of debris distribution on wall concavity in deep-hole EDM,” JSME International Journal vol. 47, 2004, pp. 553-559.
34. S. Cetin, A. Okada, Y. Kawazoe and Y. Uno, “Investigation of dielectric flow during electrode jump in EDM gap,” International conference on leading edge manufacturing in 21st century, 2003, pp. 939-942.
35. 董景瑞,雕模放電加工之排渣模式及其波列分析與應用,國立台灣大學機械工程學研究所博士論文,民國九十五年七月。
36. 巫佩珊,高深寬比雕磨放電加工渣排除效果之研究,國立台灣大學機械工程學研究所碩士論文,民國九十九年七月。
37. P. Pontelandolfo, P. Haas and R. Perez, “Particle hydrodynamics of the electrical discharge machining process. Part 2: Die sinking process,” Proc. of 17th International Symposium on Electro-machining, 2013, pp. 47-52.
38. 張欽隆,機械技術月刊,第七十八期,頁: 91-98,1991。
39. D. D. Bitonto, P. T. Eubank, M. R. Patel and M. A. Barrufet, “Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model,” J. Appl. Phys. vol. 166, 1989, pp. 4095-4103.
40. D. DiBitonto, P. T. Eubank, M. R. Patel and M. A. Barrufet, “Theoretical models of the electrical discharge machining process. II. The anode erosion model, J. Appl. Phys. vol. 166, 1989, pp. 4104-4111.
41. P. T. Eubank, M. R. Patel and M. A. Barrufet, “Theoretical models of the electrical discharge machining process. III. The variable mass, Cylindrical Plasma Models,” J. Appl, Phys. vol. 73, 1993, pp. 7900-7905.
42. 余永平,線切割放電加工材料之能量性質及其應用,台灣大學機械工程研究所博士論文,民國九十年。
43. 林宗聖,電腦輔助塑膠模具設計製造能力本位訓練教材─設計電極,行政院勞工委員會職業訓練局,民國九十年十二月。
44. 絲國一,線性步進、伺服馬達原理及其應用,機械工業雜誌,頁:253-263,民國八十九年。
45. 劉志豪,應用模糊控制於線型永磁式同步伺服馬達速度及定位控制器參數之調適,國立台灣科技大學電機研究所碩士論文,民國九十年。
46. E. Matkevičius and L. Radzevičius, “Mathematical Model of the Linear Motor,” Electronics and electrical engineering vol. 5, 2007, pp. 11-14.
47. S. Kaneko, R. Sato and M. Tsutsumi, “Mathematical model of linear motor stage with non-linear friction characteristics,” Journal of Advanced Mechanical Design vol. 2, Systems, and Manufacturing, 2008, pp. 675-684.
48. 劉文達,線型與轉動永磁同步伺服馬達之參數自動調適,國立台灣科技大學電機研究所碩士論文,民國八十九年。
49. 國立成功大學馬達科技研究中心。
50. 張智星,Matlab程式設計與應用,清蔚科技出版,民國九十年。
51. K.P. Rajurkar, M.M. Sundaram and A.P.Malshe, “Review of Electrochemical and Electrodischarge Machining”, Proc. of 17th International Symposium on Electro-machining, 2013, pp. 13-26
52. L. S. Andres, “Derivation of the classical Reynolds equation for thin film flow”, Texas A&M University, 2010, pp. 1-10.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61635-
dc.description.abstract渣粒於雕模放電加工間隙之分部與流動是影響加工品質及速度的重要因素之一,良好的排渣方法能改善效率,加深加工深度,並且提升精度,於放電加工具極大助益。本研究針對不同寬度電極於深孔跳躍運動造成的排渣效果,得到最適的速度、跳躍高度與次數,並找出不同寬度電極跳躍排渣之特徵與關係,同時以流體力學計算、撰寫程式以模擬深孔排渣面對的問題。經由流體力學分析,過高的跳躍高度導致電極底部的壓力降低,介電液氣化,若速度過快,間隙液體來不及流入,其現象隨電極抬升而加成,直至未填滿區過大,影響排渣。經過實驗發現,於合適的速度下進行跳躍排渣可得較高的渣排除比例:速度過低將不足以帶動渣粒,過高則會造成未填滿、氣泡,當氣泡於底部佔有率超過50%時,外加協助排渣之跳躍將無法生效。其中,方形、大電極較易產生未填滿現象,窄、薄型電極則易產生間隙流速慢,渣粒滯留於底部的狀況。無論是何種電極,排渣最終須克服底部約5 mm高度之渣的帶動,而良好的混合有助於排渣。方形電極以一個大於間隙體積高度和接近加工深度1/2之雙次跳躍,排渣效果極好;針對長方形電極,雖較不容易產生氣泡,但也不易藉由渦流帶動渣粒,須以極限速度進行接近2/3加工深度之跳躍,再加上一個低於加工深度約10 mm的大跳躍進行排渣。以上兩種電極超過5次跳躍效率將遞減。薄型電極跳躍排渣具深度的限制,且跳躍次數約4到5次才可排除,以實驗搭配之線性馬達而言,深寬比超過10即無法排渣。最後,依照所得之最佳跳躍速度,發現其中之關聯性,推測薄型電極需更高的跳躍速度才可良好排渣。zh_TW
dc.description.abstractThe distribution and the flow of debris between gaps are important factors in die-sinking EDM. The proper debris exclusion will enhance the surface quality, machining efficiency and stability. Moreover, the machining depth could be larger. This research focused on the best debris removal capability under different electrode widths and combination of jumps. The dielectric-debris flow was simulated by the program and captured by the high speed camera. The debris can’t be driven when the jump speed is too low. When the jump speed exceeds a critical extend, there is not enough time for the dielectric to flow in, resulting the poor removal effect. As the bubbles percentage reaches 50, the additional assisted jumps are useless. The proper jump speed increases as the electrode width decreases. The well-mixed dielectric-debris fluid is good for exclusion. To attain the better efficiency and removal capability, for square electrode, the combination of the jump larger than the gap volume followed by the jump with one half of machining depth jump height is needed. As the width decreases, the jump with two-thirds of the machining depth height under maximum speed and the jump little less than the machining depth under proper speed should be used. It’s a waste of time for more jumps. For the thin-wall electrode, due to the smaller jump volume and higher proper jump speed, the quad jumps should be adopted and the removal effect is invalid while the aspect ratio exceeds ten. This paper provides an improved way to remove debris and a better understanding of debris removal facilitation mechanism.en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:08:00Z (GMT). No. of bitstreams: 1
ntu-102-R00522711-1.pdf: 6324467 bytes, checksum: 9eafc302d0f9d403c17180dc61664f43 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents中文摘要 I
英文摘要 II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XV
符號說明 XVII

第一章 緒論 1
1-1 引言 1
1-2 文獻回顧 2
1-3 研究目的 5
1-4 本文架構 9

第二章 放電加工相關介紹 11
2-1 放電加工原理 11
2.1.1 放電加工過程 11
2.1.2 放電火花結構及電力轉換過程 14
2.1.3 不同材質電極之特性 16
2-2 雕模放電加工系統 16
2.2.1 CNC控制系統 17
2.2.2 機台與驅動系統 18
2.2.3 加工液循環供應系統 18
2-3 各種輔助排渣方法介紹 20
2-4 線性馬達工作原理與應用 25
2.4.1 線性馬達特點 25
2.4.2 線性馬達結構及驅動原理 26

第三章 實驗設備與參數設定 29
3-1 主硬體架構與各部系統 29
3.1.1 單軸平台控制系統 30
3.1.2 配重機構設計 31
3.1.3 影像觀測系統 33
3-2 軟體架構各部系統 34
3.2.1 驅動器控制介面 34
3.2.2 影像處理軟體 36
3.2.3 影像分析軟體 37
3-3輔助實驗設備 37
3-4 實驗參數設定 39

第四章流體力學分析與模擬 44
4-1 電極運動造成的流場 44
4.1.1 速度、跳躍高度與加工深度造成之影響 44
4.1.2 電極尺寸與間隙大小之影響 47
4.1.3 浸油高度之影響 48
4-2 理論分析小結 49

第五章實驗結果與討論 50
5-1 雕模放電加工方形電極單次跳躍排渣之觀測 50
5.1.1實驗規劃 50
5.1.2定速單次跳躍運動排渣之比較 53
5.1.3 電極抬升階段現象之比較 57
5.1.4 變速單次跳躍運動排渣結果 62
5.1.5 單次跳躍排渣效率與小結 66
5-2雕模放電加工方形電極多次跳躍排渣之觀測 68
5.2.1 實驗規劃 68
5.2.2 混和效應對排渣之影響 70
5.2.3 電極定速兩次跳躍排渣之結果 77
5.2.4 多次與單次跳躍渣排除比例與效率之比較與小結 81
5-3雕模放電加工長方形電極跳躍排渣之觀測 82
5.3.1實驗設備與規劃 83
5.3.2長方形電極單次跳躍之排渣觀測 84
5.3.3長方形電極雙次跳躍之排渣觀測 87
5.3.4長方形電極與方形電極效率之比較 90
5-4雕模放電加工薄型電極跳躍排渣之觀測 91
5.4.1實驗設備與規劃 92
5.4.2薄型電極深孔排渣之問題探討 93
5.4.3不同加工深度多次跳躍排渣之觀測 97
5-5綜合討論 101

第六章 結論與未來展望 106
6-1 結論 106
6-2 未來展望 107

參考文獻 108
附錄A 112
dc.language.isozh-TW
dc.title不同截面電極深孔雕模放電加工渣排除效果之研究zh_TW
dc.titlestudy of debris removal effect in the deep cavity EDM with different electrode cross-sectionsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許東亞,董景瑞
dc.subject.keyword放電加工,排渣模式,電極跳躍,zh_TW
dc.subject.keywordElectrical discharge machining,debris removal,electrode jump,en
dc.relation.page112
dc.rights.note有償授權
dc.date.accepted2013-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
6.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved