Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61630
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐振哲
dc.contributor.authorChi-Hsun Hsuen
dc.contributor.author徐啟訓zh_TW
dc.date.accessioned2021-06-16T13:07:51Z-
dc.date.available2016-08-06
dc.date.copyright2013-08-06
dc.date.issued2013
dc.date.submitted2013-08-01
dc.identifier.citation1. A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn and R. F. Hicks, 'The atmospheric-pressure plasma jet: A review and comparison to other plasma sources,' IEEE Trans. Plasma Sci., 26 (6), 1685-1694 (1998).
2. A. L. Thomann, J. P. Salvetat, Y. Breton, C. Andreazza-Vignolle and P. Brault, 'Thermal stability of metal nanoclusters formed by low-pressure plasma sputtering,' Thin Solid Films, 428 (1-2), 242-247 (2003).
3. E. Stumpe, H. Oechsner and H. Schoof, 'High-resolution sputter depth profiling with a low-pressure hf plasma,' Applied Physics, 20 (1), 55-60 (1979).
4. Y. K. Cho, W. S. Jang, S. Yoo, S. G. Kim and S. W. Kim, 'Synthesis of conductive Ti-C:H films on the stainless steel plates by PECVD process,' Surf. Coat. Technol., 202 (22-23), 5390-5394 (2008).
5. M. Meyyappan, L. Delzeit, A. Cassell and D. Hash, 'Carbon nanotube growth by PECVD: a review,' Plasma Sources Sci. Technol., 12 (2), 205-216 (2003).
6. M. K. Lei and Z. L. Zhang, 'Plasma source ion nitriding - a new low-temperature, low-pressure nitriding approach,' J. Vac. Sci. Technol. A, 13 (6), 2986-2990 (1995).
7. T. Czerwiec, H. Michel and E. Bergmann, 'Low-pressure, high-density plasma nitriding: mechanisms, technology and results,' Surf. Coat. Technol., 108 (1-3), 182-190 (1998).
8. Z. N. Fan, Q. C. Chen, P. K. Chu and C. Chan, 'Low pressure plasma immersion ion implantation of silicon,' IEEE Trans. Plasma Sci., 26 (6), 1661-1668 (1998).
9. J. R. Roth, J. Rahel, X. Dai and D. M. Sherman, 'The physics and phenomenology of one atmosphere uniform glow discharge plasma (OAUGDP (TM)) reactors for surface treatment applications,' J. Phys. D-Appl. Phys., 38 (4), 555-567 (2005).
10. 吳丞以, 碩士論文, 國立台灣大學, (2009).
11. C. Tendero, C. Tixier, P. Tristant, J. Desmaison and P. Leprince, 'Atmospheric pressure plasmas: A review,' Spectroc. Acta Pt. B-Atom. Spectr., 61 (1), 2-30 (2006).
12. L. Tonks and I. Langmuir, 'A general theory of the plasma of an arc,' Phys. Rev., 34 (6), 0876-0922 (1929).
13. U. Kogelschatz, 'Dielectric-barrier discharges: Their history, discharge physics, and industrial applications,' Plasma Chem. Plasma Process., 23 (1), 1-46 (2003).
14. T. C. Tsai and D. Staack, 'Low-temperature polymer deposition in ambient air using a floating-electrode dielectric barrier discharge jet,' Plasma Process. Polym., 8 (6), 523-534 (2011).
15. J. Huang, W. Chen, H. Li, X. Q. Wang, G. H. Lv, M. L. Khosa, M. Guo, K. C. Feng, P. Y. Wang and S. Z. Yang, 'Deactivation of A549 cancer cells in vitro by a dielectric barrier discharge plasma needle,' J. Appl. Phys., 109 (5), 053305 (2011).
16. C. C. Hsu and C. Y. Wu, 'Electrical characterization of the glow-to-arc transition of an atmospheric pressure pulsed arc jet,' J. Phys. D-Appl. Phys., 42 (21), 215202 (2009).
17. N. Gherardi, G. Gouda, E. Gat, A. Ricard and F. Massines, 'Transition from glow silent discharge to micro-discharges in nitrogen gas,' Plasma Sources Sci. Technol., 9 (3), 340-346 (2000).
18. N. Gherardi and F. Massines, 'Mechanisms controlling the transition from glow silent discharge to streamer discharge in nitrogen,' IEEE Trans. Plasma Sci., 29 (3), 536-544 (2001).
19. F. Massines, A. Rabehi, P. Decomps, R. B. Gadri, P. Segur and C. Mayoux, 'Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier,' J. Appl. Phys., 83 (6), 2950-2957 (1998).
20. A. Mujumdar, D. G. Wei, R. N. Dave, R. Pfeffer and C. Y. Wu, 'Improvement of humidity resistance of magnesium powder using dry particle coating,' Powder Technol., 140 (1-2), 86-97 (2004).
21. X. R. Xu, X. J. Luo, H. R. Zhuang, W. L. Li and B. L. Zhang, 'Electroless silver coating on fine copper powder and its effects on oxidation resistance,' Mater. Lett., 57 (24-25), 3987-3991 (2003).
22. M. Inagaki, Y. Hirose, T. Matsunaga, T. Tsumura and M. Toyoda, 'Carbon coating of anatase-type TiO2 through their precipitation in PVA aqueous solution,' Carbon, 41 (13), 2619-2624 (2003).
23. M. Inagaki, F. Kojin, B. Tryba and M. Toyoda, 'Carbon-coated anatase: the role of the carbon layer for photocatalytic performance,' Carbon, 43 (8), 1652-1659 (2005).
24. C. Li, H. P. Zhang, L. J. Fu, H. Liu, Y. P. Wu, E. Ram, R. Holze and H. Q. Wu, 'Cathode materials modified by surface coating for lithium ion batteries,' Electrochim. Acta, 51 (19), 3872-3883 (2006).
25. J. Cho, Y. J. Kim and B. Park, 'Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell,' Chem. Mat., 12 (12), 3788-3791 (2000).
26. H. J. Kweon, J. Park, J. Seo, G. Kim, B. Jung and H. S. Lim, 'Effects of metal oxide coatings on the thermal stability and electrical performance of LiCoCO2 in a Li-ion cell,' J. Power Sources, 126 (1-2), 156-162 (2004).
27. J. Cho, Y. J. Kim, T. J. Kim and B. Park, 'Zero-strain intercalation cathode for rechargeable Li-ion cell,' Angew. Chem.-Int. Edit., 40 (18), 3367-3369 (2001).
28. G. T. K. Fey, H. Z. Yang, T. P. Kumar, S. P. Naik, A. S. T. Chiang, D. C. Lee and J. R. Lin, 'A simple mechano-thermal coating process for improved lithium battery cathode materials,' J. Power Sources, 132 (1-2), 172-180 (2004).
29. L. J. Liu, L. Q. Chen, X. J. Huang, X. Q. Yang, W. S. Yoon, H. S. Lee and J. McBreen, 'Electrochemical and in situ synchrotron XRD studies on Al2O3-coated LiCoO2 cathode material,' J. Electrochem. Soc., 151 (9), A1344-A1351 (2004).
30. S. Oh, J. K. Lee, D. Byun, W. I. Cho and B. W. Cho, 'Effect of Al2O3 coating on electrochemical performance of LiCoO2 as cathode materials for secondary lithium batteries,' J. Power Sources, 132 (1-2), 249-255 (2004).
31. M. Mladenov, R. Stoyanova, E. Zhecheva and S. Vassilev, 'Effect of Mg doping and MgO-surface modification on the cycling stability of LiCoO2 electrodes,' Electrochem. Commun., 3 (8), 410-416 (2001).
32. H. B. Dai, H. X. Li and F. H. Wang, 'An alternative process for the preparation of Cu-coated mica composite powder,' Surf. Coat. Technol., 201 (6), 2859-2866 (2006).
33. Y. H. Ma and Q. H. Zhang, 'Preparation of Highly Uniform and Monodisperse PS/Cu Composite Microspheres Using Electroless Plating,' J. Electrochem. Soc., 159 (7), D431-D436 (2012).
34. D. L. Gao and M. S. Zhan, 'Fabrication and electrical properties of metal-coated acrylate rubber microspheres by electroless plating,' Appl. Surf. Sci., 255 (7), 4185-4191 (2009).
35. R. Sharma, R. C. Agarwala and V. Agarwala, 'Development of copper coatings on ceramic powder by electroless technique,' Appl. Surf. Sci., 252 (24), 8487-8493 (2006).
36. Q. Y. Zhang, M. Wu and W. Zhao, 'Electroless nickel plating on hollow glass microspheres,' Surf. Coat. Technol., 192 (2-3), 213-219 (2005).
37. H. Q. Li and H. S. Zhou, 'Enhancing the performances of Li-ion batteries by carbon-coating: present and future,' Chem. Commun., 48 (9), 1201-1217 (2012).
38. X. K. Zhi, G. C. Liang, L. Wang, X. Q. Ou, L. M. Gao and X. F. Jie, 'Optimization of carbon coatings on LiFePO4: Carbonization temperature and carbon content,' J. Alloy. Compd., 503 (2), 370-374 (2010).
39. Y. D. Cho, G. T. K. Fey and H. M. Kao, 'The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes,' J. Power Sources, 189 (1), 256-262 (2009).
40. R. Guo, P. F. Shi, X. Q. Cheng and C. Y. Du, 'Synthesis and characterization of carbon-coated LiNi1/3Co1/3Mn1/3O2 cathode material prepared by polyvinyl alcohol pyrolysis route,' J. Alloy. Compd., 473 (1-2), 53-59 (2009).
41. B. Lin, Z. Y. Wen, X. Y. Wang and Y. Liu, 'Preparation and characterization of carbon-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode material for lithium-ion batteries,' J. Solid State Electrochem., 14 (10), 1807-1811 (2010).
42. M. L. Marcinek, J. W. Wilcox, M. M. Doeff and R. M. Kostecki, 'Microwave Plasma Chemical Vapor Deposition of Carbon Coatings on LiNi1/3Co1/3Mn1/3O2 for Li-Ion Battery Composite Cathodes,' J. Electrochem. Soc., 156 (1), A48-A51 (2009).
43. A. Spillmann, A. Sonnenfeld and P. R. von Rohr, 'Effect of Surface Free Energy on the Flowability of Lactose Powder Treated by PECVD,' Plasma Process. Polym., 5 (8), 753-758 (2008).
44. C. Roth, Z. Kunsch, A. Sonnenfeld and P. R. von Rohr, 'Plasma surface modification of powders for pharmaceutical applications,' Surf. Coat. Technol., 205, S597-S600 (2011).
45. J. Yang, A. Sliva, A. Banerjee, R. N. Dave and R. Pfeffer, 'Dry particle coating for improving the flowability of cohesive powders,' Powder Technol., 158 (1-3), 21-33 (2005).
46. J. S. Benjamin, 'Dispersion strengthened superalloys by mechanical alloying,' Metallurgical Transactions, 1 (10), 2943-2951 (1970).
47. B. L. Cushing and J. B. Goodenough, 'Influence of carbon coating on the performance of a LiMn0.5Ni0.5O2 cathode,' Solid State Sci., 4 (11-12), 1487-1493 (2002).
48. C. Suryanarayana, 'Mechanical alloying and milling,' Prog. Mater. Sci., 46 (1-2), 1-184 (2001).
49. H. M. Xie, R. S. Wang, J. R. Ying, L. Y. Zhang, A. F. Jalbout, H. Y. Yu, G. L. Yang, X. M. Pan and Z. M. Su, 'Optimized LiFePO4-polyacene cathode material for lithium-ion batteries,' Adv. Mater., 18 (19), 2609-2613 (2006).
50. M. Konarova and I. Taniguchi, 'Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondary batteries,' J. Power Sources, 195 (11), 3661-3667 (2010).
51. M. P. Mullarney, L. E. Beach, R. N. Dave, B. A. Langdon, M. Polizzi and D. O. Blackwood, 'Applying dry powder coatings to pharmaceutical powders using a comil for improving powder flow and bulk density,' Powder Technol., 212 (3), 397-402 (2011).
52. S. Chattoraj, L. M. Shi and C. C. Sun, 'Profoundly improving flow properties of a cohesive cellulose powder by surface coating with nano-silica through comilling,' J. Pharm. Sci., 100 (11), 4943-4952 (2011).
53. J. Cho, Y. J. Kim and B. Park, 'LiCoO2 cathode material that does not show a phase transition from hexagonal to monoclinic phase,' J. Electrochem. Soc., 148 (10), A1110-A1115 (2001).
54. J. Cho, C. S. Kim and S. I. Yoo, 'Improvement of structural stability of LiCoO2 cathode during electrochemical cycling by sol-gel coating of SnO2,' Electrochem. Solid State Lett., 3 (8), 362-365 (2000).
55. K. T. Lee, Y. S. Jung and S. M. Oh, 'Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries,' J. Am. Chem. Soc., 125 (19), 5652-5653 (2003).
56. S. H. Ng, J. Wang, D. Wexler, S. Y. Chew and H. K. Liu, 'Amorphous carbon-coated silicon nanocomposites: A low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium-ion batteries,' J. Phys. Chem. C, 111 (29), 11131-11138 (2007).
57. Z. Quan, T. Osokoshi and N. Sonoyama, 'Synthesis and electrochemical property of LiCoO2 thin film coated on the surface of carbon and anatase TiO2 powders,' J. Alloy. Compd., 541, 137-143 (2012).
58. Y. G. Wang, Y. R. Wang, E. J. Hosono, K. X. Wang and H. S. Zhou, 'The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method,' Angew. Chem.-Int. Edit., 47 (39), 7461-7465 (2008).
59. X. G. Cao and H. Y. Zhang, 'Preparation of silver-coated copper powder and its oxidation resistance research,' Powder Technol., 226, 53-56 (2012).
60. H. L. Hu, G. Zhang, L. G. Xiao, H. J. Wang, Q. S. Zhang and Z. D. Zhao, 'Preparation and electrical conductivity of graphene/ultrahigh molecular weight polyethylene composites with a segregated structure,' Carbon, 50 (12), 4596-4599 (2012).
61. M. Janus, M. Inagaki, B. Tryba, M. Toyoda and A. W. Morawski, 'Carbon-modified TiO2 photocatalyst by ethanol carbonisation,' Appl. Catal. B-Environ., 63 (3-4), 272-276 (2006).
62. R. Beetstra, U. Lafont, J. Nijenhuis, E. M. Kelder and J. R. van Ommen, 'Atmospheric pressure process for coating particles using atomic layer deposition,' Chem. Vapor Depos., 15 (7-9), 227-233 (2009).
63. E. Abadjieva, A. van der Heijden, Y. L. M. Creyghton and J. R. van Ommen, 'Fluorocarbon coatings deposited on micron-sized particles by atmospheric PECVD,' Plasma Process. Polym., 9 (2), 217-224 (2012).
64. S. H. Jung, S. M. Park, S. H. Park and S. D. Kim, 'Surface modification of fine powders by atmospheric pressure plasma in a circulating fluidized bed reactor,' Ind. Eng. Chem. Res., 43 (18), 5483-5488 (2004).
65. G. L. Chen, S. H. Chen, M. Y. Zhou, W. R. Feng, W. C. Gu and S. Z. Yang, 'Application of a novel atmospheric pressure plasma fluidized bed in the powder surface modification,' J. Phys. D-Appl. Phys., 39 (24), 5211-5215 (2006).
66. J. Pichal, J. Hladik and P. Spatenka, 'Atmospheric-air plasma surface modification of polyethylene powder,' Plasma Process. Polym., 6 (2), 148-153 (2009).
67. Y. Sawada and M. Kogoma, 'Plasma-polymerized tetrafluoroethylene coatings on silica particles by atmospheric-pressure glow discharge,' Powder Technol., 90 (3), 245-250 (1997).
68. W. He, Z. G. Guo, Y. K. Pu, L. T. Yan and W. J. Si, 'Polymer coating on the surface of zirconia nanoparticles by inductively coupled plasma polymerization,' Appl. Phys. Lett., 85 (6), 896-898 (2004).
69. D. L. Shi, S. X. Wang, W. J. van Ooij, L. M. Wang, J. G. Zhao and Z. Yu, 'Uniform deposition of ultrathin polymer films on the surfaces of Al2O3 nanoparticles by a plasma treatment,' Appl. Phys. Lett., 78 (9), 1243-1245 (2001).
70. C. Casiraghi, A. C. Ferrari and J. Robertson, 'Raman spectroscopy of hydrogenated amorphous carbons,' Phys. Rev. B, 72 (8), 085401 (2005).
71. L. Marcinauskas, M. Silinskas and A. Grigonis, 'Influence of standoff distance on the structure and properties of carbon coatings deposited by atmospheric plasma jet,' Appl. Surf. Sci., 257 (7), 2694-2699 (2011).
72. A. M. Ladwig, R. D. Koch, E. G. Wenski and R. F. Hicks, 'Atmospheric plasma deposition of diamond-like carbon coatings,' Diam. Relat. Mat., 18 (9), 1129-1133 (2009).
73. W. J. Liu, X. J. Guo, C. L. Chang and J. H. Lu, 'Diamond-like carbon thin films synthesis by low temperature atmospheric pressure plasma method,' Thin Solid Films, 517 (14), 4229-4232 (2009).
74. R. Pothiraja, N. Bibinov and P. Awakowicz, 'Amorphous carbon film deposition on the inner surface of tubes using atmospheric pressure pulsed filamentary plasma source,' J. Phys. D-Appl. Phys., 44 (35), 355206 (2011).
75. R. Pothiraja, M. Engelhardt, N. Bibinov and P. Awakowicz, 'Film deposition on the inner surface of tubes using atmospheric-pressure Ar-CH4, Ar-C2H2 and Ar-C2H2-H2 plasmas: interpretation of film properties from plasma-chemical kinetics,' J. Phys. D-Appl. Phys., 45 (33), 35202-35202 (2012).
76. J. J. Wang, M. Y. Zhu, R. A. Outlaw, X. Zhao, D. M. Manos and B. C. Holloway, 'Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition,' Carbon, 42 (14), 2867-2872 (2004).
77. A. Majumdar, S. R. Bhattacharayya and R. Hippler, 'Rapid thermal annealing effect on amorphous hydrocarbon film deposited by CH4/Ar dielectric barrier discharge plasma on Si wafer: Surface morphology and chemical evaluation,' J. Appl. Phys., 105 (9), 094909 (2009).
78. P. K. Chu and L. H. Li, 'Characterization of amorphous and nanocrystalline carbon films,' Mater. Chem. Phys., 96 (2-3), 253-277 (2006).
79. F. Tuinstra and J. L. Koenig, 'Raman spectrum of graphite,' J. Chem. Phys., 53 (3), 1126-1130 (1970).
80. T. Sharda, M. Umeno, T. Soga and T. Jimbo, 'Growth of nanocrystalline diamond films by biased enhanced microwave plasma chemical vapor deposition: A different regime of growth,' Appl. Phys. Lett., 77 (26), 4304-4306 (2000).
81. C. Casiraghi, F. Piazza, A. C. Ferrari, D. Grambole and J. Robertson, 'Bonding in hydrogenated diamond-like carbon by Raman spectroscopy,' Diam. Relat. Mat., 14 (3-7), 1098-1102 (2005).
82. J. G. Buijnsters, R. Gago, I. Jimenez, M. Camero, F. Agullo-Rueda and C. Gomez-Aleixandre, 'Hydrogen quantification in hydrogenated amorphous carbon films by infrared, Raman, and x-ray absorption near edge spectroscopies,' J. Appl. Phys., 105 (9), 093510 (2009).
83. A. C. Ferrari and J. Robertson, 'Interpretation of Raman spectra of disordered and amorphous carbon,' Phys. Rev. B, 61 (20), 14095-14107 (2000).
84. S. M. Lee, J. Won, S. Yim, S. J. Park, J. Choi, J. Kim, H. Lee and D. Byun, 'Effect of deposition temperature and thermal annealing on the dry etch rate of a-C: H films for the dry etch hard process of semiconductor devices,' Thin Solid Films, 520 (16), 5284-5288 (2012).
85. 李欣潔, 碩士論文, 國立台灣大學, (2012).
86. M. J. Traylor, M. J. Pavlovich, S. Karim, P. Hait, Y. Sakiyama, D. S. Clark and D. B. Graves, 'Long-term antibacterial efficacy of air plasma-activated water,' J. Phys. D-Appl. Phys., 44 (47), 472001 (2011).
87. H. W. Chang and C. C. Hsu, 'Diagnostic study of an rf-capacitively coupled plasma: the breakdown of the peripheral gap region,' Jpn. J. Appl. Phys., 49 (1), 016101 (2010).
88. A. Celzard, J. F. Mareche, F. Payot and G. Furdin, 'Electrical conductivity of carbonaceous powders,' Carbon, 40 (15), 2801-2815 (2002).
89. A. C. Ferrari and J. Robertson, 'Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon,' Phys. Rev. B, 64 (7), 075414 (2001).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61630-
dc.description.abstract本研究利用常壓介電質放電系統於粉體表面進行含碳材料之鍍膜反應。電漿型態依據不同的實驗架設與操作條件可被分為許多不同種類,當一電漿系統的兩電極間存在至少一介電層時,此系統即被稱做DBD;本研究將碳源前驅物通入電漿中,受到電子的作用下,可使前驅物產生裂解反應並於粉體表面進行含碳材料披覆。本實驗透過改變不同實驗架設、碳源前驅物種類、欲進行披覆的粉體種類等,期望能在粉體表面進行均勻之碳材料鍍膜反應。
本研究曾經嘗試以噴流式常壓介電質放電系統、金屬網格式常壓介電質放電系統、封閉式流體化床介電質放電系統以及噴動式流體化床介電質放電系統等裝置來進行粉體之鍍膜實驗,上述實驗裝置均能使流經電漿區域之碳源前驅物在受到電子的作用下,產生裂解反應以及進行沉積作用;而當利用最後一種實驗裝置進行粉體之碳材料披覆時,可得到較為均勻之碳膜沉積,因此,本研究最後選擇以噴動式流體化床介電質放電系統進行粉體之披覆。使用噴動式流體化床介電質放電系統時,藉由施加一振動能量,使粉體於反應器內能順利地循環流動,有利於粉體與電漿所生成之含碳粒子間均勻接觸,故可在粉體表面鍍上一層均勻的含碳材料。當使用可見光拉曼光譜儀對該碳膜進行檢測時,發現有一極強之光激發螢光背景值(photoluminescence background)產生,可知本系統所生成之碳膜具有較高的氫含量,且在傅立葉轉換紅外線光譜檢測中也可看到碳氫鍵結之吸收峰,因此,本研究藉由不同的後處理方式期望使該碳膜中所含氫元素能夠被移除,並提高碳膜中雙鍵sp2 carbon的比例,使粉體表面披覆一層具有良好導電性的碳膜以增加其導電度。本研究在粉體的後處理方面嘗試過常壓DBD電漿、低壓CCP電漿以及高溫熱處理等方式,最後藉由高溫熱處理的方式使粉體中所含氫元素得以移除,且經此製程所得粉體的導電度可提升至多約三千倍。
zh_TW
dc.description.abstractThis study incorporates a dielectric barrier discharge (DBD) system to coat the surface of the powders with carbon films. Different types of plasmas can be categorized according to different experimental setups and operation parameters. A plasma system is called DBD when at least one dielectric layer exists between its two electrodes. When the carbon source flows into the plasma and thereby came under the effect of the energetic particles, it will then decompose and cover the powder surfaces with carbon films.
This study aims to achieve successful carbon coating on the powder surfaces through different experimental setups, carbon sources, and the host particles.
This study has tried to achieve carbon coating with jet-type atmospheric pressure DBD plasma, mesh-type atmospheric pressure DBD plasma, fluidized bed atmospheric pressure DBD plasma system, and spouted bed atmospheric pressure DBD plasma system, all four of which are able to produce plasma through which the carbon sources would decompose and deposit. However, the last one is able to coat the powder surface with a uniform carbon film. Therefore, this study chooses spouted bed atmospheric pressure DBD plasma system as the final method to do power coating within gas phase.
In the spouted bed atmospheric pressure DBD plasma system, a vibration energy is added to make the host particles circulating smoothly inside the reactor. This circulation allows the host particles to contact the radicals evenly, and thus arrives at ideal carbon coating. Note that the carbon film produced by the DBD system is of a higher hydrogen content. A diagnosis of it with visible Raman spectrometer will produce PL background signals as a result. This study aims at a dehydrogenation and an elevation of sp2 carbon in the carbon film, in hope of improving the conductivity of powders with an ideal conductive carbon coating. In terms of the post-treatment, this study has tried atmospheric pressure DBD plasma device, low pressure capacitively coupled plasma and thermal treatment. The third one can effectively dehydrogenate the carbon film and improve powder conductivity.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:07:51Z (GMT). No. of bitstreams: 1
ntu-102-R00524024-1.pdf: 11753686 bytes, checksum: c01b0eb4dab8e7df188d8dad64349000 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents誌謝 I
中文摘要 III
英文摘要 V
目錄 VII
圖目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 論文總覽 2
第二章 文獻回顧 3
2.1 常壓電漿介紹 3
2.2 粉粒體表面披覆或改質之目的 7
2.2.1 於粉體表面進行材料披覆以增加其穩定性 7
2.2.2 於粉體表面進行材料披覆以增加其導電度 15
2.2.3 於粉體表面進行材料披覆以增加其流動性質43-45 24
2.3 粉粒體表面披覆或改質之技術 26
2.3.1 固相反應 26
2.3.2 液相反應 35
2.3.3 氣相反應 44
2.4 碳披覆之介紹 51
2.4.1 利用電漿系統沉積碳材料之文獻介紹 51
2.4.2 碳材料之拉曼光譜及傅立葉轉換紅外線光譜介紹 59
第三章 實驗設備與架構 71
3.1 實驗設備之演進 71
3.1.1 噴流式介電質放電系統進行粉體披覆之設備 71
3.1.2 金屬網格式介電質放電系統進行粉體披覆之設備 76
3.1.3 流體化床介電質放電系統進行粉體披覆之設備 80
3.1.4 電漿系統之性質檢測 85
3.2 粉體披覆之檢測分析設備 86
第四章 結果與討論 89
4.1 噴流式介電質放電於粉體披覆之結果 89
4.2 金屬網格式介電質放電於粉體披覆之結果 93
4.3 流體化床介電質放電於粉體披覆之結果 98
第五章 結論與未來展望 141
第六章 參考文獻 143
dc.language.isozh-TW
dc.subject碳披覆zh_TW
dc.subject常壓電漿zh_TW
dc.subject介電質放電zh_TW
dc.subject氣相鍍膜zh_TW
dc.subject粉體鍍膜zh_TW
dc.subjectatmospheric plasmaen
dc.subjectcarbon coatingen
dc.subjectpowder coatingen
dc.subjectgas phase coatingen
dc.subjectDBDen
dc.title利用常壓介電質放電系統於粉體表面進行含碳材料鍍膜之製程研究zh_TW
dc.titleCarbon Coating on Powder Surfaces by Dielectric Barrier Discharge at Atmospheric Pressureen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李岱洲,廖英志
dc.subject.keyword常壓電漿,介電質放電,氣相鍍膜,粉體鍍膜,碳披覆,zh_TW
dc.subject.keywordatmospheric plasma,DBD,gas phase coating,powder coating,carbon coating,en
dc.relation.page157
dc.rights.note有償授權
dc.date.accepted2013-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
11.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved