Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61601
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊照彥(Jaw-Yen Yang)
dc.contributor.authorChih-Yun Liuen
dc.contributor.author劉之昀zh_TW
dc.date.accessioned2021-06-16T13:06:59Z-
dc.date.available2018-08-09
dc.date.copyright2013-08-09
dc.date.issued2013
dc.date.submitted2013-08-01
dc.identifier.citation[1] Bird, G. A., Molecular gas dynamics and the direct simulation of gas flows, Clarendon Press Oxford, (1994).
[2] Yang, J. Y. and Hung, L.H., “Lattice Uehling-Uhlenbeck Boltzmann Bhatnagar- Gross-Krook hydrodynamics of quantum gases,” Phys. Rev. E, vol. 79, 056708, (2009).
[3] Woods, L. C., An introduction to the kinetic theory of gases and magnetoplasmas. London: Cambridge University Press, (1993) .
[4] Chen, S.Y., Martinez, D., and Mei, R.W., “On boundary conditions in lattice Boltzmann methods,” Physics of Fluids, vol. 8, pp.2257–2536, (1996).
[5] Luo, L.S., “Unified theory of lattice Boltzmann models for nonideal gases,” Phys. Rev. Lett., vol. 81, pp. 1618~1621, (1998).
[6] He, X. and Luo, L.S., “Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation,” Phys. Rev. E, vol. 56, pp.6811–6817, (1997).
[7] Xiaoyi He, Shiyi Chen, and Gary D. Doolen, “A novel thermal model for the lattice Boltzmann method in incompressible limit,” Journal of Computational Physic, vol. 146, pp. 282–300, (1998).
[8] McNamara, G. and Zanetti, G., “Use of the Boltzmann equation to simulate lattice-gas automata,” Phys. Rev. E, vol. 61, pp.2332–2335, (1988).
[9] Higuera, F. and Jimenez, J., “Boltzmann approach to lattice gas simulation,” Europhys. Lett., vol.9, pp.663–668, (1989).
[10] Qian, Y., d’Humieres, D., and Lallemand, P., “Lattice BGK models for Navier-Stokes Equation,” Europhys. Lett., vol.17, pp.479–484, (1992).
[11] Z. L. Guo, C.G. Zheng, and B.C. Shi, “Thermal lattice Boltzmann equation for low Mach number flows: decoupling model,” Phys. Rev. E, vol.75, 036704, (2007).
[12] X. Shan., “Simulation of Rayleigh–Benard convection using a lattice Boltzmann method,” Phys. Rev. E, vol.55, pp.2780–2788, (1997).
[13] Shan, X., Yuan, X.F., and Chen, Y. H., “Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation,” J. Fluid Mech., vol.550, pp.413–441, (2006).
[14] Z. L. Guo, C.G. Zheng, and B.C. Shi, “ A coupled lattice BGK model for the Boussinesq equations,” Int. J. Numer. Meth. Fluids, vol.39, pp.325-342, (2002).
[15] Hung, L.H. and Yang, J. Y., “ A coupled lattice Boltzmann model for thermal flows,” IMA Journal of Applied Mathematics, pp. 1-16, (2011).
[16] Lutsko, J.F., “Chapman-Enskog expansion about nonequilibrium states with application to the sheared granular fluid,” Phys. Rev. E, vol. 73, 021302, (2006).
[17] Chen, H., Chen, S., and Matthaeus, W.H., “Recovery of the Navier-Stokes equation using a lattice Boltzmann method,” Phys. Rev. E, vol. 45, pp.5339–5342, (1992).
[18] Chen, Y., Ohashi, H., and Akiyama, M., “ Thermal lattice Bhatnagar-Gross-Krook model without nonlinear deviations in macrodynamic equations,” Phys. Rev. E, vol. 50, 2776, (1994).
[19] Zou, Q.S. and He, X.Y., “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model,” Physics of Fluids, vol. 9, pp.1591–1598, (1997).
[20] Shi, Y., Zhao, T. S., and Guo, Z. L., “ Thermal lattice Bhatnagar-Gross-Krook model for flows with viscous heat dissipation in the incompressible limit,” Phys. Rev. E, vol.70, 066310, (2004).
[21] 童長青、何雅玲、王勇、劉迎文 封閉方腔自然對流的格子-Boltzmann 方法動態模擬,西安交通大學學報(2007)。
[22] 郭照立、鄭楚光 格子Boltzmann方法的原理及應用(Theory and Applications of Lattice Boltzmann Method),科學出版社(2009)。
[23] 何雅玲、王勇、李慶 格子Boltzmann方法的原理及應用(Lattice Boltzmann Method: Theory and Applications),科學出版社(2009)。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61601-
dc.description.abstract本文研究中,我們使用耦合半古典格子波茲曼法於雙分佈函數模型下,來計算模擬熱流動問題。
在此模型下,藉著速度分佈函數來計算速度場;總能分佈函數計算溫度場。由古典格子波茲曼法推導出半古典格子波茲曼法來模擬量子氣體,其方法是利用 Uehling-Uhlenbeck Boltzmann-BGK 方程,經Hermite多項式根據Grad’s moment展開推得,再由Gauss-Hermite積分得到巨觀物理量(數量密度、動量、能量)。此半古典格子波茲曼法可以模擬三種量子氣體效應(Maxwell-Boltzmann統計、Bose-Einstein統計、Fermi-Dirac統計)。
於雙分佈函數下,採用D2Q9格子速度模型探討多種Rayleigh number和不同粒子統計情況,模擬自然對流之封閉方腔流、方形腔體之頂蓋有一恆定驅動速度及Rayleigh-Benard自然對流此三種物理問題。由模擬結果分析可以發現,當Rayleigh Number較小時,主要影響整個流場之熱傳方式為傳導所造成,從流線圖可觀察到渦漩會呈近似圓形;隨著Rayleigh Number增大,在流場內熱交換活動越來越劇烈,主要傳遞熱的方式由原本的傳導,漸漸變成以對流為主,其流線圖中的渦漩會漸漸變成橢圓,根據數值結果與前例可得到驗證。因此,使我們瞭解Rayleigh number與流場變化的關係。
zh_TW
dc.description.abstractA coupled lattice Boltzmann method is proposed for solving thermal flows in the double-distribution-function framework. In the present, a density distribution function is used to simulate the flow field, while a total energy distribution function is employed to simulate the temperature field. The semiclassical lattice Boltzmann equation is used for describing the flow of fermions and bosons. This method is derived by directly projecting the Uehling-Uhlenbeck Boltzmann-BGK equations onto the tensor Hermite polynomials using Grad’s moment expansion method. By applying Gauss-Hermite quadrature to the moment integration, we have the macroscopic quantities (the number density, number density flux, and energy density), and get the equilibrium distribution function which including Maxwell-Boltzmann, Bose-Einstein, and Fermi-Dirac statistics. Simulations of 2D natural convection flows, such as square cavity, lid driven cavity flow, and Rayleigh-Benard thermal convection, based on the two-dimensional nine-velocity (D2Q9) lattice model for several Rayleigh numbers and different particle statistics are shown. For low Rayleigh number, a vortex appears at the center of the cavity. When the Rayleigh number increases, the vortex gradually becomes elliptic. The numerical results are in good agreement with the previous data. The heat is transferred mainly by conduction at small Rayleigh number and by convection at large Rayleigh number. Therefore, we understand the relation of Rayleigh number and the change of the flow.en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:06:59Z (GMT). No. of bitstreams: 1
ntu-102-R00543078-1.pdf: 5401313 bytes, checksum: b14fb81d56b8992b528a117ba0bbb4f9 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents致謝 I
中文摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目標 VIII
符號 IX
第一章、緒論 1
1-1 格子Boltzmann 方法(Lattice Boltzmann method) 1
1-2 格子Boltzmann 法文獻回顧 2
1-3 本文目的 3
1-4 本文架構 3
第二章、Boltzmann方程式 5
2-1 氣體運動理論(Gas kinetic theory) 5
2-2 分佈函數(Distribution function) 7
2-3 Boltzmann 方程 7
2-5 格子Boltzmann方程與速度模型 10
2-4 Boltzmann BGK方程 12
2-6 平衡態分佈函數的Hermite展開 13
2-7 外力項的Hermite展開 18
第三章、熱流體動力學之格子Boltzmann方法 19
3-1 總能分佈函數 19
3-2 Chapman-Enskog分析 21
第四章、雙分佈函數半古典格子Boltzmann法理論 24
4-1 理想量子氣體動力學 24
4-2 雙分佈函數之半古典格子Boltzmann方程 25
4-3 宏觀物理量的求法 33
4-4 Chapman-Enskog分析 34
第五章、邊界處理方法和模擬流程 40
5-1 格子Boltzmann方法之邊界條件 40
5-2 收斂條件 44
5-3 模擬流程 45
第六章、模擬結果與討論 46
6-1 物理問題描述 46
6-2 模擬結果分析與討論 55
第七章、結論與展望 76
7-1 結論 76
7-2 展望 77
參考文獻 78
dc.language.isozh-TW
dc.subject雙分佈函數zh_TW
dc.subject自然對流zh_TW
dc.subject半古典格子波茲曼方法zh_TW
dc.subjectnatural convectionen
dc.subjectdouble distribution functionen
dc.subjectsemiclassical lattice Boltzmann methoden
dc.title雙分佈函數半古典格子波茲曼法之熱流場模擬zh_TW
dc.titleSemiclassical Lattice Boltzmann Modeling of Thermal Flows Using Double Distribution Functionsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳朝光(Chao-Kuang Chen),楊玉姿(Yue-Tzu Yang),洪立昕(Li-Hsin Hung)
dc.subject.keyword雙分佈函數,半古典格子波茲曼方法,自然對流,zh_TW
dc.subject.keyworddouble distribution function,semiclassical lattice Boltzmann method,natural convection,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2013-08-02
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
5.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved