Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61578
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor駱尚廉(Shang-Lien Lo)
dc.contributor.authorKai-Yao Wangen
dc.contributor.author王楷堯zh_TW
dc.date.accessioned2021-06-16T13:06:21Z-
dc.date.issued2013
dc.date.submitted2013-08-02
dc.identifier.citation毛玉麟、吳政恩、經濟部工業局/台灣產業服務基金會,“染料工業”,經濟部工
    業局,1995。
邱永亮、魏盛德合譯,染色化學,徐氏基金會出版,1975。
邱永亮譯,染料之合成與特性,徐氏基金會出版,1975。
經濟部環境保護署 環保標章資訊站 http://greenmark.epa.gov.tw/,2006。
經濟部環境保護署 環保法規 放流水標準 http://w3.epa.gov.tw/,2007。
臺北縣綜合發展計畫 http://www.bp.ntu.edu.tw/,2005。
張漢昌,廢水污染與防治,新文京開發出版社出版,第九章,第 391-396 頁,2005。
朱煥中,活性污泥生物質體吸附鹼性染料之研究,碩士論文,台灣科技大學高分
子工程系,2004。
周怡君,在連續之厭氧/好氧二階段生物處理系統內利用固定化菌體顆粒同時去
除染整廢水色度及 COD 之研究,碩士論文,中華大學土木工程學系,2004。
洪淑汝,探討 Sphingobacterium sp.菌種對偶氮染料降解之可行性研究,碩士論
   文,輔仁大學化學系,2006。
郭淑慧,以奈米碳管對水中偶氮染料之吸脫附行為探討,碩士論文,雲林科技大
   學環境與安全衛生工程系,2006。
陳凱文,具可見光吸收之金屬改質型TiO2奈米光觸媒,碩士論文,東海大學環   
   境科學與工程學系,2006。
曾俊貴,新型反應器進行以臭氧/過氧化氫程序處理染料水溶液之研究,碩士論
   文,台灣科技大學化學工程系,1999。
黃東斌,以紫外線/光觸媒過濾薄膜程序處理染料水溶液之研究,碩士論文,台
灣科技大學化學工程系,2005。
黃慈玲,以飛灰去除染料及染料廢水之研究,碩士論文,中興大學環境工程系,
   1999。
劉昭煜,有機改質蒙脫石處理反應性印染廢水研究,碩士論文,東華大學材料科
   學與工程學系,2002。
羅兆鈞,二氧化鈦奈米管應用於處理染料廢水之研究,碩士論文,元智大學化學
   工程與材料科學系,2006。
賴保帆,以 UV/TiO2 程序處理偶氮染料之分解反應研究,碩士論文,中興大學
   環境工程系,2000。
Anpo, M. (2000). Use of visible light. Second-generation titanium oxide photocatalysts prepared by the application of an advanced metal ion-implantation method. Pure and Applied Chemistry, 72(9), 1787-1792.
Arana, J., Dona-Rodriguez, J. M., Melian, J. A. H., Rendon, E. T., & Diaz, O. G. (2005). Role of Pd and Cu in gas-phase alcohols photocatalytic degradation with doped TiO2. Journal of Photochemistry and Photobiology a-Chemistry, 174(1), 7-14.
Bamwenda, G. R., Tsubota, S., Nakamura, T., & Haruta, M. (1995). Photoassisted Hydrogen-Production from a Water-Ethanol Solution - a Comparison of Activities of Au-Tio2 and Pt-Tio2. Journal of Photochemistry and Photobiology a-Chemistry, 89(2), 177-189.
Behnajady, M. A., Modirshahla, N., Daneshvar, N., & Rabbani, M. (2007). Photocatalytic degradation of C.I. Acid Red 27 by immobilized ZnO on glass plates in continuous-mode. J Hazard Mater, 140(1-2), 257-263.
Chen, J., Ollis, D. F., Rulkens, W. H., & Bruning, H. (1999). Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metallized TiO2 suspensions. Part (I): Photocatalytic activity and pH influence. Water Research, 33(3), 661-668.
Chen, Y. S., Crittenden, J. C., Hackney, S., Sutter, L., & Hand, D. W. (2005). Preparation of a novel TiO2-based p-n junction nanotube photocatalyst. Environmental Science & Technology, 39(5), 1201-1208.
Chenthamarakshan, C. R., Ming, Y., & Rajeshwar, K. (2000). Underpotential photocatalytic deposition: A new preparative route to composite semiconductors. Chemistry of Materials, 12(12), 3538-+.
Chiang, K., Amal, R., & Tran, T. (2002). Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide. Advances in Environmental Research, 6(4), 471-485.
Cho, Y. M., Choi, W. Y., Lee, C. H., Hyeon, T., & Lee, H. I. (2001). Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environmental Science & Technology, 35(5), 966-970.
Daneshvar, N., Salari, D., & Khataee, A. R. (2003). Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters. Journal of Photochemistry and Photobiology a-Chemistry, 157(1), 111-116.
Daneshvar, N., Salari, D., & Khataee, A. R. (2004). Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. Journal of Photochemistry and Photobiology a-Chemistry, 162(2-3), 317-322.
Forouzan, F., Richards, T. C., & Bard, A. J. (1996). Photoinduced reaction at TiO2 particles. Photodeposition from Ni-II solutions with oxalate. Journal of Physical Chemistry, 100(46), 18123-18127.
Golka, K., Kopps, S., & Myslak, Z. W. (2004). Carcinogenicity of azo colorants: influence of solubility and bioavailability. Toxicology Letters, 151(1), 203-210.
Harada, M., & Einaga, H. (2004). Photochemical deposition of platinum on TiO2 by using poly(vinyl alcohol) as an electron donor and a protecting polymer. Catalysis Communications, 5(2), 63-67.
Herrmann, J. M., Disdier, J., & Pichat, P. (1984). Effect of Chromium Doping on the Electrical and Catalytic Properties of Powder Titania under Uv and Visible Illumination. Chemical Physics Letters, 108(6), 618-622.
Iwasaki, M., Hara, M., Kawada, H., Tada, H., & Ito, S. (2000). Cobalt ion-doped TiO2 photocatalyst response to visible light. Journal of Colloid and Interface Science, 224(1), 202-204.
Jang, S. J., Kim, M. S., & Kim, B. W. (2005). Photodegradation of DDT with the photodeposited ferric ion on the TiO2 film. Water Research, 39(10), 2178-2188.
Jiang, Y., Petrier, C., & Waite, T. D. (2002). Effect of pH on the ultrasonic degradation of ionic aromatic compounds in aqueous solution. Ultrasonics Sonochemistry, 9(3), 163-168.
Jin, S., & Shiraishi, F. (2004). Photocatalytic activities enhanced for decompositions of organic compounds over metal-photodepositing titanium dioxide. Chemical Engineering Journal, 97(2-3), 203-211.
Kim, K. D., Han, D. N., Lee, J. B., & Kim, H. T. (2006). Formation and characterization of Ag-deposited TiO2 nanoparticles by chemical reduction method. Scripta Materialia, 54(2), 143-146.
Kim, M. S., Hong, K. M., & Chung, J. G. (2003). Removal of Cu(II) from aqueous solutions by adsorption process with anatase-type titanium dioxide. Water Research, 37(14), 3524-3529.
Kumbhar, A., & Chumanov, G. (2005). Synthesis of Iron(III)-doped titania nanoparticles and its application for photodegradation of sulforhodamine-B pollutant. Journal of Nanoparticle Research, 7(4-5), 489-498.
Kusic, H., Koprivanac, N., Bozic, A. L., & Selanec, I. (2006). Photo-assisted Fenton type processes for the degradation of phenol: A kinetic study (vol 136, pg 632, 2006). Journal of Hazardous Materials, 138(2), 419-420.
Li, Y. X., Lu, G. X., & Li, S. B. (2001). Photocatalytic hydrogen generation and decomposition of oxalic acid over platinized TiO2. Applied Catalysis a-General, 214(2), 179-185.
Linsebigler, A. L., Lu, G. Q., & Yates, J. T. (1995). Photocatalysis on Tio2 Surfaces - Principles, Mechanisms, and Selected Results. Chemical Reviews, 95(3), 735-758.
Liu, B. S., Zhao, X. J., Zhang, N. Z., Zhao, Q. N., He, X., & Feng, J. Y. (2005). Photocatalytic mechanism of TiO2-CeO2 films prepared by magnetron sputtering under UV and visible light. Surface Science, 595(1-3), 203-211.
Liu, S. X., Qu, Z. P., Han, X. W., & Sun, C. L. (2004). A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide. Catalysis Today, 93-5, 877-884.
Liu, L. F., Chen, F., Yang, F. L., Chen, Y. S., & Crittenden, J. (2012). Photocatalytic degradation of 2,4-dichlorophenol using nanoscale Fe/TiO2. Chemical Engineering Journal, 181, 189-195.
Mazinani, B., Beitollahi, A., Masrom, A. K., Yahya, N., Choong, T. S. Y., Ibrahim, S. M., & Javadpour, J. (2012). Characterization and evaluation of the photocatalytic properties of wormhole-like mesoporous silica incorporating TiO2, prepared using different hydrothermal and calcination temperatures. Research on Chemical Intermediates, 38(8), 1733-1742.
Mehrdad, A., & Hashemzadeh, R. (2010). Ultrasonic degradation of Rhodamine B in the presence of hydrogen peroxide and some metal oxide. Ultrasonics Sonochemistry, 17(1), 168-172.
Minero, C., Catozzo, F., & Pelizzetti, E. (1992). Role of Adsorption in Photocatalyzed Reactions of Organic-Molecules in Aqueous Tio2 Suspensions. Langmuir, 8(2), 481-486.
Ming, Y., Chenthamarakshan, C. R., & Rajeshwar, K. (2002). Radical-mediated photoreduction of manganese(II) species in UV-irradiated titania suspensions. Journal of Photochemistry and Photobiology a-Chemistry, 147(3), 199-204.
Naseem, R., & Tahir, S. S. (2001). Removal of Pb(II) from aqueous/acidic solutions by using bentonite as an adsorbent. Water Research, 35(16), 3982-3986.
Okamoto, K., Yamamoto, Y., Tanaka, H., Tanaka, M., & Itaya, A. (1985). HETEROGENEOUS PHOTOCATALYTIC DECOMPOSITION OF PHENOL OVER TIO2 POWDER. Bulletin of the Chemical Society of Japan, 58(7), 2015-2022.
Perez-Urquiza, M., & Beltran, J. L. (2000). Determination of dyes in foodstuffs by capillary zone electrophoresis. Journal of Chromatography A, 898(2), 271-275.
Sclafani, A., Mozzanega, M. N., & Pichat, P. (1991). Effect of Silver Deposits on the Photocatalytic Activity of Titanium-Dioxide Samples for the Dehydrogenation or Oxidation of 2-Propanol. Journal of Photochemistry and Photobiology a-Chemistry, 59(2), 181-189.
Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzetti, E., & Hidaka, H. (1995). Exploiting the Interparticle Electron-Transfer Process in the Photocatalyzed Oxidation of Phenol, 2-Chlorophenol and Pentachlorophenol - Chemical Evidence for Electron and Hole Transfer between Coupled Semiconductors. Journal of Photochemistry and Photobiology a-Chemistry, 85(3), 247-255.
Strickland, A. F., & Perkins, W. S. (1995). Decolorization of Continuous Dyeing Waste-Water by Ozonation. Textile Chemist and Colorist, 27(5), 11-15.
Stylidi, M., Kondarides, D. I., & Verykios, X. E. (2003). Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions. Applied Catalysis B-Environmental, 40(4), 271-286.
Sunada, K., Watanabe, T., & Hashimoto, K. (2003). Bactericidal activity of copper-deposited TiO(2) thin film under weak UV light illumination. Environmental Science & Technology, 37(20), 4785-4789.
Yamazaki, S., Takemura, N., Yoshinaga, Y., & Yoshida, A. (2003). Transmittance change of the TiO(2) thin film by photoreductive deposition of Cu(II). Journal of Photochemistry and Photobiology a-Chemistry, 161(1), 57-60.
Yang, J. C., Kim, Y. C., Shul, Y. G., Shin, C. H., & Lee, T. K. (1997). Characterization of photoreduced Pt/TiO2 and decomposition of dichloroacetic acid over photoreduced Pt/TiO2 catalysts. Applied Surface Science, 121, 525-529.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61578-
dc.description.abstract本研究利用光沉積法製備由TiO2和Fe改質成的光觸媒,克服純TiO2高電子電洞再結合率的問題,大幅提升處理偶氮染料Acid Red 27 (AR27) 的效率。實驗先由貴金屬Ag (k=0.0047min-1)、過度金屬Fe (k=0.0419min-1)、稀土金屬Ce (k=0.0018min-1)三種金屬中,選定Fe為最佳披覆二氧化鈦的金屬,在調整製作光觸媒的操作參數披覆Fe量和Fe0-TiO2的鍛燒溫度,並做SEM-EDX和UV-vis分析Fe0-TiO2的表面特性和測染料、觸媒之最大吸收波長、AR27脫色率,最後找出最佳光降解AR27之實驗環境如UV光種類、觸媒劑量、pH、曝氣種類,探討其中的反應機制。
由SEM-EDX結果可知,Fe在TiO2上的披覆量為重量百分比0.71%左右,觸媒粒徑約為34 nm,Fe0-TiO2¬鍛燒溫度達450度,其晶型主要為銳鈦礦,能有效降解AR27,繼續升溫至550度,銳鈦礦慢慢轉變成晶紅石,效率反而降低。披覆金屬量對於AR27的脫色效率,隨著披覆量的上升而上升直到1 wt%,之後由於遮蔽效應和燒結現象披覆過多Fe反而影響脫色效率,因此選定披覆1 wt%的鐵以450度鍛燒作為光沉積法的最佳操作條件。
本研究的處理的目標汙染為10 ppm之AR27,選用8 W、254 nm之UV光為效益最高之燈管,加入最佳劑量0.5 g的Fe0-TiO2,在25度的恆溫水域中,經過兩小時的光降解,AR27幾乎完全去除,其中在酸性條件下,水中的AR27容易和Fe0-TiO2吸附做進一步的降解反應,因此降解效率pH 3 > pH 7 > pH 9,在曝氣情形下,因氧氣幫助超氧自由基和過氧化氫等強氧化劑的生成,曝氧氣的效率比曝氮氣佳,加入氧化劑0.5 mM H2O2和Na2S2O8能幫助光催化反應的進行,加入抑制劑5 % C2H5OH則反之。
zh_TW
dc.description.abstractThis study presents photocatalytic activity of Fe0-TiO2 toward AR27 degradation in aqueous solution. Photocatalyst powders were analyzed for surface composition by scanning electron microscopy (SEM) and crystal composition by energy dispersive X-ray spectrometer (EDX). The SEM image showed that the particle size distribution of Fe0-TiO2 was narrow and the average particle size was approaching 34 nm. EDX result showed that 0.71 wt% Fe was coating on the TiO2. AR27 is detected by UV-Vis spectrometer to find maximum absorption wavelength of AR27 and catalysts. In 25°C, choosing 8W, 254 nm UV light irradiation, AR27 completely photodegradated in the present of the best cost-effective 0.5 g Fe0-TiO2 (1 wt%) photocatalyst after 120 min. Fe0-TiO2 with higher dye photodegradation efficiency was found to prepare with synthesis temperature 450°C than 350°C and 550°C, due to increasing of anatase TiO2 phase. Decolorization capacity of Fe0-TiO2 would increase with increasing coating weight until 1 wt% and decrease with increasing coating weight over 1 wt% of Fe0: 1 wt% > 2 wt% > 10 wt% > 0.5 wt%. The effect of pH on color removal was studied, acidic conditions were more favorable than alkaline condition. In the other hand, aeration is a significant factor for photodegradation. The result showed as follow: O2 > N2. Hydrogen peroxide and persulfate trapped photogenerated electrons and inhibited the recombination of electron/hole pairs in UV/Fe0-TiO2, thereby accelerating decolorization rate. On the contraty, the addition of ethanol inhibited decolorization. And a comparative investigation between Fe0-TiO2, Ag0-TiO2 and Ce0-TiO2 was carried out. The decomposition of AR27 could be well simulated with pseudo first-order kinetics, and the rate constants (kobs) were 0.0419 min-1, 0.0047 min-1, 0.0018 min-1. Fe0-TiO2 particles led to an enhanced photoactivity because of the rapid transfer of the photo-generated electrons from the semiconductors to the dopant. Experimental results indicated that synthesis temperature, coating weight, pH, aeration, oxidants, inhibitors would significantly affect the photo-decolorization capacity.en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:06:21Z (GMT). No. of bitstreams: 1
ntu-102-R00541131-1.pdf: 3832963 bytes, checksum: 9899cc3e54b084b58212614fdf22005b (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents誌謝 I
中文摘要 II
ABSTRACT III
目錄 V
圖目錄 VIII
表目錄 IX
第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的及內容 2
第二章 文獻回顧 3
2.1 染料概論 3
2.1.1 染料發色原理 3
2.1.2 染料分類 4
2.1.3 偶氮染料 5
2.2 染料處理之研究 7
2.3 台灣染整廢水汙染現況 9
2.4 光催化反應 12
2.4.1 光催化反應基本理論 12
2.4.2 光催化反應分類 13
2.4.3 TiO2半導體簡介 14
2.5 奈米光觸媒的改質 17
2.5.1 光觸媒添加重金屬 17
2.5.2 複合半導體材料 18
2.5.3 光觸媒摻雜過度金屬 18
2.5.4 光觸媒表面敏化 19
2.6 光沉積法 20
2.6.1 貴金屬的改質 22
2.6.2 過渡金屬的改質 23
2.6.3 稀土、鹼土金屬的改質 24
第三張 材料與方法 26
3.1 藥品與設備 26
3.1.1 藥品 26
3.1.2 設備 26
3-2 實驗設計 27
3.3 實驗步驟 29
3.3.1 二氧化鈦之改質-光沉積法 29
3.3.2 AR27之光催化降解 30
3.4 分析項目及方法 31
3.4.1 場發射槍掃描式電子顯微鏡/X射線能量分散光譜儀 31
3.4.2 紫外光-可見光光譜儀 31
第四章 結果與討論 34
4.1 FE-SEM/EDX結果 34
4.2 實驗背景值之影響 38
4.3 各種金屬改質TIO2之影響 39
4.4 FE0-TIO2鍛燒溫度之影響 41
4.5 金屬披覆量之影響 43
4.6 UV光波長和瓦數之影響 45
4.7 觸媒劑量之影響 47
4.8 染料溶液PH的影響 49
4.9 曝氣之影響 51
4.10 鐵改質二氧化鈦之應用-PFOA 53
第五章 結論與建議 54
5.1 結論 54
5.2 建議 55
第六章 參考文獻 56
附錄 實驗數據 60
dc.language.isozh-TW
dc.subject零價鐵zh_TW
dc.subject二氧化鈦zh_TW
dc.subject光催化反應zh_TW
dc.subjectAcid Red 27zh_TW
dc.subject光沉積法zh_TW
dc.subjectTiO2en
dc.subjectphotodeposition synthesis methoden
dc.subjectAcid Red 27en
dc.subjectFe0en
dc.subjectphotocatalyticen
dc.title以鐵改質二氧化鈦光催化降解酸性紅27之研究zh_TW
dc.titlePhotocatalytic Decolorization of Acid Red 27 by Iron-modified TiO2en
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張慶源(Ching-Yuan Chang),劉雅瑄(Ya Hsuan Liou)
dc.subject.keyword零價鐵,二氧化鈦,光催化反應,Acid Red 27,光沉積法,zh_TW
dc.subject.keywordAcid Red 27,Fe0,TiO2,photocatalytic,photodeposition synthesis method,en
dc.relation.page70
dc.rights.note有償授權
dc.date.accepted2013-08-02
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
3.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved