請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61574完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李嗣涔 | |
| dc.contributor.author | Chung-I Ho | en |
| dc.contributor.author | 何宗一 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:06:15Z | - |
| dc.date.available | 2013-08-06 | |
| dc.date.copyright | 2013-08-06 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-02 | |
| dc.identifier.citation | [1] J. Zhao, A. Wang, F. Yun, G. Zhang, D. M. Roche, S. R. Wenham, and M. A. Green, Prog. Photovoltaics 5, 269 (1997).
[2] J. Zhao, A. Wang, M. Green, and F. Ferrazza, Appl. Phys. Lett. 73, 1991 (1998). [3] O. Schultz, S. W. Glunz, and G. P. Willeke, Prog. Photovoltaics 12, 553 (2004). [4] Yang J, Banerjee A, Glatfelter T, Hoffman K, Xu X, Guha S., Proceedings of the 1st World Conference on Photovoltaic Energy Conversion, 380–385 (1994). [5] Benagli, S. et al., Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 2293–2298 (2009). [6] Banerjee A, Su T, Beglau D, Pietka G, Liu F, DeMaggio G, Almutawalli S, Yan B, Yue G, Yang J, Guha S., 37th IEEE PVSC, Seattle, June, (2011). [7] J. Britt and C. Ferekides, Appl. Phys. Lett. 62, 2851 (1993). [8] Wu X, Keane JC, Dhere RG, DeHart C, Duda A, Gessert TA, Asher S, Levi DH, Sheldon P., Proceedings of the 17th European Photovoltaic Solar Energy Conference, 995–1000 (2001). [9] I. Repins et al., Prog. Photovoltaics 16, 235 (2008). [10] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, Progress in Photovoltaics: Research and Applications 19, 894 (2011). [11] Miyake K, Uetani Y, Seike T, Kato T, Oya K, Yoshimura K, Ohnishi T., “SUMITOMO KAGAKU”, Vol. 2010–1, (2010). [12] G. Li, R. Zhu, and Y. Yang, Nature Photon. 6, 153 (2012). [13] M. Gratzel, J. Photochem. Photobiol. C 4, 145 (2003). [14] Koide, Naoki, Ryohsuke Yamanaka, and Hiroyuki Katayama. 'Recent advances of dye-sensitized solar cells and integrated modules at SHARP.'MRS Proceedings. Vol. 1211. No. 1. Cambridge University Press, (2009). [15] A.E. Becquerel, C. R. Acad. Sci. 9 (1839) 145; A.E. Becquerel, C. R. Acad. Sci. 9 (1839) 561. [16] Adams, W G.; Day, R. E.: The Action of Light an Selenium. Proc. R. Soc.,25 ,113 (1876). [17] D. M. Chapin, C. S. Fuller, and G. L. Pearson, J. Appl. Phys. 25, 676 (1954). [18] R. C. Chittick, J. H. Alexander, and H. F. Sterling, J. Electrochem. Soc. 116, 77 (1969). [19] W. E. Spear and P. G. LeComber, Solid State Commun. 17, 1193 (1975). [20] D. E. Carlson and C. R. Wronski, Appl. Phys. Lett. 28, 671 (1976). [21] J. Yang, A. Banerjee, and S. Guha, Appl. Phys. Lett. 70, 2975 (1997). [22] D. L. Staebler and C. R. Wronski, Appl. Phys. Lett. 31, 292 (1977). [23] A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, Prog. Photovoltaics 12, 113 (2004). [24] E. Yablonovitch, J. Opt. Soc. Am. 72, 899 (1982). [25] J. Muller, B. Rech, J. Springer, and M. Vanecek, Sol. Energy 77, 917 (2004). [26] S. -B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, Appl. Phys. Lett. 91, 243501 (2007). [27] P. Campbell and M. A. Green, J. Appl. Phys. 62, 243 (1987). [28] A. Campa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krc, M. Topic, and M. Zeman, Prog. Photovoltaics 18, 160 (2010). [29] B. Curtin, R. Biswas, and V. Dalal, Appl. Phys. Lett. 95(23), 231102 (2009). [30] V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, Appl. Phys. Lett. 95, 183503 (2009). [31] Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, Nano Lett. 12, 440–445 (2012). [32] U. Palanchoke, V. Jovanov, H. Kurz, P. Obermeyer, H. Stiebig, and D. Knipp, Opt. Express 20, 6340–6347 (2012). [33] van Dijk, Lourens, et al., Solid-State and Organic Lighting. Optical Society of America, (2012). [34] H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, Nano Lett. 12, 4070 (2012). [35] F. J. Beck, A. Polman, and K. R. Catchpole, J. Appl. Phys.105(11), 114310 (2009). [36] E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F.X. Royer and H. Stiebig, Thin Solid Films 516, 6813-6817(2008). [37] E. Moulin, J. Sukmanowski, P. Luo, R. Carius, F.X. Royer and H. Stiebig, Journal of Non-Crystalline Solids 354, 2488-2491(2008). [38] C. Eminian, F.-J. Haug, O. Cubero, X. Niquille and C. Ballif, Progress in Photovoltaics: Research and Applications, 19,260–265(2011). [39] Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, Appl. Phys. Lett. 96, 261109(2010). [40] Vivian E. Ferry, Marc A. Verschuuren, M. Claire van Lare, Ruud E. I. Schropp, Harry A. Atwater, and Albert Polman, Nano Lett. 11 (10), pp 4239–4245(2011). [41] Xi Chen, Baohua Jia, Jhantu K. Saha, Boyuan Cai, Nicholas Stokes, Qi Qiao, Yongqian Wang, Zhengrong Shi, and Min Gu, Nano Lett. 12 (5), pp 2187–2192(2012). [42] Santbergen R, Liang R and Zeman M, Proc. 35th IEEE PVSEC(2010) (Hawaii, June). [43] H. A. Atwater, and A. Polman, Nat. Mater. 9, 205–213(2010). [44] S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, J. Appl. Phys. 101, 104309(2007). [45] D. Derkacs, S.H. Lim, P. Matheu, W. Mar, E.T. Yu, Appl. Phys. Lett. 89 (1–3), 093103 (2006). [46] Jeehwan Kim, Ahmed Abou-Kandil, Keith Fogel, Harold Hovel, and Devendra K. Sadana, ACS Nano 4 (12), 7331-7336(2010). [47] K. R. Catchpole, and A. Polman, Appl. Phys. Lett. 93, 191113(2008). [48] C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), pp. 57–129 and 325–342. [49] B. S. Luk’yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, Appl. Phys., A Mater. Sci. Process. 89, 259–264(2007). [50] Viktoria Gusak, Bengt Kasemo, and Carl Hagglund, ACS Nano 5 (8), 6218-6225(2011). [51] B. M. Kayes, H. A. Atwater, and N. S. Lewis, J. Appl. Phys. 97, 114302 (2005). [52] M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Nature Mater. 9, 239 (2010). [53] A. Deinega, and S. John, J. App. Phys. 112, 074327 (2012). [54] M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, Nano Lett. 12, 2894–2900 (2012). [55] M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F. J. Haug, T. Soderstrom, O. Cubero, and C. Eminian, Phys. Status Solidi (RRL) 4, 181 (2010). [56] Y. Kuang, K. H. M. van der Werf, Z. S. Houweling, and R. E. I. Schropp, Appl. Phys. Lett. 98, 113111 (2011). [57] H. H. Li, P. Y. Yang, S. M. Chiou, H.W. Liu, and H. C. Cheng, IEEE Electron Device Letters, vol. 32, no. 7, pp. 928–930 (2011). [58] J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, Nano Lett. 10, 1979 (2010). [59] C.-M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F.-J. Haug, S. Fan, C. Ballif, and Y. Cui, Adv. Energy Mater. 2, 628 (2012). [60] J. Kim, A. J. Hong, J.-W. Nah, B. Shin, F. M. Ross, and D. K. Sadana, ACS Nano 6, 265 (2012). [61] Y. Kuang, K. H. M. van der Werf, Z. S. Houweling, M. Di Vece, and R. E. I. Schropp, Journal of Non-Crystalline Solids, 358:2209–2213 (2011). [62] Jia, Z., Zhang, X., Liu, Y., Ma, J., Liu, C., and Zhao, Y., Nano Energy, Volume 1, Issue 6, Pages 783–788 (2012). [63]Hilali, M. M., Yang, S., Miller, M., Xu, F., Banerjee, S., and Sreenivasan, S. V., Nanotechnology, 23(40), 405203 (2012). [64]Zheng, G., Xu, L., Lai, M., Chen, Y., Liu, Y., & Li, X., Optics Communications, 285(10), 2755-2759 (2012). [65] Yu, L.; O’Donnell, B.; Foldyna, M.; Roca i Cabarrocas, P. Nanotechnology, 23, 194011 (2012). [66] Geisendorfer, S., Vehse, M., Voss, T., Richters, J. P., Hanke, B., von Maydell, K., & Agert, C., Solar Energy Materials and Solar Cells, 111, 153-159 (2013). [67] Greene, L. E., Law, M., Goldberger, J., Kim, F., Johnson, J. C., Zhang, Y., ... & Yang, P. Angewandte Chemie International Edition, 42(26), 3031-3034 (2003). [68] Vayssieres, L., Advanced Materials, 15(5), 464-466 (2003). [69] D. Kieven, T. Dittrich, A. Belaidi, J. Tornow, K. Schwarzburg, N. Allsop, and M. Lux-Steiner, Appl. Phys. Lett. 92, 153107 (2008). [70] M. Krunks, E. Karber, A. Katerski, K. Otto, I. O. Acik, T. Dedova, and A. Mere, Sol. Energy Mater. Sol. Cells 94, 1191 (2010). [71] R. H. Franken, R. L. Stolk, H. Li, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, J. Appl. Phys. 102, 014503 (2007). [72] R. E. I. Schropp and M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology (Kluwer, Boston, 1998). [73] U. Dagkaldiran, A. Gordijn, F. Finger, H. M. Yates, P. Evans, D. W. Sheel, Z. Remes, and M. Vanecek, Mater. Sci. Eng. B 159–160, 6–9 (2009). [74] S. Fahr, C. Rockstuhl, and F. Lederer, Appl. Phys. Lett. 92, 171114 (2008). [75] K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayashi, K. Adachi, and H. Nishimura, Rep. Res. Lab. Asahi Glass Co. Ltd. 42, 129 (1992). [76] R. W. Wood, Proc. Phys. Soc. London 18, 166 (1902). [77] R. H. Ritchie, Surf. Sci. 34, 1 (1973). [78] C. J. Powell and J. B. Swan, Phys. Rev. 115, 869 (1959);116, 81 (1959). [79] E. A. Stern and R. A. Ferrell, Phys. Rev. 120, 130 (1960). [80] S. A. Maier, Plasmonics: Fundamentals and Applications, Springer, (2007). [81] R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R N. Hamm, Phys. Rev. Lett. 21, 1530 (1968) [82] B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D.W. Pohl, Phys. Rev. Lett. 77, 1889 (1996). [83] H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett. 80, 404 (2002). [84] A. Otto, Z. Phys. 216, 398 (1968). [85] E. Kretschmann and H. Raether, Z. Naturforsch. A 23, 2135 (1968). [86] N. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, Appl. Phys. Lett. 93, 123308 (2008). [87] I.-K. Ding, J. Zhu, W. Cai, S.-J. Moon, N. Cai, P. Wang, S. M. Zakeeruddin, M. Gratzel, M. L. Brongersma, Y. Cui, and M. D. McGehee, Adv. Eng. Mater. 1, 52–57 (2011). [88] Hutter, E. and Fendler, J., Advanced Materials. 16, 1685–1706 (2004). [89] K. Lance Kelly, Eduardo Coronado, Lin Lin Zhao, and George C. Schatz, J. Phys. Chem. B, 107 (3), pp 668–677 (2003). [90] S. Pillai and M. A. Green, Sol. Energy Mater. Sol. Cells 94(9), 1481–1486 (2010). [91] Xiaoyu Miao, Lin, L.Y., Selected Topics in Quantum Electronics, IEEE Journal of , vol.13, no.6, pp.1655-1662 (2007). [92] Howard R. Stuart and Dennis G. Hall, Appl. Phys. Lett. 69, 2327 (1996). [93] Howard R. Stuart and Dennis G. Hall, Phys. Rev. Lett. 80, 5663–5666 (1998). [94] R. G. Freeman et al., Science 267, 1629 (1995). [95] J. Springer, A. Poruba, L. Mullerova, M. Vanecek, O. Kluth, and B. Rech, J. Appl. Phys. 95, 1427 (2004). [96] J. Turkevich, G. Garton, and P. C. Stevenson, J. Colloid Sci. 9, 26 (1954). [97] F. Toderas, M. Baia, L. Baia, and S. Astilean, Nanotechnology 18, 255702 (2007). [98] M. Brust, D. Bethell, C. J. Kiely, and D. J. Schiffrin, Langmuir 14, 5425 (1998). [99] T. Okamoto, I. Yamaguchi, and T. Kobayashi, Opt. Lett. 25, 372 (2000). [100] U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005). [101] Y. Ohya, T. Niva, T. Ban, and Y. Takahashi, Jpn. J. Appl. Phys., Part 1 40, 297 (2001). [102] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, J. Appl. Phys. 93, 1624 (2003). [103] I.-S. Jeong, J.-H. Kim, and S. Im, Appl. Phys. Lett. 83, 2946 (2003). [104] H. Ohta, M. Hirano, K. Nakahara, H. Maruta, T. Tanabe, M. Kamiya, T. Kamiya, and H. Hosono, Appl. Phys. Lett. 83, 1029 (2003). [105] I. T. Drapak, Semiconductors 2, 624 (1968). [106] A. E. Tsurkan, N. D. Fedotova, L. V. Kicherman, and P. G. Pas’ko, Semicond. Semimetals 6, 1183 (1975). [107] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000). [108] K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi et al., Prog. Photovoltaics11, 225 (2003) [109] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001). [110] M. H. Huang, Y. Wu, H. Feide, N. Tran, E. Weber, and P. Yang, Adv. Mater. Weinheim, Ger. 13, 111 (2001). [111] Y. Wu, H. Yan, M. Huang, B. Messer, J. Song, and P. Yang, Chem.-Eur. J. 8, 1260 (2002). [112] B. P. Zhang, N. T Binh, Y. Segawa, K. Wakatsuki, and N. Usami, Appl. Phys. Lett. 83, 1635 (2001). [113] W. Park, C. Yi, M. Kim, and S. Pennycook, Adv. Mater. Weinheim, Ger. 14, 1841 (2002). [114] J. S. Jeong, J. Y. Lee, J. H. Cho, C. J. Lee, S.-J. An, G.-C. Yi, and R. Gronsky, Nanotechnology 16, 2455 (2005). [115] B. D. Yao, Y. F. Chan, and N. Wang, Adv. Mater. Weinheim, Ger. 81, 757 (2002). [116] Vayssieres, K. Keis, S.-E. Lindquist, and A. Hagfeldt, J. Phys. Chem. B 105, 3350 (2001). [117] L. Vayssieres, K. Keis, A. Hagfeldt, and S.-E. Lindquist, Chem. Mater. 13, 4395 (2001). [118] H. Zhang, D. Yang, X. Ma, Y. Ji, J. Xu, and D. Que, Nanotechnology 15, 622 (2004). [119] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, Chem. Mater. 17, 1001 (2005). [120] H. Natsuhara, T. Ohashi, S. Ogawa, N. Yoshida, T. Itoh, S. Nonomura, M. Fukawa, and K. Sato, Thin Solid Films 430, 253 (2003). [121] M. Kambe, M. Fukawa, N. Taneda, and K. Sato, Sol. Energy Mater. Sol. C 90, 3014 (2006). [122] S. Fay, U. Kroll, C. Bucher, E. Vallat-Sauvain, and A. Shah, Sol. Energy Mater. Sol. Cells 86, 385(2005). [123] M. Despeisse, C. Battaglia, M. Boccard, G. Bugnon, M. Charriere, P. Cuony, S. Hanni, L. Lofgren, F. Meillaud, G. Parascandolo, T. Soderstrom, and C. Ballif, Phys. Status Solidi A 208, 1863 (2011). [124] O. Kluth, G. Schope, J. Hupkes, C. Agasge, J. Muller, and B. Rech, Thin Solid Films 442, 80 (2003). [125] M. Berginski, J. Hupkes, M. Schulte, G. Schope, H. Stiebig, B. Rech, and M. Wuttig, J. Appl. Phys. 101, 074903(2007). [126] T. Matsui, M. Tsukiji, H. Saika, T. Toyama, and H. Okamoto, J. Non-Cryst. Solids 299, 1152 (2002). [127] Y. C. Chao, C. Y. Chen, C. A. Lin, and J. H. He, Energy Environ. Sci. 4, 3436 (2011). [128] J. Zhang, L. Sun, J. Yin, H. Su, C. Liao, C. Yan: Chem. Mater. 14, 4172 (2002). [129] H. Zhang, D. R. Yang, Y. J. Ji, X. Y. Ma, J. Xu, and D. L. Que, J. Phys. Chem. B 108, 3955 (2004). [130] X. D. Gao, X. M. Li, and W. D. Yu, J. Phys. Chem. B 109, 1155 (2005). [131] Z. Fang, K. B. Tang, G. Z. Shen, D. Chen, R. Kong, S. J. Lei, Mater. Lett. 60, 2530– 2533 (2006). [132] Z. Gao, N. Liu, D. Wu, W. Tao, F. Xu and K. Jiang, Appl. Surf. Sci., 258, 2473 (2012). [133] M. A. Green, Solar Cells: Operating Principles, Technology, and System Applications (Prentice-Hall, New Jersey, 1982). [134] K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, Nano Lett. 7, 1793 (2007). [135] Z. H. Chen, Y. B. Tang, C. P. Liu, Y. H. Leung, G. D. Yuan, L. M. Chen, Y. Q. Wang, I. Bello, J. A. Zapien, W. J. Zhang, C. S. Lee, and S. T. Lee, J. Phys. Chem. C 113, 13433 (2009). [136] K. Q. Peng, X. Wang, X. L. Wu, and S. T. Lee, Nano Lett. 9, 3704 (2009). [137] R. Gupta, M. J. Dyer, and W. A. Weimer, J. Appl. Phys. 92, 5264 (2002). [138] J. Krc, M. Zeman, F. Smole, and M. Topic, J. Appl. Phys. 92, 749 (2002). [139] C.-I. Ho, D.-J. Yeh, V.-C. Su, C.-H. Yang, P.-C. Yang, M.-Y. Pu, C.-H. Kuan, I. C. Cheng, and S.-C. Lee, J. Appl. Phys. 112, 023113 (2012). [140] C.-I. Ho, W.-C. Liang, D.-J. Yeh, V.-C. Su, P.-C. Yang, S.-Y Chen, T.-T. Yang, C.-H. Kuan, I. C. Cheng, and S.-C. Lee, J. Appl. Phys. 113, 163106 (2013) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61574 | - |
| dc.description.abstract | 本論文探究多種型態的非晶矽氫奈米結構單層太陽能電池。奈米尺寸結構十分的具有前途由於其獨特的光與電特性。他們提供有效的方法來增加太陽能電池中的光程,進而增加元件的能量轉換效率。本論文主要區分為兩個主題:電漿子奈米粒子與三維奈米柱結構。
第一部份,將具備多層金奈米粒子的電漿子結構嵌入在透明導電層背反射基板的非晶矽氫太陽能電池被提出證實。藉由光學上研究奈米粒子密度與粒子層數,我們可以調變電漿子的共振頻率,得到最佳的光散射條件。雙層的金奈米粒子結構在光吸收上優於單層的結構。此外,除了光的散射增益,應用高功函數的金奈米粒子可以提升透明導電層與非晶矽氫界面的功函數匹配。 第二部分,以水熱法製備三維氧化鋅奈米柱陣列的非晶矽氫太陽能電池被提出證實。非晶矽氫太陽能電池的吸收層厚度與奈米柱長度的關係被詳細的研究。研究重點放在利用三維奈米柱來達到電性上的薄與光學上的厚,實現高效率的非晶矽氫太陽能電池。 第三部分,微結構結合氧化鋅奈米柱陣列的非晶矽氫太陽能電池被提出證實。高度指向性的氧化鋅奈米柱以水熱法成長於商業化的微結構基板上。表面型態與散射特性跟反應試劑的濃度有相當大的關聯。藉由控制實驗條件,可以成功得到具備花形貌的氧化鋅奈米結構。 第四部分,有了上述的研究成果,結合電漿子金奈米粒子與三維奈米柱陣列的新型態奈米柱結合奈米粒子非晶矽氫太陽能電池被提出證實。利用熱蒸鍍法沉積超薄的金薄膜於奈米柱表面來形成金奈米粒子。電漿子奈米粒子與三維奈米柱的散射特性被系統性的研究。藉由調整最佳化的金薄膜厚度,奈米柱結合奈米粒子非晶矽氫太陽能電池的能量轉換效率可以有效的被改善。 | zh_TW |
| dc.description.abstract | This thesis explores various types of nanostructures in single junction hydrogenated amorphous silicon (a-Si:H) solar cells. The nanometer-sized structures are promising due to their excellent optical and electronic properties. They provide an effective way to increase optical path length inside solar cell, and thus result in improved energy conversion efficiency. This thesis is divided into two primary tasks: plasmonic nanoparticles and three-dimensional nanorods structures.
First, the plasmonic-structure incorporated multilayer of Au nanoparticles embedded in the transparent conducting oxide at the back reflector of a-Si:H solar cells is demonstrated. The effect of the nanoparticles density and the number of multilayer of the nanoparticles in tuning the plasmon resonances for better scattering are investigated by measuring optical characteristics. The double-layer Au nanoparticles structure has an advantage over single-layer for harvesting light. In addition to enhanced light scattering, applying high-work-function Au nanoparticles can improve the matching of work function at TCO/a-Si:H interface. Second, the a-Si:H solar cells based on three-dimensional ZnO nanorods arrays prepared by hydrothermal growth is demonstrated. The influence of the absorber layer thickness and rod length on the performance of a-Si:H solar cells are investigated in detail. Focus in on the concept of applying three-dimensional nanorods for electronically thin and optically thick in achieving high efficiency a-Si:H solar cells. Third, the a-Si:H solar cells based on random textures substrates incorporating ZnO nanorod arrays is demonstrated. Highly-oriented ZnO nanorods are grown on textured substrate (Asahi-U glass) through hydrothermal growth. It is found that the surface morphology and diffuse scattering property are strongly dependent on the concentration of reagents. By controlling the experimental conditions, the flower-like ZnO nanostructure is successfully obtained. Fourth, in terms of previous tasks, plasmonic Au nanoparticles and three-dimensional nanorod arrays are combined to demonstrate a new type of nanoparticles decorated nanorods a-Si:H solar cell. The ultra-thin Au film are deposited on the surface of nanorods by thermal evaporation system to form Au nanoparticles. The scattering property between plasmonic nanoparticles and three-dimensional nanorods are investigated systematically. By optimizing thickness of Au metal film appropriately, the improved energy conversion efficiency is obtained for the nanoparticles decorated nanorods a-Si:H solar cell. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:06:15Z (GMT). No. of bitstreams: 1 ntu-102-D96941013-1.pdf: 7643533 bytes, checksum: af4ba864f98f8ef3b3898cb96a20fa9a (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員審定書(中文) i
致謝 ii 中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xiv Chapter 1 Introduction 1 Chapter 2 Application of plasmonic multilayer nanoparticles in thin film hydrogenated amorphous silicon (a-Si:H) solar cells 10 2.1 Introduction 11 2.1.1 Surface plasmons and localized surface plasmons 11 2.1.2 Recent progress in plasmonic nanoparticles solar cells 17 2.2 The effect of nanoparticle density and its optical characteristics. 21 2.2.1 Experiment 21 2.2.2 Results and Discussion 22 2.3 The effect of multilayer nanoparticle and its optical characteristics. 27 2.3.1 Experiment 27 2.3.2 Results and Discussion 30 2.4 Hydrogenated amorphous silicon solar cells on the single and double layer of Au plasmonic nanoparticles back surface reflectors. 33 2.4.1 Experiment 33 2.4.2 Results and Discussion 36 2.5 Conclusions 47 Chapter 3 Influence of the absorber layer thickness and rod length on the performance of three-dimensional nanorods thin film hydrogenated amorphous silicon solar cells 48 3.1 Introduction 48 3.2 The effect of reaction concentration on nanorod morphology and its optical characteristics. 54 3.2.1 Experiment 54 3.2.2 Results and Discussion 57 3.3 The effect of reaction time on nanorod morphology and its optical characteristics. 63 3.3.1 Experiment 63 3.3.2 Results and Discussion 64 3.4 Hydrogenated amorphous silicon solar cells on the three-dimensional nanorods back surface reflectors. 68 3.4.1 Experiment 68 3.4.2 Results and Discussion 69 3.5 Conclusions 80 Chapter 4 Random texture incorporating ZnO nanorods in thin film hydrogenated amorphous silicon solar cells. 81 4.1 Introduction 81 4.2 The effect of reaction concentration on random texture incorporating nanorods and its optical characteristics. 83 4.2.1 Experiment 83 4.2.2 Results and Discussion 84 4.3 Hydrogenated amorphous silicon solar cells on random texture incorporating nanorods back surface reflectors. 92 4.3.1 Experiment 92 4.3.2 Results and Discussion 92 4.4 Conclusions 98 Chapter 5 Au nanoparticles decorated nanorods in thin film hydrogenated amorphous silicon solar cells 99 5.1 Introduction 99 5.2 The effect of Au-film thickness on nanoparticles morphology and its optical characteristics. 102 5.2.1 Experiment 102 5.2.2 Results and Discussion 103 5.3 The effect of Au nanoparticles decorated nanorods and its optical characteristics. 106 5.3.1 Experiment 106 5.3.2 Results and Discussion 108 5.4 Hydrogenated amorphous silicon solar cells on Au nanoparticles decorated nanorods back surface reflectors. 115 5.4.1 Experiment 115 5.4.2 Results and Discussion 116 5.5 Conclusions 120 Chapter 6 Conclusions 121 References 123 | |
| dc.language.iso | en | |
| dc.subject | 三維奈米柱 | zh_TW |
| dc.subject | 非晶矽氫太陽能電池 | zh_TW |
| dc.subject | 表面電漿子 | zh_TW |
| dc.subject | 奈米粒子 | zh_TW |
| dc.subject | 水熱法 | zh_TW |
| dc.subject | nanoparticles | en |
| dc.subject | hydrogenated amorphous silicon solar cell | en |
| dc.subject | surface plasmon | en |
| dc.subject | three-dimensional nanorods | en |
| dc.subject | hydrothermal growth | en |
| dc.title | 三維奈米柱與電漿子奈米粒子的薄膜非晶矽氫太陽能電池 | zh_TW |
| dc.title | Three-dimensional nanorods and plasmonic nanoparticles thin film hydrogenated amorphous silicon solar cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳奕君,陳敏璋,林清富,林麗瓊,周必泰 | |
| dc.subject.keyword | 非晶矽氫太陽能電池,表面電漿子,奈米粒子,水熱法,三維奈米柱, | zh_TW |
| dc.subject.keyword | hydrogenated amorphous silicon solar cell,surface plasmon,nanoparticles,hydrothermal growth,three-dimensional nanorods, | en |
| dc.relation.page | 132 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-02 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 7.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
