請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61522
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 何佳安 | |
dc.contributor.author | Yu-Hsuan Lai | en |
dc.contributor.author | 賴雨萱 | zh_TW |
dc.date.accessioned | 2021-06-16T13:04:55Z | - |
dc.date.available | 2018-08-23 | |
dc.date.copyright | 2013-08-23 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-05 | |
dc.identifier.citation | 1. Watson, J.D. & Crick, F.H. Molecular structure of nucleic acids: a structure for
deoxyribose nucleic acid. J.D. Watson and F.H.C. Crick. Published in Nature, number 4356 April 25, 1953. Nature 248, 765 (1974). 2. Watson, J.D. & Crick, F.H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171, 737-738 (1953). 3. Yakovchuk, P., Protozanova, E. & Frank-Kamenetskii, M.D. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic acids research 34, 564-574 (2006). 4. Kool, E.T. Hydrogen bonding, base stacking, and steric effects in DNA replication. Annu Rev Bioph Biom 30, 1-22 (2001). 5. Debouck, C. & Goodfellow, P.N. DNA microarrays in drug discovery and development. Nature genetics 21, 48-50 (1999). 6. Cheng, M.M. et al. Nanotechnologies for biomolecular detection and medical diagnostics. Curr Opin Chem Biol 10, 11-19 (2006). 7. Vercoutere, W. & Akeson, M. Biosensors for DNA sequence detection. Curr Opin Chem Biol 6, 816-822 (2002). 8. Mocharla, H., Mocharla, R. & Hodes, M.E. Coupled Reverse Transcription-Polymerase Chain-Reaction (Rt-Pcr) as a Sensitive and Rapid Method for Isozyme Genotyping. Gene 93, 271-275 (1990). 9. Fouchier, R.A.M. et al. Detection of Influenza A Viruses from Different Species by PCR Amplification of Conserved Sequences in the Matrix Gene Detection of Influenza A Viruses from Different Species by PCR Amplification of Conserved 84 Sequences in the Matrix Gene. Journal of Clinical Microbiology 38, 4096-4101 (2000). 10. Heid, C.A., Stevens, J., Livak, K.J. & Williams, P.M. Real time quantitative PCR. Genome research 6, 986-994 (1996). 11. Watkins-Riedel, T., Woegerbauer, M., Hollemann, D. & Hufnagl, P. Rapid diagnosis of enterovirus infections by real-time PCR on the LightCycler using the TaqMan format. Diagn Micr Infec Dis 42, 99-105 (2002). 12. Yang, Y. & Zhao, L.X. Sensitive fluorescent sensing for DNA assay. Trac-Trend Anal Chem 29, 980-1003 (2010). 13. Liu, A.L. et al. Development of electrochemical DNA biosensors. Trac-Trend Anal Chem 37, 101-111 (2012). 14. Stoughton, R.B. Applications of DNA microarrays in biology. Annual review of biochemistry 74, 53-82 (2005). 15. Sassolas, A., Leca-Bouvier, B.D. & Blum, L.J. DNA biosensors and microarrays. Chem Rev 108, 109-139 (2008). 16. Boon, E.M., Ceres, D.M., Drummond, T.G., Hill, M.G. & Barton, J.K. Mutation detection by electrocatalysis at DNA-modified electrodes. Nature biotechnology 18, 1096-1100 (2000). 17. Feng, X. et al. Fluorescence logic-signal-based multiplex detection of nucleases with the assembly of a cationic conjugated polymer and branched DNA. Angewandte Chemie (International ed. in English) 48, 5316-5321 (2009). 18. Minunni, M. et al. Detection of fragmented genomic DNA by PCR-free piezoelectric sensing using a denaturation approach. Journal of the American Chemical Society 127, 7966-7967 (2005). 19. Xiao, Y., Lubin, A.a., Baker, B.R., Plaxco, K.W. & Heeger, A.J. Single-step electronic detection of femtomolar DNA by target-induced strand displacement in an electrode-bound duplex. Proceedings of the National Academy of Sciences of the United States of America 103, 16677-16680 (2006). 20. Tan, W., Wang, K. & Drake, T.J. Molecular beacons. Curr Opin Chem Biol 8, 547-553 (2004). 21. Tyagi, S., Bratu, D.P. & Kramer, F.R. Multicolor molecular beacons for allele discrimination. Nat Biotechnol 16, 49-53 (1998). 22. Bonnet, G., Tyagi, S., Libchaber, A. & Kramer, F.R. Thermodynamic basis of the enhanced specificity of structured DNA probes. Proceedings of the National Academy of Sciences of the United States of America 96, 6171-6176 (1999). 23. Tsourkas, A., Behlke, M.A., Rose, S.D. & Bao, G. Hybridization kinetics and thermodynamics of molecular beacons. Nucleic acids research 31, 1319-1330 (2003). 24. Peng, X.H. et al. Real-time detection of gene expression in cancer cells using molecular beacon imaging: New strategies for cancer research. Cancer Res 65, 1909-1917 (2005). 25. Piatek, A.S. et al. Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis. Nature biotechnology 16, 359-363 (1998). 26. Li, J.W.J., Fang, X.H., Schuster, S.M. & Tan, W.H. Molecular beacons: A novel approach to detect protein - DNA interactions. Angew Chem Int Edit 39, 1049-1052 (2000). 27. Heeger, P.S. & Heeger, A.J. Making sense of polymer-based biosensors. Proceedings of the National Academy of Sciences of the United States of America 96, 12219-12221 (1999). 28. McQuade, D.T., Pullen, A.E. & Swager, T.M. Conjugated polymer-based chemical sensors. Chem Rev 100, 2537-2574 (2000). 29. Thomas, S.W., Joly, G.D. & Swager, T.M. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107, 1339-1386 (2007). 30. Liu, B. & Bazan, G.C. Methods for strand-specific DNA detection with cationic conjugated polymers suitable for incorporation into DNA chips and microarrays. Proceedings of the National Academy of Sciences of the United States of America 102, 589-593 (2005). 31. Sun, C.J., Gaylord, B.S., Hong, J.W., Liu, B. & Bazan, G.C. Application of cationic conjugated polymers in microarrays using label-free DNA targets. Nature protocols 2, 2148-2151 (2007). 32. Gaylord, B.S., Heeger, A.J. & Bazan, G.C. DNA hybridization detection with water-soluble conjugated polymers and chromophore-labeled single-stranded DNA. Journal of the American Chemical Society 125, 896-900 (2003). 33. Gaylord, B.S., Heeger, A.J. & Bazan, G.C. DNA detection using water-soluble conjugated polymers and peptide nucleic acid probes. Proceedings of the National Academy of Sciences of the United States of America 99, 10954-10957 (2002). 34. Ghosh, S.K. & Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem Rev 107, 4797-4862 (2007). 35. Hu, M. et al. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35, 1084-1094 (2006). 36. Jans, H. & Huo, Q. Gold nanoparticle-enabled biological and chemical detection and analysis. Chem Soc Rev 41, 2849-2866 (2012). 37. Wilson, R. The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev 37, 2028-2045 (2008). 38. Elghanian, R., Storhoff, J.J., Mucic, R.C., Letsinger, R.L. & Mirkin, C.A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078-1081 (1997). 39. Storhoff, J.J., Lucas, A.D., Garimella, V., Bao, Y.P. & Muller, U.R. Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nature biotechnology 22, 883-887 (2004). 40. Kim, J.H., Estabrook, R.A., Braun, G., Lee, B.R. & Reich, N.O. Specific and sensitive detection of nucleic acids and RNases using gold nanoparticle-RNA-fluorescent dye conjugates. Chem Commun, 4342-4344 (2007). 41. Song, S.P. et al. Gold-Nanoparticle-Based Multicolor Nanobeacons for Sequence-Specific DNA Analysis. Angew Chem Int Edit 48, 8670-8674 (2009). 42. Murphy, C.J. Optical sensing with quantum dots. Analytical chemistry 74, 520a-526a (2002). 43. Alivisatos, P. The use of nanocrystals in biological detection. Nature biotechnology 22, 47-52 (2004). 44. Medintz, I.L., Uyeda, H.T., Goldman, E.R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4, 435-446 (2005). 45. Gill, R., Zayats, M. & Willner, I. Semiconductor quantum dots for bioanalysis. Angew Chem Int Edit 47, 7602-7625 (2008). 46. Drummond, T.G., Hill, M.G. & Barton, J.K. Electrochemical DNA sensors. Nature biotechnology 21, 1192-1199 (2003). 47. Ju, H.X. & Zhao, H.T. Electrochemical biosensors for DNA analysis. Front Biosci-Landmrk 10, 37-46 (2005). 48. Palecek, E. & Bartosik, M. Electrochemistry of Nucleic Acids. Chem Rev 112, 3427-3481 (2012). 49. Herne, T.M. & Tarlov, M.J. Characterization of DNA Probes Immobilized on Gold Surfaces. Journal of the American Chemical Society 7863, 8916-8920 (1997). 50. Zhao, Y.-d., Pang, D.-w., Wang, Z.-l., Cheng, J.-k. & Qi, Y.-p. DNA-modified electrodes. Part 2. Electrochemical characterization of gold electrodes modified with DNA. Journal of Electroanalytical Chemistry 431, 203-209 (1997). 51. Levicky, R., Herne, T.M., Tarlov, M.J. & Satija, S.K. Using Self-Assembly To Control the Structure of DNA Monolayers on Gold: A Neutron Reflectivity Study. Journal of the American Chemical Society 120, 9787-9792 (1998). 52. Steel, a.B., Herne, T.M. & Tarlov, M.J. Electrochemical quantitation of DNA immobilized on gold. Analytical chemistry 70, 4670-4677 (1998). 53. Georgiadis, R., Peterlinz, K.P. & Peterson, a.W. Quantitative Measurements and Modeling of Kinetics in Nucleic Acid Monolayer Films Using SPR Spectroscopy. Journal of the American Chemical Society 122, 3166-3173 (2000). 54. Peterson, a.W., Heaton, R.J. & Georgiadis, R.M. The effect of surface probe density on DNA hybridization. Nucleic acids research 29, 5163-5168 (2001). 55. Riccelli, P.V. et al. Hybridization of single-stranded DNA targets to immobilized complementary DNA probes: comparison of hairpin versus linear capture probes. Nucleic acids research 29, 996-1004 (2001). 56. Herrwerth, S., Eck, W., Reinhardt, S. & Grunze, M. Factors that determine the protein resistance of oligoether self-assembled monolayers --internal hydrophilicity, terminal hydrophilicity, and lateral packing density. Journal of the American Chemical Society 125, 9359-9366 (2003). 57. Wolf, L.K., Gao, Y. & Georgiadis, R.M. Sequence-dependent DNA immobilization: specific versus nonspecific contributions. Langmuir : the ACS journal of surfaces and colloids 20, 3357-3361 (2004). 58. White, R.J., Phares, N., Lubin, A.a., Xiao, Y. & Plaxco, K.W. Optimization of electrochemical aptamer-based sensors via optimization of probe packing density and surface chemistry. Langmuir : the ACS journal of surfaces and colloids 24, 10513-10518 (2008). 59. Zhang, J., Lao, R., Song, S., Yan, Z. & Fan, C. Design of an oligonucleotide-incorporated nonfouling surface and its application in electrochemical DNA sensors for highly sensitive and sequence-specific detection of target DNA. Analytical chemistry 80, 9029-9033 (2008). 60. Wu, J., Campuzano, S., Halford, C., Haake, D.a. & Wang, J. Ternary Surface Monolayers for Ultrasensitive (Zeptomole) Amperometric Detection of Nucleic Acid Hybridization without Signal Amplification. Analytical chemistry 82, 8830-8837 (2010). 61. Campuzano, S. et al. Ternary monolayers as DNA recognition interfaces for direct and sensitive electrochemical detection in untreated clinical samples. Biosens Bioelectron 26, 3577-3583 (2011). 62. Palecek, E. Oscillographic Polarography of Highly Polymerized Deoxyribonucleic Acid. Nature 188, 656-657 (1960). 63. Palecek, E. Adsorptive Transfer Stripping Voltammetry - Determination of Nanogram Quantities of DNA Immobilized at the Electrode Surface. Analytical biochemistry 170, 421-431 (1988). 64. Singhal, P. & Kuhr, W.G. Ultrasensitive voltammetric detection of underivatized oligonucleotides and DNA. Analytical chemistry 69, 4828-4832 (1997). 65. Jelen, F., Yosypchuk, B., Kourilova, A., Novotny, L. & Palecek, E. Label-free determination of picogram quantities of DNA by stripping voltammetry with solid copper amalgam or mercury electrodes in the presence of copper. Analytical chemistry 74, 4788-4793 (2002). 66. Ozkan, D. et al. Allele-specific genotype detection of factor V Leiden mutation from polymerase chain reaction amplicons based on label-free electrochemical genosensor. Analytical chemistry 74, 5931-5936 (2002). 67. Yang, I.V. & Thorp, H.H. Modification of indium tin oxide electrodes with repeat polynucleotides: Electrochemical detection of trinucleotide repeat expansion. Analytical chemistry 73, 5316-5322 (2001). 68. Armistead, P.M. & Thorp, H.H. Electrochemical detection of gene expression in tumor samples: Overexpression of Rak nuclear tyrosine kinase. Bioconjugate Chem 13, 172-176 (2002). 69. Yang, I.V., Ropp, P.A. & Thorp, H.H. Toward electrochemical resolution of two genes on one electrode: Using 7-deaza analogues of guanine and adenine to prepare PCR products with differential redox activity. Analytical chemistry 74, 347-354 (2002). 70. Hashimoto, K., Ito, K. & Ishimori, Y. Sequence-Specific Gene Detection with a Gold Electrode Modified with DNA Probes and an Electrochemically Active Dye. Analytical chemistry 66, 3830-3833 (1994). 71. Kelley, S.O., Barton, J.K., Jackson, N.M. & Hill, M.G. Electrochemistry of methylene blue bound to a DNA-modified electrode. Bioconjugate Chem 8, 31-37 (1997). 72. Yang, M.S., Yau, H.C.M. & Chan, H.L. Adsorption kinetics and ligand-binding properties of thiol-modified double-stranded DNA on a gold surface. Langmuir 14, 6121-6129 (1998). 73. Marrazza, G., Chianella, I. & Mascini, M. Disposable DNA electrochemical sensor for hybridization detection. Biosens Bioelectron 14, 43-51 (1999). 74. Erdem, A., Kerman, K., Meric, B., Akarca, U.S. & Ozsoz, M. Novel hybridization indicator methylene blue for the electrochemical detection of short DNA sequences related to the hepatitis B virus. Anal Chim Acta 422, 139-149 (2000). 75. Hashimoto, K. & Ishimori, Y. Preliminary evaluation of electrochemical PNA array for detection of single base mismatch mutations. Lab Chip 1, 61-63 (2001). 76. Ting, B.P., Zhang, J., Gao, Z.Q. & Ying, J.Y. A DNA biosensor based on the detection of doxorubicin-conjugated Ag nanoparticle labels using solid-state voltammetry. Biosens Bioelectron 25, 282-287 (2009). 77. Carter, M.T., Rodriguez, M. & Bard, A.J. Voltammetric Studies of the Interaction of Metal-Chelates with DNA .2. Tris-Chelated Complexes of Cobalt(III) and Iron(II) with 1,10-Phenanthroline and 2,2'-Bipyridine. Journal of the American Chemical Society 111, 8901-8911 (1989). 78. Millan, K.M. & Mikkelsen, S.R. Sequence-selective biosensor for DNA based on electroactive hybridization indicators. Analytical chemistry 65, 2317-2323 (1993). 79. Wang, J. et al. DNA electrochemical biosensor for the detection of short DNA sequences related to the human immunodeficiency virus. Analytical chemistry 68, 2629-2634 (1996). 80. Lao, R. et al. Electrochemical interrogation of DNA monolayers on gold surfaces. Analytical chemistry 77, 6475-6480 (2005). 81. Steichen, M. & Buess-Herman, C. Electrochemical detection of the immobilization and hybridization of unlabeled linear and hairpin DNA on gold. Electrochemistry Communications 7, 416-420 (2005). 82. Park, S.J., Taton, T.A. & Mirkin, C.A. Array-based electrical detection of DNA with nanoparticle probes. Science 295, 1503-1506 (2002). 83. Wang, J., Xu, D.K. & Polsky, R. Magnetically-induced solid-state electrochemical detection of DNA hybridization. Journal of the American Chemical Society 124, 4208-4209 (2002). 84. Patolsky, F., Lichtenstein, A. & Willner, I. Highly sensitive amplified electronic detection of DNA by biocatalyzed precipitation of an insoluble product onto electrodes. Chem-Eur J 9, 1137-1145 (2003). 85. Djellouli, N., Rochelet-Dequaire, M., Limoges, B., Druet, M. & Brossier, P. Evaluation of the analytical performances of avidin-modified carbon sensors based on a mediated horseradish peroxidase enzyme label and their application to the amperometric detection of nucleic acids. Biosens Bioelectron 22, 2906-2913 (2007). 86. Rochelet-Dequaire, M., Djellouli, N., Limoges, B. & Brossier, P. Bienzymatic-based electrochemical DNA biosensors: a way to lower the detection limit of hybridization assays. Analyst 134, 349-353 (2009). 87. Tang, L. et al. Sensitive detection of lip genes by electrochemical DNA sensor and its application in polymerase chain reaction amplicons from Phanerochaete chrysosporium. Biosens Bioelectron 24, 1474-1479 (2009). 88. Fan, C., Plaxco, K.W. & Heeger, A.J. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proceedings of the National Academy of Sciences of the United States of America 100, 9134-9137 (2003). 89. Immoos, C.E., Lee, S.J. & Grinstaff, M.W. Conformationally gated electrochemical gene detection. Chembiochem : a European journal of chemical biology 5, 1100-1103 (2004). 90. Lai, R.Y. et al. Rapid, sequence-specific detection of unpurified PCR amplicons via a reusable, electrochemical sensor. Proceedings of the National Academy of Sciences of the United States of America 103, 4017-4021 (2006). 91. Lubin, A.a., Lai, R.Y., Baker, B.R., Heeger, A.J. & Plaxco, K.W. Sequence-specific, electronic detection of oligonucleotides in blood, soil, and foodstuffs with the reagentless, reusable E-DNA sensor. Analytical chemistry 78, 5671-5677 (2006). 92. Xiao, Y., Lai, R.Y. & Plaxco, K.W. Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing. Nature protocols 2, 2875-2880 (2007). 93. Ricci, F. & Plaxco, K.W. E-DNA sensors for convenient, label-free electrochemical detection of hybridization. Microchimica Acta 163, 149-155 (2008). 94. Farjami, E., Clima, L., Gothelf, K. & Ferapontova, E.E. 'Off On' Electrochemical Hairpin-DNA-Based Genosensor for Cancer Diagnostics. Analytical chemistry 83, 1594-1602 (2011). 95. Miranda-Castro, R., de-Los-Santos-Alvarez, P., Lobo-Castanon, M.J., Miranda-Ordieres, A.J. & Tunon-Blanco, P. Hairpin-DNA probe for enzyme-amplified electrochemical detection of Legionella pneumophila. Analytical chemistry 79, 4050-4055 (2007). 96. Liu, G. et al. An enzyme-based E-DNA sensor for sequence-specific detection of femtomolar DNA targets. Journal of the American Chemical Society 130, 6820-6825 (2008). 97. Mao, X. et al. Enzymatic amplification detection of DNA based on 'molecular beacon' biosensors. Biosens Bioelectron 23, 1555-1561 (2008). 98. Lin, L. et al. Enzyme-amplified electrochemical biosensor for detection of PML-RARα fusion gene based on hairpin LNA probe. Biosens Bioelectron 28, 277-283 (2011). 99. Lubin, A.A. & Plaxco, K.W. Folding-Based Electrochemical Biosensors: The Case for Responsive Nucleic Acid Architectures. Accounts Chem Res 43, 496-505 (2010). 100. Tumpey, T.M. & Belser, J.A. Resurrected pandemic influenza viruses. Annual review of microbiology 63, 79-98 (2009). 101. Taubenberger, J.K. & Morens, D.M. The pathology of influenza virus infections. Annu Rev Pathol-Mech 3, 499-522 (2008). 102. WHO. Pandemic (H1N1) 2009 -update 109. WHO Global Alert and Response [online], http://www.who.int/csr/don/2010_07_16/en/ (2010). 103. Medina, R.A. & Garcia-Sastre, A. Influenza A viruses: new research developments. Nature reviews. Microbiology 9, 590-603 (2011). 104. Wagner, R., Matrosovich, M. & Klenk, H.D. Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Reviews in medical virology 12, 159-166 (2002). 105. Mitnaul, L.J. et al. Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus. Journal of virology 74, 6015-6020 (2000). 106. Yen, H.L. et al. Hemagglutinin-neuraminidase balance confers respiratory-droplet transmissibility of the pandemic H1N1 influenza virus in ferrets. Proc Natl Acad Sci U S A 108, 14264-14269 (2011). 107. WHO. Cumulative number of confirmed human cases of avian influenza A(H5N1) reported to WHO. WHO Global Alert and Response [online], http://www.who.int/influenza/human_animal_interface/H5N1_cumulative_table _archives/en/index.html (2013). 108. WHO. Number of confirmed human cases of avian influenza A(H7N9) reported to WHO. WHO Global Alert and Response [online], http://www.who.int/influenza/human_animal_interface/influenza_h7n9/Data_Re ports/en/index.html (2013). 109. Nelson, K.M. & Weiss, G.J. MicroRNAs and cancer: past, present, and potential future. Molecular cancer therapeutics 7, 3655-3660 (2008). 110. Hobert, O. Common logic of transcription factor and microRNA action. Trends in biochemical sciences 29, 462-468 (2004). 111. Nachega, J.B. & Chaisson, R.E. Tuberculosis drug resistance: a global threat. Clin Infect Dis 36, S24-30 (2003). 112. Cornett, E.M. et al. Molecular logic gates for DNA analysis: detection of rifampin resistance in M. tuberculosis DNA. Angew Chem Int Ed Engl 51, 9075-9077 (2012). 113. Liu, X.Q., Aizen, R., Freeman, R., Yehezkeli, O. & Willner, I. Multiplexed Aptasensors and Amplified DNA Sensors Using Functionalized Graphene Oxide: Application for Logic Gate Operations. Acs Nano 6, 3553-3563 (2012). 114. Xiang, Y. et al. A reagentless and disposable electronic genosensor: from multiplexed analysis to molecular logic gates. Chem Commun 47, 2080-2082 (2011). 115. Bao, Y. et al. The influenza virus resource at the National Center for Biotechnology Information. J Virol 82, 596-601 (2008). 116. Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792-1797 (2004). 117. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome biology 10, R25 (2009). 118. Johnson, M. et al. NCBI BLAST: a better web interface. Nucleic Acids Res 36, W5-9 (2008). 119. Watkins, H.M., Vallee-Belisle, A., Ricci, F., Makarov, D.E. & Paxco, K.W. Entropic and Electrostatic Effects on the Folding Free Energy of a Surface-Attached Biomolecule: An Experimental and Theoretical Study. Journal of the American Chemical Society 134, 2120-2126 (2012). 120. Owczarzy, R. et al. IDT SciTools: a suite for analysis and design of nucleic acid oligomers. Nucleic acids research 36, W163-W169 (2008). 121. Herne, T.M. & Tarlov, M.J. Characterization of DNA probes immobilized on gold surfaces. Journal of the American Chemical Society 119, 8916-8920 (1997). 122. Levicky, R., Herne, T.M., Tarlov, M.J. & Satija, S.K. Using self-assembly to control the structure of DNA monolayers on gold: A neutron reflectivity study. Journal of the American Chemical Society 120, 9787-9792 (1998). 123. Wu, J., Campuzano, S., Halford, C., Haake, D.A. & Wang, J. Ternary Surface Monolayers for Ultrasensitive (Zeptomole) Amperometric Detection of Nucleic Acid Hybridization without Signal Amplification. Anal Chem 82, 8830-8837 (2010). 124. Campuzano, S. et al. Ternary monolayers as DNA recognition interfaces for direct and sensitive electrochemical detection in untreated clinical samples. Biosens Bioelectron 26, 3577-3583 (2011). 125. Bockisch, B., Grunwald, T., Spillner, E. & Bredehorst, R. Immobilized stem-loop structured probes as conformational switches for enzymatic detection of microbial 16S rRNA. Nucleic acids research 33, e101-e101 (2005). 126. Liu, G. et al. An enzyme-based E-DNA sensor for sequence-specific detection of femtomolar DNA targets. Journal of the American Chemical Society 130, 6820-6825 (2008). 127. Lee, T.M.H. & Hsing, I.M. Sequence-specific electrochemical detection of asymmetric PCR amplicons of traditional Chinese medicinal plant DNA. Analytical chemistry 74, 5057-5062 (2002). 128. Wooddell, C.I. & Burgess, R.R. Use of asymmetric PCR to generate long primers and single-stranded DNA for incorporating cross-linking analogs into specific sites in a DNA probe. Genome research 6, 886-892 (1996). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61522 | - |
dc.description.abstract | 有鑑於流感病毒傳播監控及臨床診斷工具的迫切需求,本研究發展了一流感病毒亞型鑑定平台,結合DNA三級結構的轉換調控與酵素連鎖反應,以達到專一而靈敏地同時偵測兩個重要抗原〔血液凝集素(hemagglutinin, HA)與神經氨酸苷酶(neuraminidase, NA)〕基因片段的目的。利用具莖環結構之去氧核醣核酸探針(stem-loop folded DNA, slfDNA)以及穩定的酵素反應處理,本研究所建構的生物電化學基因感測系統能快速地提供檢驗結論,避免潛在的人為誤判機會。為了更深入地了解由兩個目標核酸片段(gHA與gNA)共同引發組裝於一表面上的slfDNA的三級構型變化,本研究中使用不同的技術平台如螢光解離曲線、雷射掃描式共軛焦顯微鏡、計時安培分析法等,針對多個重要因子進行系統化地探討,包括序列組成及環境因子(反應系統中的鹽濃度、溫度)對slfDNA在水溶液中以及金膜表面上之構型摺疊穩定度的影響;不同的金電極表面修飾方法與分子組成抵抗核酸骨架及蛋白質非特異性吸附之效果;以及slfDNA與兩個目標基因所形成的雜合結構及其在感測表現上所產生的效應。實驗結果顯示,本研究所發展的感測平台能夠執行高度準確的流感病毒亞型鑑定 〔A/duck/Taiwan/DV30-2/2005 (H5N2)〕,在特定H5與N2基因共同存在時方呈現出一明確的陽性結果;而且,在此兩個目標基因同時存在的情況下所得到的電化學輸出訊號能夠顯著地與其他三種陰性組合(無H5與N2基因、只有H5基因、只有N2基因)區分出來(至少五倍以上的訊號差異)。此外,將光學與電化學實驗方法所得到的結果整合之後,我們發現gNA與slfDNA環狀部分的雜合行為可能引發slfDNA莖部結構的破壞,改變探針在平衡時的折疊狀態,進而大大影響亞型鑑定之準確性,且此效應與雜合的長度及位置有明顯的相關性。在此感測平台的定量分析表現中,只有H5或N2基因單獨存在時,即使在高濃度的情況下(0.5 μM)所得到的背景電流依然可以維持在一極低的範圍(< 5 nA),顯示此感測機制對於三種陰性組合不易產生偽陽性結果。本系統對於H5與N2基因共同存在時的偵測極限約為50 nM。此外,我們進一步將此感測平台應用於真實流感病毒基因體的檢測。結果顯示,在較為複雜的背景溶液中(未純化之非對稱聚合酶鏈鎖反應產物),本研究所發展的感測機制依然能準確且穩定的進行亞型鑑定,在H5與N2基因產物同時存在下得到一顯著訊號,並且在其他三種陰性組合中產生的電流依然維持在一極小之範圍(< 5 nA)。總結來說,據我們所知,本研究為目前第一個闡述將一slfDNA分子應用於雙重基因分析上的設計,透過調控生物分子構型轉換與生化反應的協同作用,產出一明確的分析結論。此篩檢技術具有高應用性與功能性,以及易擴展出多用途之靈活性,可望成為精密的尖端分子診斷平台,有效應用於多種而多變之流感病毒檢測。 | zh_TW |
dc.description.abstract | To suffice the urgent need in surveillance and diagnostics of influenza virus, we herein report a sensor design coupling tailored combination of DNA structural switches and multi-enzymatic cascade reaction to specifically and sensitively identify dual target nucleic acid sequences which subsequently leads to subtyping of influenza viruses by hemagglutinin (HA) and neuraminidase (NA) simultaneously. Harnessed with a stem-loop folded DNA (slfDNA) and robust enzymatic processing, the bioelectrochemical genosensor is capable of deriving a rapid decision exclusive of potential personal errors made in data interpretation. To further the understanding of the dual-input induced structural disruption of slfDNA, we used Fluorescent Melting Curve Analysis, Laser Scanning Confocal Microscopic Analysis, and Chronoamperometric analysis to systematically investigate (i) the stability of slfDNA (either in solution or on interface) as functions of coded sequences toward various environmental parameters of reaction (i.e., temperature of reaction and salt concentration of buffer), (ii) optimum blocking procedure to reduce fouling and resist nonspecific adsorption of enzymes and DNA backbone, and (iii) the most advantageous architectures of slfDNA-target gene hybrid. The results reveal the feasibility of the proposed screening platform technology as a high-fidelity screening of specific subtype of influenza virus [(e.g., A/duck/Taiwan/DV30-2/2005 (H5N2)]. Digital interpretation reports “positive” upon the co-existence of both H5 gene (gH5) and N2 gene (gN2). The electrochemically outputted signal acquired in the simultaneous presence of both target segments is dynamically (5-fold higher) differentiated from the other three “negative” combinations (i.e., without gH5 and gN2, only with either gH5 or gN2). In particular, the integrated results obtained from the optical and electrochemical approaches exhibit that the interaction between NA gene and slfDNA plays a crucial role in activating the disruption of the structure of the stem region, which could substantially direct to a positive/negative output. In the quantitative regard of sensing performance, the background current remained at an ultralow level (< 5 nA) even with the existence of either H5 or N2 gene only at high concentrations (up to 0.5 μM), inferring a lowest possibility of false positive. The limit of detection (LOD) of this system was calculated as 50 nM (for both H5 and N2 segments). Moreover, the genosensor developed herein maintains accurate and reliable functionality toward analysis of unpurified amplicons generated from the genuine viral genome. In complex matrices, the amperometric signal acquired from positive H5N2 combination could be remarkably discriminated from negative testing scenarios. In summary, to the best of our knowledge, this is the first design and demonstration leveraging individual slfDNA across concurrent analysis of dual target genes, yielding a digital interpretation via the cooperated processing. Pursuant to the elegant characterizations of high applicability, extensible flexibility, and powerful utility, the screening platform technology exploits great promise to be a sophisticated molecular diagnostics against variable influenza viruses. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T13:04:55Z (GMT). No. of bitstreams: 1 ntu-102-R00b22015-1.pdf: 4282938 bytes, checksum: c2e457eb8941c1f2611725e57f842d28 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | VII
Table of Contents 1. Introduction ....................................................................................................... 1 1.1 Development in Hybridization-Based Detection of Nucleic Acids .......... 1 1.1.1 Optical Sensors ........................................................................... 3 1.1.2 Electrochemical Sensors ............................................................. 9 1.2 Influenza and Influenza Virus ............................................................... 15 1.3 Diagnostics of Influenza Virus ............................................................. 18 1.4 Motivation ........................................................................................... 22 2. Experimental Section ........................................................................................25 2.1 Materials .............................................................................................. 25 2.1.1 Chemicals ................................................................................. 25 2.1.2 DNA Oligonucleotides.............................................................. 27 2.1.3 Reagents for the Genosensor ..................................................... 30 2.1.4 Real Samples of Influenza H5N2 Virus ..................................... 30 2.2 Sequence Selection .............................................................................. 31 2.3 Thermal Denaturing Profile of DNA Molecular beacons (MBs) ........... 31 2.4 Reduction and Purification of Reacted slfDNAs ................................... 32 2.5 Preparation of the Genosensor .............................................................. 32 2.6 Detection of Multiple Targets ............................................................... 33 2.7 Laser Scanning Confocal Microscopy for Fluorescence Detection on the Gold surface .................................................................................................... 35 2.8 Asymmetric Polymerase Chain Reaction (aPCR) ................................. 36 2.9 Polyacrylamide Gel Electrophoresis (PAGE) ........................................ 37 3. Results ..............................................................................................................38 3.1 Design of the Sensing Principle ............................................................ 38 3.2 The Stability of Stem-Loop Folded DNA ............................................. 43 3.2.1 Coded Sequences ...................................................................... 44 3.2.2 Environmental Factors .............................................................. 46 3.3 Nonfouling Surface .............................................................................. 50 3.4 The Architectures of slfDNA-targeted Gene Hybrid ............................. 56 3.4.1 Homogeneous Hybridization .................................................... 58 3.4.2 Heterogeneous Hybridization.................................................... 60 3.5 Level of Enzymatic Conjugates ............................................................ 69 3.6 Ultimate Sensing Performance ............................................................. 71 3.7 Analysis of Viral Samples .................................................................... 74 4. Discussion and Conclusion ...............................................................................78 5. References ........................................................................................................83 6. Appendix: The Flow Chart of Sequence Selection .............................................. i | |
dc.language.iso | en | |
dc.title | 分子運算在生醫診斷上的應用─結合酵素反應與去氧核醣核酸之結構調控以研發鑑別流感病毒亞型之電化學偵測系統 | zh_TW |
dc.title | Molecular Computation in Biomedical Diagnostics: A Structurally Controlled, Enzymatically Processed Bioelectrochemical Genosensor for Digital Subtyping of Specific Influenza Viruses | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 金傳春,陳俊顯,楊宏志,莊旻傑 | |
dc.subject.keyword | 流感病毒亞型鑑定,電化學基因感測器,莖環構型去氧核醣核酸,雙基因檢測,酵素訊號放大, | zh_TW |
dc.subject.keyword | influenza virus subtyping,electrochemical genosensor,stem-loop folded DNA,dual-gene detection,enzymatic amplification, | en |
dc.relation.page | 101 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-05 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科技學系 | zh_TW |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 4.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。