請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61509完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陶秘華 | |
| dc.contributor.author | Yu-Chieh Lo | en |
| dc.contributor.author | 羅語潔 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:04:35Z | - |
| dc.date.available | 2014-10-26 | |
| dc.date.copyright | 2013-09-24 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-05 | |
| dc.identifier.citation | 1. Abbas, A. K., K. M. Murphy, and A. Sher. 1996. Functional diversity of helper T lymphocytes. Nature 383:787-793.
2. Asabe, S., S. F. Wieland, P. K. Chattopadhyay, M. Roederer, R. E. Engle, R. H. Purcell, and F. V. Chisari. 2009. The Size of the Viral Inoculum Contributes to the Outcome of Hepatitis B Virus Infection. Journal of virology 83:9652-9662. 3. Baron, J. L., L. Gardiner, S. Nishimura, K. Shinkai, R. Locksley, and D. Ganem. 2002. Activation of a nonclassical NKT cell subset in a transgenic mouse model of hepatitis B virus infection. Immunity 16:583-594. 4. Bertoletti, A., C. Ferrari, F. Fiaccadori, A. Penna, R. Margolskee, H. J. Schlicht, P. Fowler, S. Guilhot, and F. V. Chisari. 1991. Hla Class-I-Restricted Human Cytotoxic T-Cells Recognize Endogenously Synthesized Hepatitis-B Virus Nucleocapsid Antigen. Proceedings of the National Academy of Sciences of the United States of America 88:10445-10449. 5. Bertoletti, A., and A. J. Gehring. 2006. The immune response during hepatitis B virus infection. The Journal of general virology 87:1439-1449. 6. Bigger, C. B., K. M. Brasky, and R. E. Lanford. 2001. DNA microarray analysis of chimpanzee liver during acute resolving hepatitis C virus infection. Journal of virology 75:7059-7066. 7. Bonino, F., and M. R. Brunetto. 2003. Chronic hepatitis B e antigen (HBeAg) negative, anti-HBe positive hepatitis B: an overview. Journal of hepatology 39:S160-S163. 8. Bruss, V. 2007. Hepatitis B virus morphogenesis. World journal of gastroenterology : WJG 13:65-73. 9. Buning, H., S. A. Nicklin, L. Perabo, M. Hallek, and A. H. Baker. 2003. AAV-based gene transfer. Current opinion in molecular therapeutics 5:367-375. 10. Chang, C., S. Zhou, D. Ganem, and D. N. Standring. 1994. Phenotypic mixing between different hepadnavirus nucleocapsid proteins reveals C protein dimerization to be cis preferential. Journal of virology 68:5225-5231. 11. Chen, C. C., C. P. Sun, H. I. Ma, C. C. Fang, P. Y. Wu, X. Xiao, and M. H. Tao. 2009. Comparative study of anti-hepatitis B virus RNA interference by double-stranded adeno-associated virus serotypes 7, 8, and 9. Molecular therapy : the journal of the American Society of Gene Therapy 17:352-359. 12. Chisari, F. V. 2000. Viruses, immunity, and cancer: Lessons from hepatitis B. Am J Pathol 156:1117-1132. 13. Chisari, F. V., M. Isogawa, and S. F. Wieland. 2010. Pathogenesis of hepatitis B virus infection. Pathol Biol 58:258-266. 14. Christ, M., M. Lusky, F. Stoeckel, D. Dreyer, A. Dieterle, A. I. Michou, A. Pavirani, and M. Mehtali. 1997. Gene therapy with recombinant adenovirus vectors: Evaluation of the host immune response. Immunol Lett 57:19-25. 15. Chu, C. J., M. Hussain, and A. S. F. Lok. 2002. Quantitative serum HBV DNA levels during different stages of chronic hepatitis B infection. Hepatology 36:1408-1415. 16. Coffman, R. L., B. W. Seymour, D. A. Lebman, D. D. Hiraki, J. A. Christiansen, B. Shrader, H. M. Cherwinski, H. F. Savelkoul, F. D. Finkelman, M. W. Bond, and et al. 1988. The role of helper T cell products in mouse B cell differentiation and isotype regulation. Immunological reviews 102:5-28. 17. Crotty, S. 2011. Follicular helper CD4 T cells (TFH). Annual review of immunology 29:621-663. 18. Dandri, M., J. Petersen, R. J. Stockert, T. M. Harris, and C. E. Rogler. 1998. Metabolic labeling of woodchuck hepatitis B virus X protein in naturally infected hepatocytes reveals a bimodal half-life and association with the nuclear framework. Journal of virology 72:9359-9364. 19. Delius, H., N. M. Gough, C. H. Cameron, and K. Murray. 1983. Structure of the hepatitis B virus genome. Journal of virology 47:337-343. 20. Donjerkovic, D., and D. W. Scott. 2000. Activation-induced cell death in B lymphocytes. Cell Res 10:179-192. 21. Dutton, R. W., L. M. Bradley, and S. L. Swain. 1998. T cell memory. Annual review of immunology 16:201-223. 22. Edmunds, W. J., G. F. Medley, D. J. Nokes, A. J. Hall, and H. C. Whittle. 1993. The influence of age on the development of the hepatitis B carrier state. Proceedings. Biological sciences / The Royal Society 253:197-201. 23. Feltquate, D. M., S. Heaney, R. G. Webster, and H. L. Robinson. 1997. Different T helper cell types and antibody isotypes generated by saline and gene gun DNA immunization. J Immunol 158:2278-2284. 24. Ferrari, C., A. Penna, A. Bertoletti, A. Valli, A. D. Antoni, T. Giuberti, A. Cavalli, M. A. Petit, and F. Fiaccadori. 1990. Cellular Immune-Response to Hepatitis-B Virus-Encoded Antigens in Acute and Chronic Hepatitis-B Virus-Infection. Journal of Immunology 145:3442-3449. 25. Ganem, D. 2004. Hepatitis B virus infection - Natural history and clinical consequences (vol 350, pg 1118, 2004). New Engl J Med 351:1268-1268. 26. Ganem, D., and A. M. Prince. 2004. Hepatitis B virus infection--natural history and clinical consequences. The New England journal of medicine 350:1118-1129. 27. Ganem, D., and H. E. Varmus. 1987. The molecular biology of the hepatitis B viruses. Annual review of biochemistry 56:651-693. 28. Green, D. R., N. Droin, and M. Pinkoski. 2003. Activation-induced cell death in T cells. Immunological reviews 193:70-81. 29. Guidotti, L. G., and F. V. Chisari. 2006. Immunobiology and pathogenesis of viral hepatitis. Annu Rev Pathol-Mech 1:23-61. 30. Guidotti, L. G., B. Matzke, H. Schaller, and F. V. Chisari. 1995. High-level hepatitis B virus replication in transgenic mice. Journal of virology 69:6158-6169. 31. Guidotti, L. G., R. Rochford, J. Chung, M. Shapiro, R. Purcell, and F. V. Chisari. 1999. Viral clearance without destruction of infected cells during acute HBV infection. Science 284:825-829. 32. Hadziyannis, S. J., and D. Vassilopoulos. 2001. Hepatitis B e antigen-negative chronic hepatitis B. Hepatology 34:617-624. 33. Heermann, K. H., U. Goldmann, W. Schwartz, T. Seyffarth, H. Baumgarten, and W. H. Gerlich. 1984. Large surface proteins of hepatitis B virus containing the pre-s sequence. Journal of virology 52:396-402. 34. Heermann, K. H., F. Kruse, M. Seifer, and W. H. Gerlich. 1987. Immunogenicity of the gene S and Pre-S domains in hepatitis B virions and HBsAg filaments. Intervirology 28:14-25. 35. Heipertz, R. A., Jr., J. L. Starkey, T. G. Miller, J. Hu, and H. C. Isom. 2009. trans-Complementation of HBV rtM204I mutant replication by HBV wild-type polymerase. Virology 388:57-67. 36. Hu, Z. Y., Z. S. Zhang, E. Doo, O. Coux, A. L. Goldberg, and T. J. Liang. 1999. Hepatitis B virus X protein is both a substrate and a potential inhibitor of the proteasome complex. Journal of virology 73:7231-7240. 37. Huang, L. R., Y. A. Gabel, S. Graf, S. Arzberger, C. Kurts, M. Heikenwalder, P. A. Knolle, and U. Protzer. 2012. Transfer of HBV Genomes Using Low Doses of Adenovirus Vectors Leads to Persistent Infection in Immune Competent Mice. Gastroenterology 142:1447-+. 38. Huang, L. R., H. L. Wu, P. J. Chen, and D. S. Chen. 2006. An immunocompetent mouse model for the tolerance of human chronic hepatitis B virus infection. Proceedings of the National Academy of Sciences of the United States of America 103:17862-17867. 39. Huang, L. R., H. L. Wu, P. J. Chen, and D. S. Chen. 2006. An immunocompetent mouse model for the tolerance of human chronic hepatitis B virus infection. Proceedings of the National Academy of Sciences of the United States of America 103:17862-17867. 40. Huang, Y. H., C. C. Fang, K. Tsuneyama, H. Y. Chou, W. Y. Pan, Y. M. Shih, P. Y. Wu, Y. Chen, P. S. C. Leung, M. E. Gershwin, and M. H. Tao. 2011. A murine model of hepatitis B-associated hepatocellular carcinoma generated by adeno-associated virus-mediated gene delivery. International journal of oncology 39:1511-1519. 41. Hui, C. K., and G. K. Lau. 2005. Immune system and hepatitis B virus infection. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology 34 Suppl 1:S44-48. 42. Junker-Niepmann, M., R. Bartenschlager, and H. Schaller. 1990. A short cis-acting sequence is required for hepatitis B virus pregenome encapsidation and sufficient for packaging of foreign RNA. The EMBO journal 9:3389-3396. 43. Justewicz, D. M., and R. G. Webster. 1996. Long-term maintenance of B cell immunity to influenza virus hemagglutinin in mice following DNA-based immunization. Virology 224:10-17. 44. Kann, M., A. Schmitz, and B. Rabe. 2007. Intracellular transport of hepatitis B virus. World journal of gastroenterology : WJG 13:39-47. 45. Klinman, D. M., A. K. Yi, S. L. Beaucage, J. Conover, and A. M. Krieg. 1996. CpG motifs present in bacterial DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proceedings of the National Academy of Sciences of the United States of America 93:2879-2883. 46. Kuhober, A., H. P. Pudollek, K. Reifenberg, F. V. Chisari, H. J. Schlicht, J. Reimann, and R. Schirmbeck. 1996. DNA immunization induces antibody and cytotoxic T cell responses to hepatitis B core antigen in H-2b mice. J Immunol 156:3687-3695. 47. Lai, C. L., and M. F. Yuen. 2007. The natural history and evaluation of standard treatment of chronic hepatitis B: A critical treatment criteria and end points. Ann Intern Med 147:58-61. 48. Li, J., V. E. Buckwold, M. W. Hon, and J. H. Ou. 1999. Mechanism of suppression of hepatitis B virus precore RNA transcription by a frequent double mutation. Journal of virology 73:1239-1244. 49. Liang, T. J. 2009. Hepatitis B: the virus and disease. Hepatology 49:S13-21. 50. Maini, M. K., C. Boni, C. K. Lee, J. R. Larrubia, S. Reignat, G. S. Ogg, A. S. King, J. Herberg, R. Gilson, A. Alisa, R. Williams, D. Vergani, N. V. Naoumov, C. Ferrari, and A. Bertoletti. 2000. The role of virus-specific CD8(+) cells in liver damage and viral control during persistent hepatitis B virus infection. Journal of Experimental Medicine 191:1269-1280. 51. Milich, D., and T. J. Liang. 2003. Exploring the biological basis of hepatitis B e antigen in hepatitis B virus infection. Hepatology 38:1075-1086. 52. Milich, D. R., and F. V. Chisari. 1982. Genetic regulation of the immune response to hepatitis B surface antigen (HBsAg). I. H-2 restriction of the murine humoral immune response to the a and d determinants of HBsAg. J Immunol 129:320-325. 53. Milich, D. R., J. E. Jones, J. L. Hughes, J. Price, A. K. Raney, and A. Mclachlan. 1990. Is a Function of the Secreted Hepatitis-Be Antigen to Induce Immunological-Tolerance Inutero. Proceedings of the National Academy of Sciences of the United States of America 87:6599-6603. 54. Milich, D. R., J. E. Jones, J. L. Hughes, J. Price, A. K. Raney, and A. McLachlan. 1990. Is a function of the secreted hepatitis B e antigen to induce immunologic tolerance in utero? Proceedings of the National Academy of Sciences of the United States of America 87:6599-6603. 55. Milich, D. R., R. E. Louie, and F. V. Chisari. 1985. Genetic regulation of the immune response to hepatitis B surface antigen (HBsAg). V. T cell proliferative response and cellular interactions. J Immunol 134:4194-4202. 56. Milich, D. R., F. Schodel, D. L. Peterson, J. E. Jones, and J. L. Hughes. 1995. Characterization of self-reactive T cells that evade tolerance in hepatitis B e antigen transgenic mice. European journal of immunology 25:1663-1672. 57. Nassal, M. 2008. Hepatitis B viruses: reverse transcription a different way. Virus research 134:235-249. 58. Nonnenmacher, M., and T. Weber. 2012. Intracellular transport of recombinant adeno-associated virus vectors. Gene therapy 19:649-658. 59. Ou, J. H. 1997. Molecular biology of hepatitis B virus e antigen. Journal of gastroenterology and hepatology 12:S178-187. 60. Page, A. R., H. L. Sharp, L. J. Greenberg, and E. J. Yunis. 1975. Genetic-Analysis of Patients with Chronic Active Hepatitis. Journal of Clinical Investigation 56:530-535. 61. Penna, A., F. V. Chisari, A. Bertoletti, G. Missale, P. Fowler, T. Giuberti, F. Fiaccadori, and C. Ferrari. 1991. Cytotoxic Lymphocytes-T Recognize an Hla-A2-Restricted Epitope within the Hepatitis-B Virus Nucleocapsid Antigen. Journal of Experimental Medicine 174:1565-1570. 62. Pinchuk, L. M., and N. M. Filipov. 2008. Differential effects of age on circulating and splenic leukocyte populations in C57BL/6 and BALB/c male mice. Immunity & ageing : I & A 5:1. 63. Pollack, J. R., and D. Ganem. 1993. An RNA stem-loop structure directs hepatitis B virus genomic RNA encapsidation. Journal of virology 67:3254-3263. 64. Publicover, J., A. Goodsell, S. Nishimura, S. Vilarinho, Z. E. Wang, L. Avanesyan, R. Spolski, W. J. Leonard, S. Cooper, and J. L. Baron. 2011. IL-21 is pivotal in determining age-dependent effectiveness of immune responses in a mouse model of human hepatitis B. The Journal of clinical investigation 121:1154-1162. 65. Reignat, S., G. J. M. Webster, D. Brown, G. S. Ogg, A. King, S. L. Seneviratne, G. Dusheiko, R. Williams, M. K. Maini, and A. Bertoletti. 2002. Escaping high viral load exhaustion: CD8 cells with altered tetramer binding in chronic hepatitis B virus infection. Journal of Experimental Medicine 195:1089-1101. 66. Sakaguchi, S., T. Yamaguchi, T. Nomura, and M. Ono. 2008. Regulatory T cells and immune tolerance. Cell 133:775-787. 67. Scaglioni, P. P., M. Melegari, and J. R. Wands. 1997. Posttranscriptional regulation of hepatitis B virus replication by the precore protein. Journal of virology 71:345-353. 68. Schirmbeck, R., W. Bohm, N. Fissolo, K. Melber, and J. Reimann. 2003. Different immunogenicity of H-2 Kb-restricted epitopes in natural variants of the hepatitis B surface antigen. European journal of immunology 33:2429-2438. 69. Shin, H., and E. J. Wherry. 2007. CD8 T cell dysfunction during chronic viral infection. Current opinion in immunology 19:408-415. 70. Sprinzl, M. F., H. Oberwinkler, H. Schaller, and U. Protzer. 2001. Transfer of hepatitis B virus genome by adenovirus vectors into cultured cells and mice: Crossing the species barrier. Journal of virology 75:5108-5118. 71. Summers, J., A. O'Connell, and I. Millman. 1975. Genome of hepatitis B virus: restriction enzyme cleavage and structure of DNA extracted from Dane particles. Proceedings of the National Academy of Sciences of the United States of America 72:4597-4601. 72. Tagawa, M., M. Omata, and K. Okuda. 1986. Appearance of viral RNA transcripts in the early stage of duck hepatitis B virus infection. Virology 152:477-482. 73. Tang, H., L. Delgermaa, F. Huang, N. Oishi, L. Liu, F. He, L. Zhao, and S. Murakami. 2005. The transcriptional transactivation function of HBx protein is important for its augmentation role in hepatitis B virus replication. Journal of virology 79:5548-5556. 74. Thimme, R., S. Wieland, C. Steiger, J. Ghrayeb, K. A. Reimann, R. H. Purcell, and F. V. Chisari. 2003. CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. Journal of virology 77:68-76. 75. Tsuge, M., N. Hiraga, R. Akiyama, S. Tanaka, M. Matsushita, F. Mitsui, H. Abe, S. Kitamura, T. Hatakeyama, T. Kimura, D. Miki, N. Mori, M. Imamura, S. Takahashi, C. N. Hayes, and K. Chayama. 2010. HBx protein is indispensable for development of viraemia in human hepatocyte chimeric mice. The Journal of general virology 91:1854-1864. 76. Tsui, L. V., L. G. Guidotti, T. Ishikawa, and F. V. Chisari. 1995. Posttranscriptional clearance of hepatitis B virus RNA by cytotoxic T lymphocyte-activated hepatocytes. Proceedings of the National Academy of Sciences of the United States of America 92:12398-12402. 77. Tuttleman, J. S., C. Pourcel, and J. Summers. 1986. Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells. Cell 47:451-460. 78. Virgin, H. W., E. J. Wherry, and R. Ahmed. 2009. Redefining chronic viral infection. Cell 138:30-50. 79. Weber, M., V. Bronsema, H. Bartos, A. Bosserhoff, R. Bartenschlager, and H. Schaller. 1994. Hepadnavirus P protein utilizes a tyrosine residue in the TP domain to prime reverse transcription. Journal of virology 68:2994-2999. 80. Webster, G. J. M., S. Reignat, D. Brown, G. S. Ogg, L. Jones, S. L. Seneviratne, R. Williams, G. Dusheiko, and A. Bertoletti. 2004. Longitudinal analysis of CD8(+) T cells specific for structural and nonstructural hepatitis B virus proteins in patients with chronic hepatitis B: Implications for immunotherapy. Journal of virology 78:5707-5719. 81. Wieland, S., R. Thimme, R. H. Purcell, and F. V. Chisari. 2004. Genomic analysis of the host response to hepatitis B virus infection. Proceedings of the National Academy of Sciences of the United States of America 101:6669-6674. 82. Wieland, S. F., and F. V. Chisari. 2005. Stealth and cunning: Hepatitis B and hepatitis C viruses. Journal of virology 79:9369-9380. 83. Xu, D., J. Fu, L. Jin, H. Zhang, C. Zhou, Z. Zou, J. M. Zhao, B. Zhang, M. Shi, X. Ding, Z. Tang, Y. X. Fu, and F. S. Wang. 2006. Circulating and liver resident CD4+CD25+ regulatory T cells actively influence the antiviral immune response and disease progression in patients with hepatitis B. Journal of immunology 177:739-747. 84. Yang, J. S., W. H. Zhou, Y. L. Zhang, T. Zidon, T. Ritchie, and J. F. Engelhardt. 1999. Concatamerization of adeno-associated virus circular genomes occurs through intermolecular recombination. Journal of virology 73:9468-9477. 85. Zhang, J. M., Y. Xu, X. Y. Wang, Y. K. Yin, X. H. Wu, X. H. Weng, and M. J. Lu. 2007. Coexistence of hepatitis B surface antigen (HBsAg) and heterologous subtype-specific antibodies to HBsAg among patients with chronic hepatitis B virus infection. Clin Infect Dis 44:1161-1169. 86. Zhang, Z. H., L. Li, Y. J. Tian, J. B. Xia, Y. H. Hao, X. Li, M. J. Lu, and D. L. Yang. 2009. HBsAg/HBsAb Double Positive Hepatitis B Virus Infection Model in vitro and in vivo. J Huazhong U Sci-Med 29:575-579. 87. Zincarelli, C., S. Soltys, G. Rengo, and J. E. Rabinowitz. 2008. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Molecular therapy : the journal of the American Society of Gene Therapy 16:1073-1080. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61509 | - |
| dc.description.abstract | 根據統計,全球大約有4億人口受到B型肝炎病毒( human hepatitis B virus - HBV ) 的慢性感染。與健康的人相比,慢性B型肝炎患者,明顯有較高的機率發生肝臟病變,包括肝硬化甚至到肝癌。然而,至今對於B肝病毒所導致慢性肝炎的病理機轉,在研究上一直受到限制,主要原因是缺乏一個適當的動物疾病模式。小鼠雖然廣泛應用於各種疾病的研究,但慢性B型肝炎的小鼠模式很難被建立,目前推測主要原因是小鼠肝細胞缺乏B肝病毒的細胞表面受體,因此無法自然感染小鼠肝細胞。為了克服此問題,此研究利用腺相關病毒(adeno-associated virus,AAV )為載體,攜帶B型肝炎病毒基因體,進入小鼠肝細胞,在免疫健全的小鼠中產生一個HBV感染的模式。此AAV載體攜帶具有HBV聚合酶點突變的HBV基因體(AAV/HBVp-),同時,我們也建立一個AAV載體,會產生HBV聚合酶蛋白質(AAV/ Pol),其受到肝臟內特異性驅動子的轉錄調控。共同打入AAV/HBVp-和AAV/Pol,在肝臟和血清中會有HBV病毒和蛋白質的產生。第二個研究部分,我們單獨感染AAV/HBVp-於C57BL/6小鼠,結果顯示此複製缺陷的AAV/HBVp-會產生HBs抗原和HBe抗原於血清中超過1年。在免疫組織切片染色中,AAV/HBVp-感染的小鼠在肝臟會有HBc抗原產生,但其他器官則不會有。血清中的ALT仍然是正常的。有趣的是,我們發現HBs抗原表現量隨著時間變化的不同,與小鼠品系和感染時的年齡有關,在C57BL/6成鼠( > 8週齡),AAV/HBVp-感染1週後,可產生高量的HBs抗原於血清中,但2-3週後HBs效價則大幅下降;相反的,AAV/HBVp-感染的幼鼠(3週齡),血清中的HBs抗原量在4週的觀察期間則相對穩定。在BALB/c小鼠,AAV/HBVp-感染1週後,會有高量HBs抗原表現,但是第二週後則快速下降到幾乎測不到的HBs量,此現象在成鼠和幼鼠都可以觀察到。早期HBs抗原下降,在免疫缺陷的NSG小鼠則沒有被觀察到,因此推論,控制HBs抗原的量,在抗HBV免疫中扮演重要角色。另一個有趣的是,在感染的AAV/HBVp-的C57BL/6和BALB/c小鼠中,並沒有看到HBe抗原有類似HBs下降的趨勢,此可能的機制還不清楚,將保留於之後更進一步探討。本研究的第三部分,探討在C57BL/6小鼠其會導致早期HBs抗原下降是在成鼠而非幼鼠的可能機制。HBV清除能力與年齡相關的現象在人類的HBV感染也被觀察到,根據統計,95 % 以上的新生兒,如果受到HBV的感染則易形成帶原者,然而成人則是小於5 % 機會發展為慢性B型肝炎感染。比較AAV/HBVp- 感染成鼠和幼鼠後,免疫細胞數目和表現型態的差異,以流式細胞儀分析,成鼠的CD4+ T細胞活化程度比幼鼠多。ELISPOT分析證明,AAV/HBVp-感染後的成鼠與幼鼠相比,能夠產生較多的HBV特異性CD4+ T細胞和CD8+ T細胞,有趣的是,我們觀察到,與幼鼠相比,在成鼠中有較少的調節性T細胞(Treg)和較多的follicular T細胞( TFH ),而與AAV/HBVp-的感染無關,因為TFH細胞與germinal center (GC)的發育和B細胞產生抗體有關,我們假設早期在AAV/HBVp-感染的成鼠內,其HBs抗原下降可能與HBs抗體的產生有關。的確,我們在RAG-/-小鼠,其已先接受來自AAV/HBVp-慢性感染小鼠的脾臟和骨髓細胞,有觀察到明顯的HBs抗體產生,此結果顯示,仍有一些產生HBs抗體的B細胞或漿細胞存在於HBV帶原小鼠中。本研究建立之AAV/HBVp-感染的小鼠模式,可以提供一個便利的工具,以研究在慢性HBV感染的情況下,其宿主對HBV的免疫反應。此外,也可以利用此模式來發展免疫治療藥物,來對抗慢性B型肝炎。 | zh_TW |
| dc.description.abstract | About 400 million people worldwide are estimated to be chronically infected by hepatitis B virus (HBV). Compared to healthy people, these patients are at higher risks in developing progressed liver diseases, including cirrhosis and hepatocellular carcinoma. Due to the absence of appropriate animal models, it is difficult to study the pathogenic mechanisms that lead to hepatic inflammation and liver diseases in chronic HBV. Mice have been broadly used as animal models to study various diseases. However, it is difficult to establish an appropriate mouse model to study HBV, presumably due to the lack of HBV receptors on mouse hepatocytes. To overcome this problem, we used adeno-associated viral (AAV) vectors to deliver HBV into mouse hepatocytes to generate a HBV infection model in immunocompetent mice. This AAV vector carried a HBV genome with point mutations in the polymerase (AAV/HBVp-) open-reading frame and thus eliminate production of HBV polymerase protein. We also generated an AAV vector to produce HBV polymerase protein (AAV/Pol) under the transcriptional control of a liver-specific promoter. Coinjection of AAV/HBVp- and AAV/Pol produced HBV virions and proteins in the liver and circulation. However, the HBV titer in these mice was relatively low ( 1x105 copies /ml) and further efforts are needed to improve this HBV infection mouse model. In the second part of studies, we used AAV/HBVp- alone to infect C57BL/6 mice and demonstrated that it can produce HBsAg and HBeAg in the serum for more than one year in the infected mice. Immunohistochemistry analysis of AAV/HBVp--infected mice demonstrated HBcAg expression in the liver but not in other organs. The serum alanine aminotransferase (ALT) remained normal in these mice. Interestingly, we found that the level of HBsAg expression and its kinetics were mouse strain- and age-dependent. In adult (> 8-week of age) C57BL/6 mice, AAV/HBVp- infection produced high serum HBsAg at week 1 post infection but the titer droped quickly at 2-3 weeks after infection. In contrast, in young C57BL/6 mice infected by AAV/HBVp-, the serum HBsAg level was relatively stable during the four-week observation period. In BALB/c mice, AAV/HBVp- infection resulted in high serum HBsAg at week 1 but quickly droped to an almost undectable level at week 2 and the following weeks in both young an adult mice. The early decrease of serum HBsAg level was not observed in immunodeficient NSG mice, suggesting that the anti-HBV immunity might play a role in controlling the serum HBsAg level. Interestingly, we did not observe similar decrease of HBeAg in either BALB/c or C57BL/6 mice infected by AAV/HBVp-. The underlying mechanisms are not clear and remain to be further approached. The third part of this study is to investigate mechanisms that might cause the early HBsAg decrease in adult but not in young C57BL/6 mice. The age-dependent HBV clearance has also been observed in human HBV infection. More than 95 % of exposed neonates become chronic infection, while chronic infection is observed in less than 5 % of adult HBV infection. We compared the number and phenotypes of lymphocyte subpopulations in adult and young AAV/HBVp- infected mice. Flowcytometric analysis showed that there were more CD4+ and CD8+ T cells with activation phenotypes in adult mice than in young mice. ELISPOT analysis confirmed that AAV/HBVp- infection in adult mice produced more HBV-specific IFN-gama+ CD4+ and CD8+ T cells compared with that in young mice. Interestingly, we observed less T regulatory (Treg) cells and more T follicular helper (Tfh) cells in adult mice than in young mice which are independent of HBV infection. Since Tfh cells are important in germinal center formation and antibody production, we hypothesized that the early decrease of HBsAg in adult mice might be due to their production of more anti-HBs antibodies. Indeed, a significant amount of anti-HBs antibodies can be detected in Rag deficient mice adoptively transferred with the splenocytes and bone marrow cells from AAV/HBVp- infected mice. This result demonstrates that there are still some anti-HBs-producing B cells or plasma cells present in HBV carrier mice. In conclusion, the AAV/HBVp- use model generated in this study offers a convenient tool to study HBV immune responses in chronic HBV infection. This animal model could be useful in developing immunotherapeutic approaches to treat chronic HBV. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:04:35Z (GMT). No. of bitstreams: 1 ntu-102-R00424013-1.pdf: 3198231 bytes, checksum: c776ee910e921945845f7626b4f49d84 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract iii 致謝 vi 目錄 vii 圖表目錄 x 第一章、緒論 1 壹. B型肝炎病毒(Hepatitis B virus,HBV) 介紹 1 1-1. 基因結構 1 1-2. 病毒基因與蛋白 1 1-3. 病毒複製週期 2 貳. B型肝炎病毒感染宿主的免疫反應及病理機制 3 2-1. B型肝炎病毒所產生的特殊免疫反應 3 2-2. B型肝炎病毒持續存在於宿主的機制 4 參. B型肝炎病毒感染的臨床結果 5 3-1. 急性肝炎 5 3-2. 慢性肝炎 5 肆. B型肝炎病毒的動物模式 6 4.1 B型肝炎病毒可自然感染的宿主 6 4.1.1. 黑猩猩 6 4.1.2 樹鼩(tupaia) 6 4.2. 代理的B型肝炎病毒動物模式-土撥鼠、地鼠及北京鴨 7 4.3 B型肝炎病毒的小鼠模式 7 4.3.1. B型肝炎病毒基因轉殖鼠 7 4.3.2. 人肝嵌合鼠( human-mouse chimeric liver) 8 4.3.3. hydrodynamic injection 9 4.3.4. 腺病毒(adeno virus)載體攜帶HBV基因於小鼠肝臟 9 4.3.5. 腺相關病毒(adeno-associated virus)載體攜帶HBV基因於小鼠肝臟 9 伍.實驗目的與設計 10 第二章、材料與方法 11 1. HBV聚合酶點突變 11 2. 細胞培養 11 3. DNA質體轉型 11 4. 大規模的DNA質體純化 12 5. 重組腺相關病毒製作與純化 12 6. 動物. 14 7. 尾靜脈注射重組腺相關病毒 14 8. 即時聚合酶鏈鎖反應定量B肝病毒 14 9. 檢測RNA(北方墨點法) 15 10. RNA萃取 15 11. 北方墨點分析法 15 12. 組織染色 16 13. Hydrodynamic injection 16 14. DNA電擊免疫 16 15. 南方墨點法 17 16. HBV血清和生化標誌分析 17 17. IFNγ ELISPOT 18. 脾臟細胞及肝臟內免疫細胞的流氏細胞儀分析 18 19. 統計 18 第三章、實驗結果 19 第一節、建立複製缺陷HBV質體 19 壹. 製備複製缺陷HBV質體 19 貳. 轉染聚合酶質體可恢復pHBV1.3p-複製能力 19 第二節、重組腺相關病毒在小鼠體內的表現 20 壹. 構築重組腺相關病毒(AAV)攜帶複製缺陷HBV質體 20 貳. 重組腺相關病毒大量生產 20 参. 重組腺相關病毒感染小鼠 20 1. HBV 病毒的產生 20 2. HBV相關蛋白的表現 21 3. AAV/HBVp-的感染分佈 21 4. HBV相關蛋白在不同時間點的變化及長期表現 21 5. 長期表現HBV蛋白並不會導致肝臟的發炎及破壞 22 6. AAV/HBVp-所產生的HBs抗原表現的穩定性與宿主基因背景和免疫反應有關….. 22 7. AAV/HBVp-感染年紀小的C57BL/6小鼠其HBs抗原可穩定表現,但於BALB/c小鼠則仍會下降 23 第三節、探討年齡與HBV之間的關係 24 壹. 年齡大的C57BL/6小鼠對於HBs抗原的清除能力較好 24 貳. 年齡的大小對於小鼠清除HBs 抗原能力不同的可能機制 24 1. 週齡大的小鼠其肝臟和脾臟中的CD4+ T細胞有較多活化及記憶現象 24 2. 週齡大的小鼠其肝臟和脾臟內有較多的HBV專一性T細胞反應 26 3. 週齡小的小鼠其肝臟內有較多的調節性T細胞-Treg 27 4. 週齡大的小鼠其肝臟和脾臟內有較多的follicular helper T 細胞-TFH 28 5. 血清中anti-HBs、anti-HBc、anti-HBe 的抗體檢測 28 第四節、慢性B型肝炎的免疫反應 28 壹.持續存在的HBV相關抗原對宿主免疫反應的影響 29 貳.在慢性B肝感染的環境下,宿主產生HBs抗體的能力 29 第五節、宿主免疫反應對於清除HBV感染的能力 31 壹.HBs和HBc專一性免疫細胞可徹底清除AAV/HBVp-所產生的HBs抗原及引發肝細胞的破壞 31 第四章、討論 32 第五章、參考文獻 39 | |
| dc.language.iso | zh-TW | |
| dc.subject | 慢性B型肝炎 | zh_TW |
| dc.subject | 年齡帶原率 | zh_TW |
| dc.subject | 免疫耐受性 | zh_TW |
| dc.subject | 免疫反應 | zh_TW |
| dc.subject | B型肝炎病毒 | zh_TW |
| dc.subject | HBs 抗體 | zh_TW |
| dc.subject | immune response | en |
| dc.subject | hepatitis B virus | en |
| dc.subject | HBs antibody | en |
| dc.subject | age dependent response | en |
| dc.subject | immune tolerance | en |
| dc.subject | chronic hepatitis B | en |
| dc.title | 建立小鼠模式以探討慢性B型肝炎病毒引發的免疫反應 | zh_TW |
| dc.title | Generation of A Mouse Model to Study Immunological Responses to Chronic Hepatitis B | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李君男,吳慧琳,楊雅倩 | |
| dc.subject.keyword | 慢性B型肝炎,B型肝炎病毒,HBs 抗體,年齡帶原率,免疫耐受性,免疫反應, | zh_TW |
| dc.subject.keyword | chronic hepatitis B,hepatitis B virus,HBs antibody,age dependent response,immune tolerance,immune response, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-05 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
