Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61486
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂紹俊(Shao-Chun Lu)
dc.contributor.authorTzu-Ling Kuoen
dc.contributor.author郭姿伶zh_TW
dc.date.accessioned2021-06-16T13:04:03Z-
dc.date.available2016-09-24
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-08-05
dc.identifier.citation參考文獻
林偲涵 (2011) ERK2 調控 G-CSF 在侵略性癌細胞中的表現。國立台灣大學醫學院生物化學暨分子生物學研究所碩士論文
林詩珊 (2012) ERK2 在 LPS 誘導巨噬細胞 G-CSF 表現的角色。國立台灣大學醫學院生物化學暨分子生物學研究所碩士論文
Aoyama, T., Sawamura, T., Furutani, Y., Matsuoka, R., Yoshida, M., Fujiwara, H., and Masaki, T. (1999). Structure and chromosomal assignment of the human lectin-like oxidized low-density-lipoprotein receptor-1 (LOX-1) gene. Biochem J 339, 177.
Barbacid, M., and Barbacid, M. (2003). RAS oncogenes: the first 30 years. Nat Rev Cancer 3, 459-465.
Barnes, P.J. (1997). Nuclear factor-κB. Int J Biochem Cell Biol 29, 867-870.
Bentires-Alj, M., Kontaridis, M.I., and Neel, B.G. (2006). Stops along the RAS pathway in human genetic disease. Nat Med 12, 283-285.
Boneberg, E.-M., Hareng, L., Gantner, F., Wendel, A., and Hartung, T. (2000). Human monocytes express functional receptors for granulocyte colony–stimulating factor that mediate suppression of monokines and interferon-γ. Blood 95, 270-276.
Boulton, T.G., Nye, S.H., Robbins, D.J., Ip, N.Y., Radzlejewska, E., Morgenbesser, S.D., DePinho, R.A., Panayotatos, N., Cobb, M.H., and Yancopoulos, G.D. (1991). ERKs: A family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65, 663-675.
68
Boulton, T.G., Yancopoulos, G.D., Gregory, J.S., Slaughter, C., Moomaw, C., Hsu, J., and Cobb, M.H. (1990). An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science 249, 64-67.
Braun, B., Lange, M., Oeckler, R., and Mueller, M.M. (2004). Expression of G-CSF and GM-CSF in human meningiomas correlates with increased tumor proliferation and vascularization. J Neurooncol 68, 131-140.
Bussolino, F., Wang, J.M., Defilippi, P., Turrini, F., Sanavio, F., Edgell, C.-J., Aglietta, M., Arese, P., and Mantovani, A. (1989). Granulocyte-and granulocyte–macrophage-colony stimulating factors induce human endothelial cells to migrate and proliferate. Nature 337, 471-473.
Campbell, I.K., Rich, M.J., Bischof, R.J., and Hamilton, J.A. (2000). The colony-stimulating factors and collagen-induced arthritis: exacerbation of disease by M-CSF and G-CSF and requirement for endogenous M-CSF. J Leukoc Biol 68, 144-150.
Cargnello, M., and Roux, P.P. (2011). Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases. Mol Biol Rev 75, 50-83.
Carlson, S.M., Chouinard, C.R., Labadorf, A., Lam, C.J., Schmelzle, K., Fraenkel, E., and White, F.M. (2011). Large-Scale Discovery of ERK2 Substrates Identifies ERK-Mediated Transcriptional Regulation by ETV3. Science Signaling 4, rs11.
Chakraborty, A., Hentzen, E.R., Seo, S.M., and Smith, C.W. (2003). Granulocyte colony-stimulating factor promotes adhesion of neutrophils. Am J Physiol Cell Physiol 284, C103-C110.
69
Chang, P.Y., Chen, Y.J., Chang, F.H., Lu, J., Huang, W.H., Yang, T.C., Lee, Y.T., Chang, S.F., Lu, S.C., and Chen, C.H. (2013). Aspirin protects human coronary artery endothelial cells against atherogenic electronegative LDL via an epigenetic mechanism: A novel cytoprotective role of aspirin in acute myocardial infarction. Cardiovasc Res. 99:137-145.
Chen, C.-H., Jiang, T., Yang, J.-H., Jiang, W., Lu, J., Marathe, G.K., Pownall, H.J., Ballantyne, C.M., McIntyre, T.M., and Henry, P.D. (2003). Low-density lipoprotein in hypercholesterolemic human plasma induces vascular endothelial cell apoptosis by inhibiting fibroblast growth factor 2 transcription. Circulation 107, 2102-2108.
Chen, C.-H., Jiang, W., Via, D.P., Luo, S., Li, T.-R., Lee, Y.-T., and Henry, P.D. (2000). Oxidized low-density lipoproteins inhibit endothelial cell proliferation by suppressing basic fibroblast growth factor expression. Circulation 101, 171-177.
Chen, M., Masaki, T., and Sawamura, T. (2002). LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: implications in endothelial dysfunction and atherosclerosis. Pharmacol Ther 95, 89-100.
Chen, Y.-J., Wang, Y.-N., and Chang, W.-C. (2007). ERK2-mediated C-terminal Serine Phosphorylation of p300 Is Vital to the Regulation of Epidermal Growth Factor-induced Keratin 16 Gene Expression. J Biol Chem 282, 27215-27228.
Christopher, K., and Joseph, L. (2001). Atherosclerosis: the road ahead. Cell 104, 503-516.
70
Clinton, S., Underwood, R., Hayes, L., Sherman, M., Kufe, D., and Libby, P. (1992). Macrophage colony-stimulating factor gene expression in vascular cells and in experimental and human atherosclerosis. Am J Pathol 140, 301.
Cockerill, P.N., and Klinken, S.P. (1990). Octamer-binding proteins in diverse hemopoietic cells. Mol Cell Biol 10, 1293-1296.
Collins, R.G., Velji, R., Guevara, N.V., Hicks, M.J., Chan, L., and Beaudet, A.L. (2000). P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E–deficient mice. J Exp Med 191, 189-194.
Cook, A.D., Pobjoy, J., Sarros, S., Steidl, S., Durr, M., Lacey, D.C., and Hamilton, J.A. (2013). Granulocyte-macrophage colony-stimulating factor is a key mediator in inflammatory and arthritic pain. Ann Rheum Dis 72, 265-270.
Cornish, A.L., K., I., Campbell, S., B., McKenzie, Chatfield, S., and Wicks, l.P. (2009). G-CSF and GM-CSF as therapeutic targets in rheumatoid arthritis. Nat Rev Rheumatol 5, 554-559.
Daigneault, M., Preston, J.A., Marriott, H.M., Whyte, M.K., and Dockrell, D.H. (2010). The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One 5, e8668.
Davies, M.J., Richardson, P.D., Woolf, N., Katz, D.R., and Mann, J. (1993). Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J 69, 377-381.
71
Davis, R. (1999). Signal transduction by the c-Jun N-terminal kinase. Biochem Soc Symp. 64:1-12.
Dong, Z.M., Chapman, S.M., Brown, A.A., Frenette, P.S., Hynes, R.O., and Wagner, D.D. (1998). The combined role of P-and E-selectins in atherosclerosis. J Clin Invest 102, 145.
Drechsler, M., Megens, R.T., van Zandvoort, M., Weber, C., and Soehnlein, O. (2010). Hyperlipidemia-Triggered Neutrophilia Promotes Early AtherosclerosisClinical Perspective. Circulation 122, 1837-1845.
Dunn, S., Vohra, R., Murphy, J., Homer-Vanniasinkam, S., Walker, J., and Ponnambalam, S. (2008). The lectin-like oxidized low-density-lipoprotein receptor: a pro-inflammatory factor in vascular disease. Biochem J 409, 349-355.
Dunn, S.M., Coles, L.S., Lang, R.K., Gerondakis, S., Vadas, M.A., and Shannon, M.F. (1994). Requirement for nuclear factor (NF)-kappa B p65 and NF-interleukin-6 binding elements in the tumor necrosis factor response region of the granulocyte colony-stimulating factor promoter. Blood 83, 2469-2479.
Epstein, F.H., and Ross, R. (1999). Atherosclerosis—an inflammatory disease. N Engl J Med 340, 115-126.
Ernst, T.J., Ritchie, A.R., Demetri, G.D., and Griffin, J.D. (1989). Regulation of granulocyte- and monocyte-colony stimulating factor mRNA levels in human blood monocytes is mediated primarily at a post-transcriptional level. J Biol Chem 264, 5700-5703.
72
Fibbe, W.E., van Damme, J., Billiau, A., Goselink, H.M., Voogt, P.J., van Eeden, G., Ralph, P., Altrock, B.W., and Falkenburg, J.H. (1988). Interleukin 1 induces human marrow stromal cells in long-term culture to produce granulocyte colony-stimulating factor and macrophage colony- stimulating factor. Blood 71, 430-435.
Filonzi, E.L., Zoellner, H., Stanton, H., and Hamilton, J.A. (1993). Cytokine regulation of granulocyte-macrophage colony stimulating factor and macrophage colony-stimulating factor production in human arterial smooth muscle cells. Atherosclerosis 99, 241-252.
Gareus, R., Kotsaki, E., Xanthoulea, S., van der Made, I., Gijbels, M.J., Kardakaris, R., Polykratis, A., Kollias, G., de Winther, M.P., and Pasparakis, M. (2008). Endothelial cell-specific NF-κB inhibition protects mice from atherosclerosis. Cell Metab 8, 372-383.
Gupta, S., Barrett, T., Whitmarsh, A.J., Cavanagh, J., Sluss, H.K., Derijard, B., and Davis, R.J. (1996). Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J 15, 2760.
Haghighat, A., Weiss, D., Whalin, M.K., Cowan, D.P., and Taylor, W.R. (2007). Granulocyte Colony-Stimulating Factor and Granulocyte Macrophage Colony-Stimulating Factor Exacerbate Atherosclerosis in Apolipoprotein E–Deficient Mice. Circulation 115, 2049-2054.
Hamilton, J.A. (2008). Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 8, 533-544.
73
Hansson, G.K., and Libby, P. (2006). The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 6, 508-519.
Hareng, L., and Hartung, T. (2002). Induction and regulation of endogenous granulocyte colony-stimulating factor formation. Biol Chem. 383, 1501-1517.
Hareng, L., Meergans, T., von Aulock, S., Volk, H.D., and Hartung, T. (2003). Cyclic AMP increases endogenous granulocyte colony‐stimulating factor formation in monocytes and THP‐1 macrophages despite attenuated TNF‐α formation. Eur J Immunol 33, 2287-2296.
Herrmann, F., Cannistra, S.A., and Griffin, J.D. (1986). T cell-monocyte interactions in the production of humoral factors regulating human granulopoiesis in vitro. J Immunol 136, 2856-2861.
Hessler, J.R., Robertson, A.L., and Chisolm, G.M. (1979). LDL-induced cytotoxicity and its inhibition by HDL in human vascular smooth muscle and endothelial cells in culture. Atherosclerosis 32, 213-229.
Himes, S., Coles, L., Katsikeros, R., Lang, R., and Shannon, M. (1993). HTLV-1 tax activation of the GM-CSF and G-CSF promoters requires the interaction of NF-kB with other transcription factor families. Oncogene 8, 3189.
Ho, P.-C., Gupta, P., Tsui, Y.-C., Ha, S.G., Huq, M., and Wei, L.-N. (2008). Modulation of lysine acetylation-stimulated repressive activity by Erk2-mediated phosphorylation of RIP140 in adipocyte differentiation. Cell Signal. 20, 1911-1919.
74
Hu, Z., Zhang, J., Guan, A., Gong, H., Yang, M., Zhang, G., Jia, J., Ma, H., Yang, C., and Ge, J. (2013). Granulocyte Colony-Stimulating Factor Promotes Atherosclerosis in High-Fat Diet Rabbits. Int J Mol Sci 14, 4805-4816.
Ionita, M.G., van den Borne, P., Catanzariti, L.M., Moll, F.L., de Vries, J.-P.P., Pasterkamp, G., Vink, A., and de Kleijn, D.P. (2010). High neutrophil numbers in human carotid atherosclerotic plaques are associated with characteristics of rupture-prone lesions. Arterioscler Thromb Vasc Biol 30, 1842-1848.
Kamio, N., Akifusa, S., Yamaguchi, N., and Yamashita, Y. (2008). Induction of granulocyte colony-stimulating factor by globular adiponectin via the MEK–ERK pathway. Mol Cell Endocrinol 292, 20-25.
Kanters, E., Pasparakis, M., Gijbels, M.J., Vergouwe, M.N., Partouns-Hendriks, I., Fijneman, R.J., Clausen, B.E., Forster, I., Kockx, M.M., and Rajewsky, K. (2003). Inhibition of NF-κB activation in macrophages increases atherosclerosis in LDL receptor–deficient mice. J Clin Invest 112, 1176-1185.
Koeffler, H.P., Gasson, J., Ranyard, J., Souza, L., Shepard, M., and Munker, R. (1987). Recombinant human TNF alpha stimulates production of granulocyte colony- stimulating factor. Blood 70, 55-59.
Koeffler, H.P., Gasson, J., and Tobler, A. (1988). Transcriptional and posttranscriptional modulation of myeloid colony-stimulating factor expression by tumor necrosis factor and other agents. Mol Cell Biol 8, 3432-3438.
Kontush, A., and Chapman, M.J. (2006). Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol Rev. 58, 342-374.
75
Kwiterovich Jr, P.O. (2000). The metabolic pathways of high-density lipoprotein, low-density lipoprotein, and triglycerides: a current review. Am J Cardiol. 86, 5-10.
Laan, M., Prause, O., Miyamoto, M., Sjostrand, M., Hytonen, A., Kaneko, T., Lotvall, J., and Linden, A. (2003). A role of GM-CSF in the accumulation of neutrophils in the airways caused by IL-17 and TNF‐α. Eur Respir J. 21, 387-393.
Ladner, M., Martin, G., Noble, J., Nikoloff, D., Tal, R., Kawasaki, E., and White, T. (1987). Human CSF-1: gene structure and alternative splicing of mRNA precursors. EMBO J 6, 2693.
Leeuwenburgh, C., Rasmussen, J.E., Hsu, F.F., Mueller, D.M., Pennathur, S., and Heinecke, J.W. (1997). Mass spectrometric quantification of markers for protein oxidation by tyrosyl radical, copper, and hydroxyl radical in low density lipoprotein isolated from human atherosclerotic plaques. J Biol Chem 272, 3520-3526.
Li, H., Cybulsky, M.I., Gimbrone, M., and Libby, P. (1993). An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler Thromb Vasc Biol 13, 197-204. Li, Y., Cam, J., and Bu, G. (2001). Low-density lipoprotein receptor family. Mol Neurobiol. 23, 53-67.
Liu, R., Liu, H., Chen, X., Kirby, M., Brown, P.O., and Zhao, K. (2001). Regulation of CSF1 promoter by the SWI/SNF-like BAF complex. Cell 106, 309-318.
76
Lloyd, A. (2006). Distinct functions for ERKs? J Biol 5, 13.
Lopez, A.F., Williamson, D.J., Gamble, J., Begley, C.G., Harlan, J., Klebanoff, S., Waltersdorph, A., Wong, G., Clark, S., and Vadas, M. (1986). Recombinant human granulocyte-macrophage colony-stimulating factor stimulates in vitro mature human neutrophil and eosinophil function, surface receptor expression, and survival. J Clin Invest 78, 1220.
Lu, J., Jiang, W., Yang, J.-H., Chang, P.-Y., Walterscheid, J.P., Chen, H.-H., Marcelli, M., Tang, D., Lee, Y.-T., and Liao, W.S. (2008). Electronegative LDL impairs vascular endothelial cell integrity in diabetes by disrupting fibroblast growth factor 2 (FGF2) autoregulation. Diabetes 57, 158-166.
Lu, J., Yang, J.-H., Burns, A.R., Chen, H.-H., Tang, D., Walterscheid, J.P., Suzuki, S., Yang, C.-Y., Sawamura, T., and Chen, C.-H. (2009). Mediation of Electronegative Low-Density Lipoprotein Signaling by LOX-1 A Possible Mechanism of Endothelial Apoptosis. Circ Res 104, 619-627.
Mazzucchelli, C., Vantaggiato, C., Ciamei, A., Fasano, S., Pakhotin, P., Krezel, W., Welzl, H., Wolfer, D.P., Pages, G., Valverde, O., et al. (2002). Knockout of ERK1 MAP Kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron 34, 807-820.
Mehta, J.L., Chen, J., Hermonat, P.L., Romeo, F., and Novelli, G. (2006). Lectin-like, oxidized low-density lipoprotein receptor-1 (LOX-1): a critical player in the development of atherosclerosis and related disorders. Cardiovasc Res 69, 36-45.
Metcalf, D. (2010). The colony-stimulating factors and cancer. Nat Rev Cancer 10, 425-434.
77
Metcalf, D., Robb, L., Dunn, A.R., Mifsud, S., and Di Rago, L. (1996). Role of granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor in the development of an acute neutrophil inflammatory response in mice. Blood 88, 3755-3764.
Mitra, S., Deshmukh, A., Sachdeva, R., Lu, J., and Mehta, J.L. (2011). Oxidized low-density lipoprotein and atherosclerosis implications in antioxidant therapy. Am J Med 342, 135-142.
Moriwaki, H., Kume, N., Sawamura, T., Aoyama, T., Hoshikawa, H., Ochi, H., Nishi, E., Masaki, T., and Kita, T. (1998). Ligand specificity of LOX-1, a novel endothelial receptor for oxidized low density lipoprotein. Arterioscler Thromb Vasc Biol 18, 1541-1547.
Napoli, C., D'armiento, F., Mancini, F., Postiglione, A., Witztum, J., Palumbo, G., and Palinski, W. (1997). Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. J Clin Invest 100, 2680.
Navab, M., Berliner, J.A., Watson, A.D., Hama, S.Y., Territo, M.C., Lusis, A.J., Shih, D.M., Van Lenten, B.J., Frank, J.S., and Demer, L.L. (1996). The Yin and Yang of oxidation in the development of the fatty streak a review based on the 1994 George Lyman Duff Memorial Lecture. Arterioscler Thromb Vasc Biol 16, 831-842.
Navab, M., Reddy, S.T., Van Lenten, B.J., Anantharamaiah, G., and Fogelman, A.M. (2009). The role of dysfunctional HDL in atherosclerosis. J Lipid Res 50, S145-S149.
78
Okura, H., Yamashita, S., Ohama, T., Saga, A., Yamamoto-Kakuta, A., Hamada, Y., Sougawa, N., Ohyama, R., Sawa, Y., and Matsuyama, A. (2010). HDL/apolipoprotein AI binds to macrophage-derived progranulin and suppresses its conversion into proinflammatory granulins. J Atheroscler Thromb. 17, 568-577.
Oster, W., Lindemann, A., Mertelsmann, R., and Herrmann, F. (1989). Granulocyte-macrophage colony-stimulating factor (CSF) and multilineage CSF recruit human monocytes to express granulocyte CSF. Blood 73, 64-67.
Pages, G., Guerin, S., Grall, D., Bonino, F., Smith, A., Anjuere, F., Auberger, P., and Pouyssegur, J. (1999). Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science 286, 1374-1377.
Pag s, G., and Pou ss gur, J. ( ). Stud of MAPK signaling using noc out mice. Methods Mol Biol 250, 155-166.
Rotzius, P., Thams, S., Soehnlein, O., Kenne, E., Tseng, C.-N., Bjorkstrom, N.K., Malmberg, K.-J., Lindbom, L., and Eriksson, E.E. (2010). Distinct Infiltration of Neutrophils in Lesion Shoulders in ApoE< sup>−/−</sup> Mice. Am J Pathol 177, 493-500.
Sakai, M., Biwa, T., Matsumura, T., Takemura, T., Matsuda, H., Anami, Y., Sasahara, T., Kobori, S., and Shichiri, M. (1999). Glucocorticoid inhibits oxidized LDL-induced macrophage growth by suppressing the expression of granulocyte/macrophage colony-stimulating factor. Arterioscler Thromb Vasc Biol 19, 1726-1733.
Schneider, W., and Nimpf, J. (2003). LDL receptor relatives at the crossroad of endocytosis and signaling. Cell Mol Life Sci 60, 892-903.
79
Senokuchi, T., Matsumura, T., Sakai, M., Matsuo, T., Yano, M., Kiritoshi, S., Sonoda, K., Kukidome, D., Nishikawa, T., and Araki, E. (2004). Extracellular signal-regulated kinase and p38 mitogen-activated protein kinase mediate macrophage proliferation induced by oxidized low-density lipoprotein. Atherosclerosis 176, 233.
Shannon, M.F., Pell, L.M., Lenardo, M.J., Kuczek, E.S., Occhiodoro, F.S., Dunn, S.M., and Vadas, M.A. (1990). A novel tumor necrosis factor-responsive transcription factor which recognizes a regulatory element in hemopoietic growth factor genes. Mol Cell Biol 10, 2950-2959.
Shaw, G., and Kamen, R. (1986). A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46, 659-667.
Shi, W., Haberland, M.E., Jien, M.-L., Shih, D.M., and Lusis, A.J. (2000). Endothelial responses to oxidized lipoproteins determine genetic susceptibility to atherosclerosis in mice. Circulation 102, 75-81.
Shi, Y., Cosentino, F., Camici, G.G., Akhmedov, A., Vanhoutte, P.M., Tanner, F.C., and Luscher, T.F. (2011). Oxidized Low-Density Lipoprotein Activates p66Shc via Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1, Protein Kinase C-β, and c-Jun N-Terminal Kinase Kinase in Human Endothelial Cells. Arterioscler Thromb Vasc Biol 31, 2090-2097.
Singh, R., Wang, Y., Xiang, Y., Tanaka, K.E., Gaarde, W.A., and Czaja, M.J. (2009). Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance. Hepatology 49, 87-96.
80
Smirnova, I., Kajstura, M., Sawamura, T., and Goligorsky, M. (2004). Asymmetric dimethylarginine upregulates LOX-1 in activated macrophages: role in foam cell formation. Am J Physiol Heart Circ Physiol 287, H782-H790.
Smith, J.D., Trogan, E., Ginsberg, M., Grigaux, C., Tian, J., and Miyata, M. (1995). Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc Natl Acad Sci USA 92, 8264-8268.
Steinberg, D. (1989). Beyond cholesterol: modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 320, 915-924.
Steinberg, D., and Witztum, J. (1999). Lipoproteins, lipoprotein oxidation, and atherogenesis. Molecular basis of cardiovascular disease 1499, 458-475.
Suc, I., Escargueil-Blanc, I., Troly, M., Salvayre, R., and Negre-Salvayre, A. (1997). HDL and ApoA prevent cell death of endothelial cells induced by oxidized LDL. Arterioscler Thromb Vasc Biol 17, 2158-2166. Suzuki H, Kurihara Y, Takeya M, Kamada N, Kataoka M, Jishage K, Ueda O, Sakaguchi H, Higashi T, Suzuki T, Takashima Y, Kawabe Y, Cynshi O, Wada Y, Honda M, Kurihara H, Aburatani H, Doi T, Matsumoto A, Azuma S, Noda T, Toyoda Y, Itakura H, Yazaki Y, Kodama T, et al. (1997). A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature. 1997 386:292-296.
Tang, D., Lu, J., Walterscheid, J.P., Chen, H.-H., Engler, D.A., Sawamura, T., Chang, P.-Y., Safi, H.J., Yang, C.-Y., and Chen, C.-H. (2008). Electronegative LDL circulating in smokers impairs endothelial progenitor cell differentiation by inhibiting Akt phosphorylation via LOX-1. J Lipid Res 49, 33-47.
81
Tanigawa, H., Miura, S.-i., Zhang, B., Uehara, Y., Matsuo, Y., Fujino, M., Sawamura, T., and Saku, K. (2006). Low-density lipoprotein oxidized to various degrees activates ERK1/2 through Lox-1. Atherosclerosis 188, 245-250.
Vantaggiato, C., Formentini, I., Bondanza, A., Bonini, C., Naldini, L., and Brambilla, R. (2006). ERK1 and ERK2 mitogen-activated protein kinases affect Ras-dependent cell signaling differentially. J Biol. 5, 14.
Vellenga, E., Rambaldi, A., Ernst, T.J., Ostapovicz, D., and Griffin, J.D. (1988). Independent regulation of M-CSF and G-CSF gene expression in human monocytes. Blood 71, 1529-1532.
Werling, D., Hope, J.C., Chaplin, P., Collins, R.A., Taylor, G., and Howard, C.J. (1999). Involvement of caveolae in the uptake of respiratory syncytial virus antigen by dendritic cells. J Leukoc Biol. 66, 50-58.
Wieser, M., Bonifer, R., Oster, W., Lindemann, A., Mertelsmann, R., and Herrmann, F. (1989). Interleukin-4 induces secretion of CSF for granulocytes and CSF for macrophages by peripheral blood monocytes. Blood 73, 1105-1108.
Witztum, J.L., and Steinberg, D. (1991). Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 88, 1785.
Xie, Q., Matsunaga, S., Niimi, S., Ogawa, S., Tokuyasu, K., Sakakibara, Y., and Machida, S. (2004). Human lectin-like oxidized low-density lipoprotein receptor-1 functions as a dimer in living cells. DNA Cell Biol. 23, 111-117.
82
Yan, F., Wang, X.-M., Liu, Z.-C., Pan, C., Yuan, S.-B., and Ma, Q.-M. (2010). JNK1, JNK2, and JNK3 are involved in P-glycoprotein-mediated multidrug resistance of hepatocellular carcinoma cells. Hepatobiliary Pancreat Dis Int 9, 287-295.
Yang, C.-y., Raya, J.L., Chen, H.-H., Chen, C.-H., Abe, Y., Pownall, H.J., Taylor, A.A., and Smith, C.V. (2003). Isolation, characterization, and functional assessment of oxidatively modified subfractions of circulating low-density lipoproteins. Arterioscler Thromb Vasc Biol 23, 1083-1090.
Yoon, S., and Seger, R. (2006). The extracellular signal-regulated kinase: Multiple substrates regulate diverse cellular functions. Growth Factors 24, 21-44.
Zehorai, E., Yao, Z., Plotnikov, A., and Seger, R. (2010). The subcellular localization of MEK and ERK—A novel nuclear translocation signal (NTS) paves a way to the nucleus. Mol Cell Endocrinol. 314, 213-220.
Zhang, L., Yang, M., Wang, Q., Liu, M., Liang, Q., Zhang, H., and Xiao, X. (2011). HSF1 regulates expression of G-CSF through the binding element for NF-IL6/CCAAT enhancer binding protein beta. Mol Cell Biochem 352, 11-17.
Zhang, Z., Zhang, M., Li, Y., Liu, S., Ping, S., Wang, J., Ning, F., Xie, F., and Li, C. (2013). Simvastatin inhibits the additive activation of ERK1/2 and proliferation of rat vascular smooth muscle cells induced by combined mechanical stress and oxLDL through LOX-1 pathway. Cell Signal. 25:332-340.
Zsebo, K.M., Yuschenkoff, V.N., Schiffer, S., Chang, D., McCall, E., Dinarello, C.A., Brown, M.A., Altrock, B., and Bagby, G.C., Jr. (1988). Vascular endothelial cells and granulopoiesis: interleukin-1 stimulates release of G-CSF and GM-CSF. Blood 71, 99-103.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61486-
dc.description.abstract高膽固醇血症會促進動脈硬化損傷的形成,而單核球細胞分化形成的巨噬細胞和 oxidized LDL (oxLDL) 往往被發現存在於損傷區域。一般認為,oxLDL 會藉由巨噬細胞的清道夫受體辨認而內化進入細胞,因此造成脂質堆積和發炎的現象。一些研究發現,在動脈損傷區域會有嗜中性白血球和它所產生的介質存在,血漿中也有較高的顆粒性白血球群落刺激因子 (granulocyte colony-stimulating factor, G-CSF),而已知 G-CSF 具有增加和聚集白血球至發炎區域的能力。除此之外,在早期動脈損傷中,扮演調控血管內膜細胞增生的重要角色-顆粒球巨噬細胞群落刺激因子 (granulocyte macrophage colony-stimulating factor, GM-CSF) 也被發現存在於動脈損傷區域。另外,先前動物實驗的結果指出,注射 G-CSF 和 GM-CSF 會促進粥狀動脈硬化的形成。以上的結果都說明 G-CSF 和 GM-CSF 在粥狀動脈硬化疾病的發展扮演重要的角色,然而究竟它們的表現是否是由 oxLDL 所誘導的仍不清楚。
在這個研究,我們探討由急性心肌梗塞患者或是餵食高膽固醇高血脂飼料的紐西蘭大白兔的血漿以離子交換層析法分離得到的 native LDL (nLDL) 與帶負電的 LDL (LDL(-)) 以及藉由銅離子誘導氧化而成的 oxidized LDL (oxLDL) 是否能夠造成人類單核球細胞分化的巨噬細胞中 G-CSF 和 GM-CSF 的表現增加。實驗結果發現,LDL(-) 會顯著促進巨噬細胞中 G-CSF 和 GM-CSF mRNA 表現和蛋白質分泌,並且它們兩者的表現是與處理時間和 LDL(-) 劑量呈現正向關係,但是在 nLDL 和 oxLDL 卻只有增加些微的表現。而 LDL(-) 誘導 G-CSF 和 GM-CSF 的作用會在 LOX-1 knock-down 的細胞中幾乎消失;利用抑制劑和 shRNA knockdown 的方法,我們的研究結果顯示,LDL(-) 誘導 G-CSF 和 GM-CSF 表現透過活化 NF-κB、ERK2 及 JNK。然而,LDL(-) 誘導 G-CSF 和 GM-CSF 表現並不會因為 cytochalasin D (抑制胞吞作用的藥劑) 處理而減少,
v
推測 LDL(-) 誘導的訊息傳遞可能不需要 LDL(-) 與受體結合後的胞吞作用,但需要更進一步研究才能證實。當 HDL 和 LDL(-) 同時處理細胞時,能些微減少 LDL(-) 誘導的 G-CSF、GM-CSF、TNF-α 和 IL-1β 表現。
綜合以上,我們的實驗結果指出 LDL(-) 在人類單核球細胞分化而成的巨噬細胞中主要是透過 LOX-1 及活化 NF-κB、ERK2 和 JNK 的訊息傳遞途徑誘導 G-CSF 和 GM-CSF 表現。而以上 LDL(-) 的誘導作用可能是在吞噬作用之前就已產生訊號。以上結果說明,對於 G-CSF 和 GM-CSF 的產生,LDL(-) 是一個相當重要的調節者,更提供了 LDL(-) 與粥狀動脈硬化疾病的發展的另一層關聯。
zh_TW
dc.description.abstractHypercholesterolemia promotes the formation of atherosclerotic lesions in which oxidized LDL (oxLDL) and monocyte-derived macrophages are frequently found. It is generally believed that oxLDL is recognized and internalized by macrophages via scavenger receptors and resulted in lipid accumulation and inflammation. Results of several studies indicate the presence of neutrophils and neutrophil-derived mediators in atherosclerotic lesions, which is accompanied with higher serum granulocyte colony-stimulating factor (G-CSF), a critical mediator to increase neutrophils and recruitment of neutrophils to inflammatory sites. Moreover, granulocyte macrophage colony-stimulating factor (GM-CSF), a critical regulator of intimal cell proliferation in early atherosclerotic lesions, is also expressed in atherosclerotic lesions. Animal studies showed that treatment with either G-CSF or GM-CSF enhances the progression of atherosclerosis. These results suggest that G-CSF and GM-CSF play important roles in the progression of atherosclerosis. However, if expression of G-CSF and GM-CSF were induced by oxLDL is unknown.
In this study, we investigated if native LDL, naturally occurring electronegative LDL (LDL(-)) and Cu+2-induced oxLDL were able to induce G-CSF and GM-CSF expression in human macrophages. The LDL(-) was isolated from plasma of high-fat/cholesterol fed New Zealand rabbits or patients with acute myocardial infarction by ion exchange chromatography. We found that LDL(-) remarkably promoted G-CSF and GM-CSF expression and secretion in THP-1-derived macrophages in a time- and dose-dependent manner; while native LDL and Cu+2-induced oxLDL exert much lower effects. LDL(-)-induced G-CSF and GM-CSF expession were almost abolished in LOX-1 knock-down cells. Using pharmaceutical
vii
inhibitors and shRNA knockdown strategies, our results demonstrate that induction of G-CSF and GM-CSF by LDL(-) required activation of NF-κB, ERK2 and JNK. However, LDL(-)-induced G-CSF and GM-CSF production was not inhibited by cytochalasin D, an inhibitor of endocytosis, suggesting that LDL(-)-induced signal transduction may not dependent on receptor-mediated endocytosis. However, the possibility requires further investigation. Incubation with HDL partially decreased LDL(-)-induced expression of G-CSF, GM-CSF, TNF-α and IL-1β.
Taken together, our results show that LDL(-) induces G-CSF and GM-CSF expression via LOX-1 and through activation of NF-κB, ERK2 and JNK signaling pathway in THP-1-derived macrophages. All these effects of LDL(-) might generate before endocytosis. These results suggest that LDL(-) is an important modulator of G-CSF and GM-CSF expression that further link between LDL(-) and atherosclerosis.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:04:03Z (GMT). No. of bitstreams: 1
ntu-102-R00442012-1.pdf: 1810695 bytes, checksum: 326a4574a2e839585fe7f28665dc0e1a (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents目錄
論文口試審定書 I
序言 II
中文摘要 IV
ABSTRACT VI
第一章 緒論 1
第一節 文獻回顧 2
(一) 脂蛋白 (LIPOPROTEINS) 2
(二) 粥狀動脈硬化 (ATHEROSCLEROSIS) 4
(三) LECTIN-LIKE OXIDIZED-LOW DENSITY LIPOPROTEIN RECEPTOR-1 (LOX-1) 5
(四) NATIVE LDL (NLDL) 和 ELECTRONEGATIVE LDL (LDL(-)) 7
(五) 群落刺激因子 (COLONY STIMULATING FACTORS, CSFS) 8
(六) MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) 的訊息傳遞 12
第二節 實驗動機與目的 15
第二章 材料與方法 17
第一節 實驗材料 18
第二節 細胞培養 20
第三節 分離脂蛋白 21
第四節 製備慢病毒 (LENTIVIRUS) 22
ix
質體資訊 22
暫時性轉染(TRANSIENT TRANSFECTION) 26
收取合成好的慢病毒 27
慢病毒感染 27
第五節 細胞 MRNA 表現分析 27
細胞 RNA 抽取 27
反轉錄聚合酶連鎖反應 (RT-PCR) 28
第六節 即時定量聚合酶連鎖反應 (REAL-TIME QUANTITATIVE PCR) 30
第七節 引子資訊 30
第八節 西方點墨法 (WESTERN BLOTTING) 31
抽取細胞蛋白 31
定量蛋白質 32
樣品前處理 32
SDS-PAGE 電泳 32
半濕式蛋白質轉印 33
抗體結合免疫分析 33
第九節 酵素結合免疫吸附法 (ENZYME-LINKED IMMUNOSORBENT ASSAY, ELISA) 34
第十節 免疫螢光染色 (IMMUNOFLUORESCENCE STAINING) 35
第三章 實驗結果 36
第一節 LDL(-) 誘導巨噬細胞內 G-CSF 和 GM-CSF 表現 37
第二節 LDL(-) 會透過 LOX-1 誘導 G-CSF 和 GM-CSF 表現 38
第三節 LDL(-) 可能不依賴吞噬作用誘導 G-CSF 和 GM-CSF 表現 39
第四節 LDL(-) 需要 ERK 和 JNK 誘導 G-CSF 和 GM-CSF 表現 39
第五節 ERK2 對於 LDL(-) 誘導 G-CSF 和 GM-CSF 表現是重要的 40
x
第六節 LDL(-) 活化 NF-ΚB 促使 P65 入核而增加 G-CSF 和 GM-CSF 表現 41
第七節 HDL 具有減少 LDL(-) 誘導細胞激素表現的作用 41
第四章 討論 42
第一節 LDL(-) 刺激巨噬細胞表現 G-CSF 和 GM-CSF 較 OXLDL 更顯著 43
第二節 LDL(-) 可能不需要被吞噬進入細胞就已產生下游訊號 44
第三節 G-CSF 和 GM-CSF 的調控機制相當類似 45
第四節 LDL(-) 活化 NF-ΚB 會造成許多種發炎激素表現 47
第五節 HDL 具拮抗 LDL(-) 誘導促發炎細胞激素表現的作用 48
第六節 LOX-1 是一個有潛力的治療標的 49
第七節 總結 51
第五章 圖表 52
參考文獻 66
附錄 83
xi
圖表目錄
Figure 1. LDL(-) induces G-CSF and GM-CSF mRNA expression in THP-1-derived macrophages 53
Figure 2. LDL(-) induces G-CSF and GM-CSF mRNA expression in THP-1-derived macrophages 54
Figure 3. LDL(-) induces G-CSF and GM-CSF secretion in THP-1-derived macrophages 55
Figure 4. LDL(-) induces G-CSF secretion in THP-1-derived macrophages in a time- and dose-dependent manner 56
Figure 5. Knockdown of LOX-1 by shRNA-LOX-1 significantly decreases LDL(-)-induced G-CSF and GM-CSF mRNA expression and secretion in THP-1-derived macrophages 57
Figure 6. Effects of cytochalasin D on G-CSF and GM-CSF secretion in THP-1-derived macrophages 58
Figure 7. Effects of various kinase inhibitors on G-CSF and GM-CSF secretion in THP-1-derived macrophages 59
Figure 8. LDL(-) induces activation of ERK1/2 in THP-1-derived macrophages 60
Figure 9. U0126 inhibits LDL(-)-induced ERK1/2 activation, and expression of G-CSF and GM-CSF mRNA in THP-1-derived macrophages 61
Figure 10. Knockdown of ERK2 via shRNA-ERK2 decreased LDL(-)-induced G-CSF and GM-CSF protein levels in THP-1-derived macrophages 62
Figure 11. LDL(-) induced activation and nuclear translocation of NF-κB in THP-1-derived macrophages 63
Figure 12. HDL inhibits LDL(-)-induced mRNA levels of pro-inflammatory cytokines in THP-1-derived macrophages 64
Figure 13. HDL represses LDL(-)-induced G-CSF and GM-CSF secretion in THP-1-derived macrophages 65
1
dc.language.isozh-TW
dc.subject粥狀動脈硬化zh_TW
dc.subjectNF-κBzh_TW
dc.subject巨噬細胞zh_TW
dc.subjectLOX-1zh_TW
dc.subject帶負電 LDLzh_TW
dc.subject顆粒球巨噬細胞群落刺激因子zh_TW
dc.subject顆粒性白血球群落刺激因子zh_TW
dc.subjectERK1/2zh_TW
dc.subjectMacrophagesen
dc.subjectERK1/2en
dc.subjectG-CSFen
dc.subjectGM-CSFen
dc.subjectLDL(-)en
dc.subjectLOX-1en
dc.subjectAtherosclerosisen
dc.subjectNF-κBen
dc.title循環中陰電性低密度脂蛋白透過LOX-1及活化NF-κB、ERK2和JNK在巨噬細胞中引起G-CSF 和GM-CSF表現zh_TW
dc.titleCirculating electronegative LDL induces G-CSF and GM-CSF through LOX-1, and activation of NF-κB, ERK2 and JNK in human macrophagesen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張博淵(Po-Yuan Chang),張淑芬(Shu-Fen Chang),姜安娜(An-Na Chiang)
dc.subject.keyword粥狀動脈硬化,ERK1/2,顆粒性白血球群落刺激因子,顆粒球巨噬細胞群落刺激因子,帶負電 LDL,LOX-1,巨噬細胞,NF-κB,zh_TW
dc.subject.keywordAtherosclerosis,ERK1/2,G-CSF,GM-CSF,LDL(-),LOX-1,Macrophages,NF-κB,en
dc.relation.page86
dc.rights.note有償授權
dc.date.accepted2013-08-05
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
1.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved