Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61455
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂東武(Tung-Wu Lu)
dc.contributor.authorLi-De Changen
dc.contributor.author張立德zh_TW
dc.date.accessioned2021-06-16T13:03:23Z-
dc.date.available2014-08-09
dc.date.copyright2013-08-09
dc.date.issued2013
dc.date.submitted2013-08-05
dc.identifier.citationAydogan, Umur, Glisson, Richard R., & Nunley, James A. (2006). Extensor Retinaculum Augmentation Reinforces Anterior Talofibular Ligament Repair. Clinical Orthopaedics and Related Research, 442, 210-215.
Bahr, R., Pena, F., Shine, J., Lew, W. D., Lindquist, C., Tyrdal, S., & Engebretsen, L. (1997). Mechanics of the anterior drawer and talar tilt tests. A cadaveric study of lateral ligament injuries of the ankle. Acta Orthop Scand, 68(5), 435-441.
Baumhauer, J. F., Alosa, D. M., Renstrom, A. F., Trevino, S., & Beynnon, B. (1995). A prospective study of ankle injury risk factors. Am J Sports Med, 23(5), 564-570.
Boyce, B. L., Grazier, J. M., Jones, R. E., & Nguyen, T. D. (2008). Full-field deformation of bovine cornea under constrained inflation conditions. Biomaterials, 29(28), 3896-3904.
Brennan, S. A., Kiernan, C., Maleki, F., Bergin, D., & Kearns, S. R. (2012). Talonavicular synostosis with lateral ankle instability--A case report and review of the literature. Foot Ankle Surg, 18(3), e34-36.
Burks, R. T., & Morgan, J. (1994). Anatomy of the lateral ankle ligaments. Am J Sports Med, 22(1), 72-77.
Colville, M. R., Marder, R. A., Boyle, J. J., & Zarins, B. (1990). Strain measurement in lateral ankle ligaments. Am J Sports Med, 18(2), 196-200.
Dickinson, A. S., Taylor, A. C., Ozturk, H., & Browne, M. (2011). Experimental validation of a finite element model of the proximal femur using digital image correlation and a composite bone model. J Biomech Eng, 133(1), 014504.
Donatelli, R. A. (1985). Normal biomechanics of the foot and ankle. J Orthop Sports Phys Ther, 7(3), 91-95.
Easley, M., Chuckpaiwong, B., Cooperman, N., Schuh, R., Ogut, T., Le, I. L., & Reach, J. (2008). Computer-assisted surgery for subtalar arthrodesis. A study in cadavers. J Bone Joint Surg Am, 90(8), 1628-1636.
Fleming, B. C., Peura, G. D., & Beynnon, B. D. (2000). Factors influencing the output of an implantable force transducer. J Biomech, 33(7), 889-893.
Fujie, H., Livesay, G. A., Fujita, M., & Woo, S. L. (1996). Forces and moments in six-DOF at the human knee joint: mathematical description for control. J Biomech, 29(12), 1577-1585.
Fujie, H., Mabuchi, K., Woo, S. L., Livesay, G. A., Arai, S., & Tsukamoto, Y. (1993). The use of robotics technology to study human joint kinematics: a new methodology. J Biomech Eng, 115(3), 211-217.
Garrick, J. G., & Requa, R. K. (1973). Role of external support in the prevention of ankle sprains. Med Sci Sports, 5(3), 200-203.
Glasgow, M., Jackson, A., & Jamieson, A. M. (1980). Instability of the ankle after injury to the lateral ligament. J Bone Joint Surg Br, 62-B(2), 196-200.
Guerado, E., Bertrand, M. L., & Cano, J. R. (2012). Management of calcaneal fractures: what have we learnt over the years? Injury, 43(10), 1640-1650.
Hall, G. W., Crandall, J. R., Carmines, D. V., & Hale, J. E. (1999). Rate-independent characteristics of an arthroscopically implantable force probe in the human achilles tendon. J Biomech, 32(2), 203-207.
Herzog, W., Archambault, J. M., Leonard, T. R., & Nguyen, H. K. (1996). Evaluation of the implantable force transducer for chronic tendon-force recordings. J Biomech, 29(1), 103-109.
Hintermann, B., Boss, A., & Schafer, D. (2002). Arthroscopic findings in patients with chronic ankle instability. Am J Sports Med, 30(3), 402-409.
Holden, J. P., Grood, E. S., & Cummings, J. F. (1995). Factors affecting sensitivity of a transducer for measuring anterior cruciate ligament force. J Biomech, 28(1), 99-102.
Hollis, J. M., Blasier, R. D., & Flahiff, C. M. (1995). Simulated lateral ankle ligamentous injury. Change in ankle stability. Am J Sports Med, 23(6), 672-677.
Howard, J. L., Buckley, R., McCormack, R., Pate, G., Leighton, R., Petrie, D., & Galpin, R. (2003). Complications following management of displaced intra-articular calcaneal fractures: a prospective randomized trial comparing open reduction internal fixation with nonoperative management. J Orthop Trauma, 17(4), 241-249.
Johnson, J. E., Cohen, B. E., DiGiovanni, B. F., & Lamdan, R. (2000). Subtalar arthrodesis with flexor digitorum longus transfer and spring ligament repair for treatment of posterior tibial tendon insufficiency. Foot Ankle Int, 21(9), 722-729.
Kalamchi, A., & Evans, J. G. (1977). Posterior subtalar fusion. A preliminary report on a modified Gallie's procedure. J Bone Joint Surg Br, 59(3), 287-289.
Kitaoka, H. B., Crevoisier, X. M., Harbst, K., Hansen, D., Kotajarvi, B., & Kaufman, K. (2006). The effect of custom-made braces for the ankle and hindfoot on ankle and foot kinematics and ground reaction forces. Arch Phys Med Rehabil, 87(1), 130-135.
Mazur, J. M., Schwartz, E., & Simon, S. R. (1979). Ankle arthrodesis. Long-term follow-up with gait analysis. J Bone Joint Surg Am, 61(7), 964-975.
Ozeki, S., Yasuda, K., Kaneda, K., Yamakoshi, K., & Yamanoi, T. (2002). Simultaneous strain measurement with determination of a zero strain reference for the medial and lateral ligaments of the ankle. Foot Ankle Int, 23(9), 825-832.
Philippot, R., Wegrzyn, J., & Besse, J. L. (2010). Arthrodesis of the subtalar and talonavicular joints through a medial surgical approach: a series of 15 cases. Arch Orthop Trauma Surg, 130(5), 599-603.
Prisk, V. R., Imhauser, C. W., O'Loughlin, P. F., & Kennedy, J. G. (2010). Lateral ligament repair and reconstruction restore neither contact mechanics of the ankle joint nor motion patterns of the hindfoot. J Bone Joint Surg Am, 92(14), 2375-2386.
Rasmussen, O. (1985). Stability of the ankle joint. Analysis of the function and traumatology of the ankle ligaments. Acta Orthop Scand Suppl, 211, 1-75.
Ravary, B., Pourcelot, P., Bortolussi, C., Konieczka, S., & Crevier-Denoix, N. (2004). Strain and force transducers used in human and veterinary tendon and ligament biomechanical studies. Clin Biomech (Bristol, Avon), 19(5), 433-447.
Rudy, T. W., Livesay, G. A., Woo, S. L., & Fu, F. H. (1996). A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments. J Biomech, 29(10), 1357-1360.
Sheridan, B. D., Robinson, D. E., Hubble, M. J., & Winson, I. G. (2006). Ankle arthrodesis and its relationship to ipsilateral arthritis of the hind- and mid-foot. J Bone Joint Surg Br, 88(2), 206-207.
Siegler, S., Lapointe, S., Nobilini, R., & Berman, A. T. (1996). A six-degrees-of-freedom instrumented linkage for measuring the flexibility characteristics of the ankle joint complex. J Biomech, 29(7), 943-947.
Taga, I., Shino, K., Inoue, M., Nakata, K., & Maeda, A. (1993). Articular cartilage lesions in ankles with lateral ligament injury. An arthroscopic study. Am J Sports Med, 21(1), 120-126; discussion 126-127.
Thomas, F. B. (1969). Arthrodesis of the ankle. J Bone Joint Surg Br, 51(1), 53-59.
Tohyama, H., Beynnon, B. D., Renstrom, P. A., Theis, M. J., Fleming, B. C., & Pope, M. H. (1995). Biomechanical analysis of the ankle anterior drawer test for anterior talofibular ligament injuries. J Orthop Res, 13(4), 609-614.
Trnka, H. J., Easley, M. E., Lam, P. W., Anderson, C. D., Schon, L. C., & Myerson, M. S. (2001). Subtalar distraction bone block arthrodesis. J Bone Joint Surg Br, 83(6), 849-854.
Valderrabano, V., Hintermann, B., Horisberger, M., & Fung, T. S. (2006). Ligamentous posttraumatic ankle osteoarthritis. Am J Sports Med, 34(4), 612-620.
Weindel, S., Schmidt, R., Rammelt, S., Claes, L., v Campe, A., & Rein, S. (2010). Subtalar instability: a biomechanical cadaver study. Arch Orthop Trauma Surg, 130(3), 313-319.
Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., . . . Stokes, I. (2002). ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion--part I: ankle, hip, and spine. International Society of Biomechanics. J Biomech, 35(4), 543-548.
Yeung, M. S., Chan, K. M., So, C. H., & Yuan, W. Y. (1994). An epidemiological survey on ankle sprain. Br J Sports Med, 28(2), 112-116.
徐徹菖. (2005). 利用工業機械手臂發展關節生物力學測試系統之研究. 台灣大學醫學工程學研究所.
張方杰. (2011). 利用機械手臂關節測試系統與有限元素法研究前距腓與跟腓韌帶之生物力學. 台灣大學醫學工程學研究所.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61455-
dc.description.abstract踝關節在人體的各種功能性動作中扮演著極重要的角色,而足踝損傷經常伴隨著韌帶傷害,長期處於不穩定的情況下,容易引發創傷性踝關節炎,通常選擇全人工踝關節替換或骨融合手術來減輕疼痛。過去在踝關節相關研究中,多以自行開發之多自由度關節測試儀器來量化穩定度,並評估軟組織在關節活動中之貢獻,手法因人而異,造成各家結論不一的情況。少有研究將機械手臂關節測試系統應用在踝關節,是因受限於無法控制距骨之移動,而本實驗的目的,是利用骨融合手術時將距下關節鎖住,進而達到機械手臂同時控制距腓骨聯合與跟骨、距骨的目的,除了探討骨融合前後關節穩定度的改變,骨融合後,便可將外側韌帶對踝關節的影響獨立出來討論。
本研究利用機械手臂關節測試系統,以模擬兩種理學檢查之控制方法(最大力量100牛頓之前拉測試、最大力矩4000牛頓毫米之距骨傾斜測試),分別對距下關節骨融合前後之三組踝關節試體進行不同屈曲角度下(背屈10度、5度、中性位置、蹠屈5度、10度)之拉伸測試,將所得之關節運動學與力動學資訊結合,比較融合前後關節鬆弛度的變化,並以機械手臂重複運動路徑的功能,在骨融合後排除距骨移動影響,依序剪斷外側韌帶,應用力學疊加原理來量化韌帶的貢獻。關節位移鬆弛度在骨融合後,向前方向平均下降約12%,向後方向5%,旋轉鬆弛度內翻方向平均下降約15%,外翻方向22%。前距腓韌帶主要貢獻在於限制關節前移,蹠屈角度越大,作用越明顯;跟腓韌帶則限制踝關節的內翻運動,隨著背屈角度增加,跟腓韌帶的受力矩也呈現遞增狀況;而後距腓韌帶對於踝關節的運動限制並不明顯,但因幾合位置的關係,與前距腓韌帶一前一後維持關節的穩定性。距骨給予踝關節更大的自由度,在骨融合後損失部分自由度的情況下,依然要達到與手術前正常踝關節的運動行為,勢必將由脛距關節與周圍的軟組織來分擔,除了提高受傷風險外,亦會造成鄰近關節面的過度磨損,而衍生新的關節炎。
zh_TW
dc.description.abstractThe ankle joint plays a very important role in various functional movements of the human body. The lateral ligament damage often associated with ankle injury and it is easy to cause traumatic arthritis. It may bring the neighboring joints arthritis risk when selecting the total ankle replacement or fusion surgery to alleviate the pain. In the previous studies, multiple degrees of freedom arthrometer were used to quantify laxity and assess contribution of soft tissues in joint activities. Talus motion controlling makes rare robotic-based joint testing system (RJTS) used in the studies of the ankle joint.
In this study, we used RJTS to control joint motion by anterior drawer test and talar tilt test in different flexion angles on 3 ankle specimens before and after subtalar arthrodesis, then combined joint kinematic and kinetic data to compare the difference of laxity. After excluding the influence of talus moving, we can get ligament contribution by repeating path function of RJTS and superposition theory. After subtalar arthrodesis, joint became more stable. On the other hand, the DOF of ankle joint was lower. It affected varus/valgus rotation more than anterior/posterior displacement. The contribution of ATFL is limiting anterior displacement, the effect is more obvious when plantar flexion angle increases. With dorsiflexion angle increases, CFL restricted varus motion more that the moment became larger. Effect on joint motion of PTFL was less but it maintained joint stable with ATFL because of the shape and position. To achieve the normal ankle motion behavior, it must share the force which came from fixing talus with tibiotalar joints and surrounding soft tissues after subtalar arthrodesis. In addition to increasing the risk of injury, but also resulting in excessive wear of the articular surface of adjacent joint, and deriving arthritis.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:03:23Z (GMT). No. of bitstreams: 1
ntu-102-R00548017-1.pdf: 3489840 bytes, checksum: 6e0c9f14346955ca3f7d0fea931080dd (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents目錄
誌謝 I
中文摘要 II
ABSTRACT III
目錄 IV
圖目錄 VII
表目錄 XI
第1章 緒論 1
第1節 研究動機 1
第2節 踝關節構造與創傷性踝關節炎 2
第1項 骨骼系統 2
第2項 韌帶組織 6
第3項 肌肉組織 8
第4項 創傷性踝關節炎 9
第3節 文獻回顧 10
第1項 活體量測方法 10
第2項 試體量測方法 13
第3項 骨融合手術 16
第4項 機械手臂/六軸力規測試系統 17
第5項 數位影像相關法 18
第4節 研究目的 20
第2章 實驗設備與材料 21
第1節 硬體 21
第1項 機械手臂系統(RV20A, Mitsubishi Electric Corporation, Japan) 21
第2項 六軸力規(Model PY6-100, Bertec Corporation, USA) 24
第3項 夾具設備 24
第4項 電腦 27
第5項 三維全域變形及應變量測系統(VIC3D, Correlation Solutions Inc., SC, US) 28
第2節 軟體 29
第3節 踝關節試體 31
第3章 控制理論與實驗流程 33
第1節 座標系統之定義 33
第2節 踝關節運動及關節角度、位移之定義 35
第3節 關節的位置控制 36
第1項 局部座標系統微小運動之數學推導 36
第2項 局部座標系統經微小運動後之齊次轉換矩陣 37
第3項 關節微小運動之控制 38
第4節 關節的力量控制 39
第1項 機器人學理論之應用 39
第2項 關節力量之轉換 40
第3項 順從矩陣之決定以控制關節力量 40
第5節 關節位置和力量的混合控制 41
第6節 實驗流程與資料處理 42
第1項 實驗流程 42
第2項 資料處理 43
第4章 研究結果 44
第1節 關節穩定度 44
第1項 前拉測試 44
第2項 距骨傾斜測試 49
第2節 韌帶力量 53
第1項 前拉測試 53
第2項 距骨傾斜測試 61
第3節 距骨活動範圍 69
第5章 討論 71
第1節 關節穩定度 71
第2節 韌帶力量 73
第3節 距骨移動對踝關節的影響 74
第6章 總結 76
第1節 結論 76
第2節 未來方向 77
參考文獻 78
 
dc.language.isozh-TW
dc.title利用機械手臂關節測試系統研究距下關節骨融合術對踝關節穩定度與外側韌帶之影響zh_TW
dc.titleEffects of Subtalar Arthrodesis on Ankle Joint Laxity and Lateral Ligaments Using Robotic Joint Testing Systemen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王至弘(Jyh-Horng Wang),林聰穎(Tsung-Ying Lin)
dc.subject.keyword機械手臂關節測試系統,關節穩定度,外側韌帶,距下關節骨融合手術,zh_TW
dc.subject.keywordRobot,joint laxity,lateral ligaments,subtalar arthrodesis,en
dc.relation.page82
dc.rights.note有償授權
dc.date.accepted2013-08-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
3.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved